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Abstract In this study, a comparative approach was made between artificial neural network

(ANN) and response surface methodology (RSM) to predict the mass transfer parameters of osmo-

tic dehydration of papaya. The effects of process variables such as temperature, osmotic solution

concentration and agitation speed on water loss, weight reduction, and solid gain during osmotic

dehydration were investigated using a three-level three-factor Box-Behnken experimental design.

Same design was utilized to train a feed-forward multilayered perceptron (MLP) ANN with

back-propagation algorithm. The predictive capabilities of the two methodologies were compared

in terms of root mean square error (RMSE), mean absolute error (MAE), standard error of predic-

tion (SEP), model predictive error (MPE), chi square statistic (v2), and coefficient of determination

(R2) based on the validation data set. The results showed that properly trained ANN model is found

to be more accurate in prediction as compared to RSM model.
ª 2013 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
294 226606; fax: +91 4294

il.com (J. Prakash Maran),

mar), thirusambath5@gmail.

), sridhar36k@yahoo.co.in

lty of Engineering, Alexandria

g by Elsevier

ng by Elsevier B.V. on behalf of F

07
1. Introduction

India is the second largest producer of fruits and vegetables
contributing about 12.4% to the total world fruit and 13.3%
to vegetable production. India ranks first in the production

of mangoes (41%), banana (28%), papaya (30%), and peas
(30%) and second in brinjal (29%), cauliflower (29%), onion
(18%), and cabbage (8%). Papaya (Carica papaya L.) is rich

in carbohydrate, vitamin A, calcium, iron, and fiber and has
negligible saturated fat. Apart from this, it contains niacin,
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foliate, vitamin E, magnesium, phosphorus, potassium, lipids,
and amino acids. Papaya is the only natural source of papain –
an effective natural digestive aid – which breaks down protein

and cleanses of the digestive track. Papaya is highly seasonal
fruit and only available during the month of March to June
in India, and it is mostly cultivated in the states of Andhra Pra-

desh, Karnataka, Gujarat, Orissa, West Bengal, Assam, Tamil
Nadu, Kerala, Madhya Pradesh, and Maharashtra. Since it is
a perishable commodity, papaya becomes much cheaper in

terms of selling price during the peak season and also it leads
to more financial losses to the grower resulting from the spoil-
age of fruits in larger quantities. Preservation of these fruits
can prevent a huge wastage and make them available in the

off-season at remunerative prices [1].
Removal of water from solid food is a form of food pres-

ervation, inhibiting the growth of microorganisms, besides

preventing a large part of biochemical reactions that occur
due to the presence of moisture [2]. Among various methods
used for extending the shelf life of fruit such as Papaya

(Carica papaya L.), osmotic dehydration is one of the sim-
plest and inexpensive processes that are not only energy-sav-
ing and also low-capital investment. Osmotic dehydration is

used as a pre-treatment to many preservation processes such
as freezing, freeze-drying, microwave drying, and air-drying
to improve nutritional, sensorial, and functional properties
of fruits without changing their integrity [3]. Osmotic dehy-

dration is widely used for the partial removal of water from
plant tissues by immersion in a hypertonic (osmotic) solu-
tion. The driving force for the diffusion of water from the

tissue into the solution is provided by the higher osmotic
pressure of the hypertonic solution. During osmotic dehy-
dration, water removal from the product is always accompa-

nied by the simultaneous counter diffusion of solutes from
the osmotic solution into the tissue [4]. The osmotic solution
used must have a low water activity (aw), and moreover, the

solute must be harmless with good taste. The type of osmo-
tic agent used for osmotic dehydration is a very important
factor that determines the rate of diffusion and quality of
the final product. Jaggery is concentrated sugar cane juice

containing 75–85% sucrose, which is widely used as a substi-
tute of white and refined cane sugar in India. Jaggery is
used as ayurvedic/traditional medicines for treating throat

and lung infections and also used for the preparation of
sweet confectionery items [5]. Among the various osmotic
agents used in the literature, jaggery is found to be more

suitable because of its medicinal characteristics and its nutri-
tional value [6]. The number of publications has been
reported in the literature to know the influence of variables
such as temperature, concentration of the osmotic solution,

the size and geometry of the material, the solution to mate-
rial mass ratio, and the level of agitation of the solution on
mass transfer rates for different products using different os-

motic solutions. [7–12].
The response surface methodology (RSM) has been widely

and effectively used method in process and product improve-

ment. It is widely used to examine and optimize the opera-
tional variables for experiment designing, model developing,
etc., [13,14]. RSM is typically used for mapping a response sur-

face over a particular region of interest, optimizing the re-
sponses, or for selecting operating conditions to achieve
target specifications or consumer requirements [15]. Several
studies on the optimized conditions for the osmotic dehydra-
tion process using RSM have been published for papaya,
potato, diced pepper, and banana [16–18].

Artificial neural network (ANN) is a powerful modeling

technique that offers several advantages over conventional
modeling techniques because they can model based on no
assumptions concerning the nature of the phenomenological

mechanisms and understanding the mathematical background
of problem underlying the process and the ability to learn lin-
ear and nonlinear relationships between variables directly from

a set of examples. Artificial neural networks have already been
applied to simulate processes such as fermentation [19], cross-
flow microfiltration [20], drying behavior of different food and
agricultural materials such as carrot [15,21], tomato [22], gin-

seng [23], cassava, mango [24], and osmotic dehydration [25].
Hence, the main motivation behind the study is to develop
an approach for the evaluation of mass transfer during osmo-

tic dehydration process by using RSM and ANN techniques.
In this study, a response surface methodology and artificial

network model (ANN) models were developed to predict the

mass transfer during osmotic dehydration of papaya. A num-
ber of experiments were carried out based on Box-Behnken
experimental design to collect the output variables such as

water loss (WL), weight reduction (WR), and solid gain (SG)
as a function of osmotic temperature (30, 40, and 50 �C),
osmotic solution concentration (40, 50, and 60 �brix), and agi-
tation speed (100, 150, and 200 rpm). An effective RSM model

and a feed-forward neural network on back-propagation were
developed utilizing the experimental data, and the efficiency of
both models was compared.

2. Materials and methods

2.1. Raw materials

Papaya (with similar maturity and weight) was used as raw

materials in the experiments and was purchased from a local
market near Erode, Tamil Nadu. Samples were stored at
4 �C prior to the experiments. Osmotic solution was prepared

by mixing of appropriate amount of jaggery with the proper
amount of water.

2.2. Experimental procedure

For each experiment, the papaya was washed, peeled manu-
ally, and cut into 1 cm · 1 cm · 1 cm cubes. The papaya cubes
were washed in water to remove the fines adhering to the sur-

face of the cubes. The desired concentration of osmotic solu-
tion of jaggery was prepared and the known weight of
papaya cubes was immersed in the Erlenmeyer flasks which

contain osmotic solutions of different concentrations (40, 50,
and 60 �brix) at different temperatures (30, 40, and 50 �C)
and agitation speeds (100, 150, and 200 rpm). Osmotic dehy-

dration was carried out in a temperature and agitation con-
trolled incubator shaker (GeNei, model SLM-INC-OS-16,
India). To prevent evaporation from the osmotic solution,
Erlenmeyer flaks were covered with a plastic wrap during the

experiments. During the osmotic treatment, every half-an-hour
the cubes were removed from osmotic solution and weighed
after removing the solution adhering to the surface using filter

paper (Whatman No 1), and this procedure was continued
until the weight of the samples remained constant. Experi-
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ments were randomized in order to minimize the effects of
unexplained variability in the observed responses due to extra-
neous factors. All the experiments were performed in triplicate,

and the average value was used for the determination of water
loss, solid gain, and weight reduction.

2.3. Mathematical calculations

During osmotic dehydration process, the water loss and solid
gain take place simultaneously. The weight of the papaya

was reduced due to water loss, but at the same time, there will
be an increase in the weight due to solid gain. The mass
exchange between the solution and samples was evaluated by

using the parameters such as water loss (WL), solid gain
(SG), and weight reduction (WR), and those parameters were
calculated by the following equations [26]

WRð%Þ ¼W0 �Wt

W0

� 100 ð1Þ

SGð%Þ ¼ St � S0

W0

� 100 ð2Þ

WLð%Þ ¼WRþ SG ð3Þ

where W0 is the initial weight of papaya cubes (g), Wt the
weight of papaya cubes after osmotic dehydration for any time

t (g), S0 is the initial dry weight of papaya (g), and St is dry
weight of papaya after osmotic dehydration for time t (g).

2.4. Response surface methodology modeling

Response surface methodology is an empirical statistical mod-
eling technique employed for multiple regression analysis using

quantitative data obtained from properly designed experi-
ments to solve multivariate equations simultaneously [27]. A
Box-Behnken Design (BBD) with three factors at three levels
was used to design the experiments and it is exhibited in Table

2. The process parameters (independent variables) selected for
the optimization were osmotic temperature (X1), osmotic solu-
tion concentration (X2), and agitation speed (X3). The number

of experiments (N) required for the development of BBD is
defined as N = 2 k(k � 1) + Co (where k is number of factors
and Co is the number of central point). The design included 17

experiments with 5 central points. Each independent variable
Table 1 Error functions and its equations.

Error function Equation

Root mean square error RMSE ¼

Mean absolute error MAE ¼

Standard error of prediction (%) SEPð%Þ

Model predictive error (%) MPEð%Þ

Chi square statistic (v2) v2 ¼
Pn

i¼

Correlation coefficient (R2) R2 ¼
Pn

iPn

i

n is the number of experiments; Yi,e is the experimental value of the ith exp

Ye is the average value of experimentally determined values.
was coded at three levels between +1, 0, and �1, whereas
osmotic temperature: 30–50 �C; osmotic solution concentra-
tion: 40–60 �brix, and agitation speed: 100–200 rpm, respec-

tively. Coding of the variables was done according to the
following equation:

xi ¼
xi � xcp

Dxi

i ¼ 1; 2; 3 . . . k ð4Þ

where xi, dimensionless value of an independent variable; Xi,
real value of an independent variable; Xcp, real value of an
independent variable at the center point; and DXi, step change

in real value of the variable i corresponding to a variation in a
unit for the dimensionless value of the variable i.

Performance of the process was evaluated by analyzing the

responses (Y), which depend on the input factors x1, x2. . ., xk,
and the relationship between the response and the input pro-
cess parameters is described by

Y ¼ fðx1; x2 . . . xkÞ þ e ð5Þ

where f is the real response function the format of which

is unknown and e is the error which describes the
differentiation.

A second-order polynomial equation was used to fit the

experimental data to identify the relevant model terms using
statistical software (Design Expert 8.0.7.1). A quadratic model,
which also includes the linear model, can be described as:

Y ¼ b0 þ
Xk
j¼1

bjxj þ
Xk
j¼1

bjjx
2
j þ

X
i

Xk
<j¼2

bijxixj þ ei ð6Þ

where Y is the response; xi and xj are variables (i and j range

from 1 to k); b0 is the model intercept coefficient; bj, bjj, and
bij are interaction coefficients of linear, quadratic, and the sec-
ond-order terms, respectively; k is the number of independent
parameters (k= 4 in this study); and ei is the error [28].

The statistical analysis was performed using Design Expert
Statistical Software package 8.0.7.1 (Stat Ease Inc., Minneap-
olis, USA). The experimental data were analyzed using multi-

ple regressions, and the significance of regression coefficients
was evaluated by F-test. Modeling was started with a quadratic
model including linear, squared, and interaction terms, and the

model adequacies were checked in terms of the values of R2,
adjusted R2, and prediction error sum of squares (PRESS).
The significant terms in the model were found by Pareto anal-
ysis of variance (ANOVA) for each response, and ANOVA
and number Ref.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðYi; e� Yi;pÞ2

q
=n ð10Þ [34]

i
n

Pn
i¼1jYi; e� Yi;pj ð11Þ [35]

¼ RMSE
Y i;e

� 100 ð12Þ [34]

¼ 100
n

Pn
i¼1

Yi;e�Yi;p

Yi;p

���
��� ð13Þ [36]

1

Yi;p�Yi;eð Þ2
Yi;p

ð14Þ [37]

¼1 Yi;p�Yi;eð Þ
¼1 Yi;p�Yeð Þ2 ð15Þ [38]

eriment; Yi,e is the predicted value of the ith experiment by model; and



Table 2 Coded and un-coded Box-Behnken design of independent variables and their corresponding experimental and predicted

values.

Run X1 (�C) X2 (�brix) X3 (rpm) Water loss (%) Weight reduction (%) Solid gain (%)

YEXP YRSM YANN YEXP YRSM YANN YEXP YRSM YANN

1 30 (�1) 40 (�1) 150 (0) 45.24 46.38 45.32 34.26 35.35 34.43 13.26 13.24 13.28

2 40 (0) 60 (1) 100 (�1) 63.76 63.71 63.18 61.56 61.95 61.79 10.36 10.48 10.37

3 40 (0) 50 (0) 150 (0) 53.51 53.51 53.51 50.47 50.47 50.78 12.56 12.56 12.63

4 40 (0) 60 (1) 200 (1) 72.01 72.59 71.46 65.38 65.22 65.59 16.37 16.02 16.26

5 30 (�1) 60 (1) 150 (0) 69.12 69.74 68.73 62.79 63.66 62.64 12.83 13.05 12.57

6 40 (0) 50 (0) 150 (0) 53.51 53.51 53.51 50.47 50.47 50.78 12.56 12.56 12.63

7 50 (1) 40 (�1) 150 (0) 62.87 62.25 61.74 57.94 57.07 57.83 13.48 13.26 13.44

8 40 (0) 50 (0) 150 (0) 53.51 53.51 53.51 50.47 50.47 50.78 12.56 12.56 12.63

9 40 (0) 50 (0) 150 (0) 53.51 53.51 53.51 50.47 50.47 50.78 12.56 12.56 12.63

10 30 (�1) 50 (0) 200 (1) 64.49 63.30 64.73 57.59 56.89 57.48 16.28 16.42 16.21

11 50 (1) 50 (0) 200 (1) 61.94 62.50 61.52 57.83 59.08 58.29 17.29 17.63 17.47

12 50 (1) 50 (0) 100 (�1) 55.64 56.83 55.24 54.75 55.45 54.86 11.18 11.05 11.12

13 30 (�1) 50 (0) 100 (�1) 54.81 54.25 54.92 52.62 51.37 53.16 12.34 12.01 12.18

14 50 (1) 60 (1) 150 (0) 56.78 55.65 54.78 49.29 48.21 49.38 13.26 13.28 13.25

15 40 (0) 40 (�1) 200 (1) 62.63 62.69 62.74 57.19 56.80 57.37 16.18 16.06 16.13

16 40 (0) 50 (0) 150 (0) 53.51 53.51 53.51 50.47 50.47 50.78 12.56 12.56 12.63

17 40 (0) 40 (�1) 100 (�1) 57.42 56.85 57.83 50.75 50.92 50.47 10.26 10.61 10.42

X1 – osmotic temperature (C); X2 – osmotic solution concentration (�brix); X3 – agitation speed (RPM); YEXP – experimental value; YRSM –

predicted by RSM model; YANN – predicted by ANN model.
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tables were generated. The regression coefficients were used to
make statistical calculations to generate response surface plots
from the regression models.

2.5. Artificial neural network modeling

Artificial neural network can be used as an alternative to the

polynomial regression based modeling tool, which provides
the modeling of complex nonlinear relationships. The ANN
model is potentially more accurate by including all the

experimental data [29]. The reporting ability of feed-forward
architecture of ANN [30,31], also known as multilayered per-
ceptron (MLP) with back-propagation (BP) algorithm, was

selected and trained in this study to develop predictive model
with scaled concentrations of three variables such as osmotic
temperature, osmotic solution concentration, and agitation
speed as input and the water loss, weight reduction, and solid
Figure 1 General scheme of a multilayered perceptron neural

network.
gain as output to the model, respectively. The general scheme
of a multilayered perceptron neural network is shown in Fig. 1.

The first step in the training of a neural network is to design

the topology of the network. The number of neurons in the
input layer is fixed by the number of inputs and in the output
layer by the number of outputs [32]. The topology of the neural

network developed was designated as 3-h-3 (three input neu-
rons representing the three osmotic dehydration process vari-
ables, h represents hidden neurons in a single hidden layer

and three output neurons representing the WL, WR, and
SG). The neural network topologies were constructed, trained,
tested, and validated using experimental data with a number of

hidden layers varied from 3 to 10. The experimental data were
divided into training, cross-validation, and testing purposes. In
this study, sigmoid transfer function with back-propagation
algorithm at hidden neurons and a linear transfer functions

at input and output neurons were used and it is expressed as

fðxÞ ¼ 1

1þ expð�xÞ
ð7Þ

fðxÞ ¼ x ð8Þ

The training process was run by trial and error search method
until a minimum of mean square error (MSE) was reached in
the validation process and the performance of trained network

was estimated based on the accuracy of the neural network to
produce outputs that are equal or near to target (predicted)
values. In order to achieve fast convergence to the minimal

root mean square error (RMSE), the inputs and outputs are
scaled within the uniform range of 0 (new xmin) to 1 (new xmax)
by the following equation [33] to ensure uniform attention dur-

ing the training process.

xi�n ¼
xi � xmin

xmax � xmin

ðnew xmax � new xminÞ þ new xmin ð9Þ

where xi is the input/output data (data of independent and

dependent variable variables), xmax and xmin are the maximum
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and minimum values of the particular variable, respectively.

MATLAB 6.5 (The Mathworks Inc.) with neural network
toolbox was used for training the network model in order to
generate neural network modeling and analysis.

2.6. Comparison of RSM and ANN models

In order to evaluate the goodness of fitting and prediction
accuracy of the constructed models, error analyses (root mean

square error (RMSE), mean absolute error (MAE), standard
error of prediction (SEP), model predictive error (MPE), and
chi square statistic (v2)) and correlation coefficients (R2) were

carried out between experimental and predicted data. The for-
mulas used for error analyses are listed in Table 1. To study the
modeling abilities of the RSM and ANN models, the values

predicted by the RSM and ANN models are plotted against
the corresponding experimental values.

3. Results and discussion

3.1. RSM modeling

According to the BBD, experiments were performed in order
to find out the optimum combination and study the effect of
process parameters on water loss, weight reduction, and solid

gain for the osmotic dehydration of papaya, and the results are
given in Table 2.

Linear, interactive, and quadratic models were fitted to the

experimental data to obtain the regression models. Sequential
model sum of squares and model summary statistics were car-
ried out to check the adequacy of the models, and the results

showed that the P-value was lower than 0.0001 for quadratic
model only. Multiple regression analysis of the experimental
data yielded second-order polynomial models for predicting

water loss (WL), weight reduction (WR), and solid gain
(SG). The second-order polynomial equation was fitted with
Table 3 ANOVA for the experimental results of the Box-Behnken

Source DF Water loss (%) Weigh

CE SS P value CE

Model 9 53.51 725.61 <0.0001 50.47

X1 1 0.45 1.59 0.2614 1.57

X2 1 4.19 140.37 <0.0001 4.86

X3 1 3.68 108.34 <0.0001 2.29

X1X2 1 �7.49 224.55 <0.0001 �9.3
X1X3 1 �0.85 2.86 0.1459 �0.47
X2X3 1 0.76 2.31 0.1847 �0.66
X2

1 1 0.13 0.07 0.8055 �1.21
X2

2 1 4.86 99.60 <0.0001 1.81

X2
3 1 5.58 131.16 <0.0001 6.44

Std. Dev. 1.03 1.09

Mean 58.49 53.78

CV% 1.77 2.03

PRESS 119.55 133.31

Adeq. Prec 33.08 35.69

R2 0.9898 0.9896

Adj R2 0.9767 0.9763

Pred R2 0.8369 0.8341

DF – degree of freedom; CE – coefficient; SS – sum of square.
the experimental results obtained on the basis of Box-Behnken
experimental design. The final equation obtained in terms of
coded factors is given below

WL ¼ 53:51þ 0:45X1 þ 4:19X2 þ 3:68X3 � 7:49X1X2

� 0:85X1X3 þ 0:76X2X3 þ 0:13X2
1 þ 4:86X2

2

þ 5:58X2
3 ð16Þ

WR ¼ 50:47þ 1:57X1 þ 4:86X2 þ 2:29X3 � 9:30X1X2

� 0:47X1X3 � 0:66X2X3 � 1:21X2
1 þ 1:81X2

2

þ 6:44X2
3 ð17Þ

SG ¼ 12:56þ 0:062X1 � 0:045X2 þ 2:75X3

þ 0:053X1X2 þ 0:54X1X3 þ 0:023X2X3 þ 0:81X2
1

� 0:17X2
2 þ 0:9X2

3 ð18Þ

The adequacy and fitness of the models were tested by

Pareto analysis of variance (ANOVA), and the results
indicated that the equation adequately represented the actual
relationship between the independent variables and the

responses (Table 3). The ANOVA result for the WL, WR,
and SG shows F-value of 75.53, 74.23, and 83.87, which im-
plies that the model is significant. Coefficient of determination
(R2) and adj-R2 were calculated to check the adequacy and fit-

ness of the model. The values of R2 were calculated to be
0.9898, 0.9896, and 0.9908 for WL, WR, and SG, respectively,
which implies that 95% of experimental data were compatible.

The use of an adj-R2 is to evaluate the model adequacy and fit-
ness. The adj-R2 value corrects the R2 value for the sample size
and for the number of terms in the model. The value of adj-R2

(0.9767 for WL, 0.9763 for WR, and 0.979 for SG) is also high
to advocate for a high significance the model.

The coefficient of variation (CV%) indicates the relative
dispersion of the experimental points from the predictions of

the second-order polynomial (SOP) models [39]. The value of
design.

t reduction (%) Solid gain (%)

SS P value CE SS P value

795.23 <0.0001 12.56 68.18 <0.0001

19.69 0.0048 0.06 0.03 0.5749

188.96 <0.0001 �0.05 0.02 0.6846

41.91 0.0006 2.75 60.39 <0.0001

345.59 <0.0001 0.05 0.01 0.7371

0.89 0.4151 0.54 1.18 0.0086

1.72 0.2689 0.02 2.03E�03 0.8852

6.18 0.0568 0.81 2.79 0.0009

13.81 0.0113 �0.17 0.12 0.2937

174.56 <0.0001 0.9 3.40 <0.0001

0.3

13.29

2.26

10.12

31.01

0.9908

0.979

0.853



Figure 2 Normal% probability plots for WL (A), WR (B), and

SG (C).

Figure 3 Response surface plot for WL (A), WR (B), and SG

(C).
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CV is also low as 1.77, 2.03, and 2.26, which indicates that the
deviations between experimental and predicted values are low.
Adequate precision measures the signal to noise ratio and this

ratio is greater than 4 that is desirable [40,41]. In this work, the
ratio is found to be >31, which indicates an adequate signal.
Data were analyzed to check the normality of the residuals,

and the normal percentage probability plot of these residuals
is shown in Figs. 2A–C.

3.2. Response surface and contour plots

Response surface plots as a function of two factors at a time,
maintaining all other factors at fixed levels are more helpful in
understanding both the main and the interactive effects of
these two factors. The response surface curves were plotted

to understand the interaction of the variables and to determine
the optimum level of each variable for maximum response. The
response surface plots for water loss (WL), weight reduction

(WR), and solid gain (SG) are shown in Fig. 3, and it shows
the effects of process variables such as processing temperature,
osmotic solution concentration, and agitation on water loss,

weight reduction, and solid gain during the osmotic dehydra-
tion of papaya. The higher processing temperature and solu-
tion concentration promote rapid water loss (Fig. 3A) and
thus reduced the time required to reach equilibrium concentra-

tions. The rate of removal of water and solid gain is relatively
high at the beginning stages, because of the high osmotic driv-



Artificial neural network and response surface methodology modeling 513
ing force between the solution concentration and the fresh
sample.

Rapid removal of water in the early stages of osmotic dehy-

dration has been reported by several authors [42–45]. During
osmotic dehydration, water removal from the product is
always accompanied by the simultaneous counter diffusion

of solutes from the osmotic solution into the tissue. Accelera-
tion of water loss without modification of solid gain when the
dehydration solution concentration is increased [46–48]. This

effect is generally attributed by the influence of natural tissue
membranes as well as to the diffuse properties of water and
solutes.

When water loss and solid gain take place parallel mode,

the rate of water loss is always higher than the solid gain. In-
crease in the solid gain lowering the rates of water loss and
consequently weight reduction also. Increase in the concentra-

tion and agitation leads to more water loss than solid gain
which causes an increase in the weight reduction (Fig. 3B).
This phenomenon is attributed to the diffusion differences

between water and solutes as related to their molar masses
[3,4,34,49]. The effect of high temperature yield better water
transfer characteristics on the product surface due to the

viscosity of the osmotic medium. Mavroudis et al. [50] affirm
that the increase in agitation level could hinder the contact
between the food material and the osmotic solution, causing
a reduction in the mass transfer rates at a highly concentrated

viscous solution. High agitation creates solution circulation
and caused the intensive turbulence over the fruits pieces.
The increase in the level of agitation leads to increase the water

loss gradually, whereas solid gain was not affected significantly
(Fig 3C).

3.3. Optimization

Optimum condition for osmotic dehydration of papaya was
determined to obtain maximum water loss, weight reduction,

and minimum solid gain. Second-order polynomial models ob-
tained in this study were utilized for each response in order to
obtain specified optimum conditions. In order to optimizing
osmotic dehydration, the following constraints taken (1) Tem-
Table 4 Comparison between RSM and ANN.

Statistical parameters Water loss (%)

RSM ANN

Error prediction

RMSE 0.138 0.123

MAE 0.486 0.377

SEP (%) 0.375 0.334

MPE (%) 0.528 0.398

Chi square 0.131 0.115

R2 0.989 0.992

Model summary

Model summary RSM

Computational time Short

Experimental domain Regular

Understanding Easy

Model developing With inter

Application Frequentl
perature (30–50 �C), (2) Concentration (40–60 �brix), and (3)
Agitation speed (100–200 rpm). Water loss and weight
reduction value must be as high as possible and solid gain va-

lue must be as low as possible. The Derringer’s desirability
function method was employed to optimize the process vari-
ables for covering the criteria, and the optimum conditions

were found to be osmotic temperature of 32 �C, osmotic solu-
tion concentration of 60 �brix, and agitation speed 100 rpm,
respectively. At this optimum conditions, water loss, weight

reduction, and solid gain were found to be 68.45 (g/100 g of
sample), 66.73 (g/100 g of sample), and 11.26 (g/100 g of sam-
ple) with overall desirability value of 0.906. Osmotic dehydra-
tion experiments were conducted at this optimum conditions,

and determined parameters (mean of three measurements)
for WL, WR, and SG were 67.28 ± 0.83 (g/100 g of sample),
65.49 ± 0.71 (g/100 g of sample), and 10.98 ± 0.59 (g/100 g

of sample). The variation of 1.7%, 1.8%, and 2.5% was calcu-
lated between the predicted and experimental values. This indi-
cates the suitability of the developed models.

3.4. ANN modeling

ANN-based process model was developed using the most pop-

ular feed-forward ANN architecture namely, multilayer per-
ceptron (MLP) with sigmoidal function. The first step of
ANN modeling was to optimize a neural network with the
aim of obtaining an ANN mode with a minimal dimension

and minimal errors in training and testing. The design of
experiments and their respective experimental yield was used
for training the network. The MLP network has three input

nodes and three output nodes. The inputs chosen in this study
are osmotic temperature, osmotic solution concentration, and
agitation speed, while the outputs are water loss, weight reduc-

tion, and solid gain. The data portioning (training set, testing
test, and cross-validation set) had been done to avoid over-
training and over-parameterization. The optimal numbers of

neurons in the hidden layer of the neural network are investi-
gated by varying the number of neurons in the hidden layer
and also for various combinations of ANN-specific parameters
like learning rate and initialization. The generalization capac-
Weight reduction (%) Solid gain (%)

RSM ANN RSM ANN

0.154 0.023 0.011 0.003

0.330 0.155 0.087 0.054

0.455 0.070 0.139 0.044

0.635 0.024 0.654 0.418

0.163 0.024 0.047 0.015

0.989 0.999 0.990 0.997

ANN

Long

Irregular or regular

Moderate

actions No interactions

y Frequently



Figure 4 Comparison of experimental with predicted values of

RSM and ANN models plot for WL (A), WR (B), and SG (C).
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ity of the model was ensured by selecting the weights resulting

in the least set RMSE between experimental and their
corresponding predicted values. Each layer’s initial weight
and bias value was calculated to determine the structure of
the trained network. The data predicted by the ANN model

are given along with the RSM predicted and experimental val-
ues (Table 2).

3.5. Comparison of RSM and ANN models

Both well trained ANN and RSM models were compared with
their predictive capability. The predicted values by ANN as

well as the RSM models are tabulated in Table 2. An extensive
statistical analysis, in terms of various statistical parameters
such as RMSE, MAE, SEP (%), MPE (%), and chi square

(v2), has been calculated by Eqs. (10–15) to compare the
results. The results of the statistical analysis and comparison
between RSM and ANN models are listed in Table 4.

The results showed that RSM models are larger than ANN

models, indicating that the ANN model has higher modeling
ability rather than the RSM models for osmotic dehydration
of papaya. Linear regression analysis was carried out between

the response (WL, WR, and SG) values predicted by ANN and
RSM models with their corresponding experimental values
and it is shown in Fig. 4.

The ANN model predictions are lie much closer to the line

of perfect prediction than the RSM models. Thus, the ANN
model shows a significantly higher generalization capacity than
the RSM models. This higher predictive accuracy of the ANN

can be attributed to its universal ability to approximate the
nonlinearity of the system, whereas the RSM is restricted to
a second-order polynomial. Generation of ANN model

requires a large number of iterative calculations, whereas it is
only a single step calculation for a response surface model.
ANN model may require a high computational time to create
and more costly than a response model.

4. Conclusion

This study compares the performance of RSM and ANN
methodologies with their modeling, prediction, and generaliza-
tion capabilities using the experimental data based on the Box-
Behnken design in the osmotic dehydration process of papaya.

The ANN models are found to be capable of better predictions
of water loss, weight reduction, and solid gain within the range
they trained than the RSM models. The results of the ANN

model indicate that it is much more robust and accurate in esti-
mating the values of dependent variables when compared with
the RSM models. The structured nature of the RSM is useful

to exhibit the factors contributions from the coefficients in the
regression models. This ability is powerful in identifying the
insignificant main factors and interaction factors or insignifi-
cant quadratic terms in the model and thereby can reduce

the complexity of the problem. However, ANN has consis-
tently performed better than the RSM in all aspects.
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[37] A. Çelekli, F. Geyik, Artificial neural networks (ANN)

approach for modeling of removal of Lanaset Red G on

Chara contraria, Bioresour. Technol. 102 (2011) 5634–5638.

[38] M. Rajendra, P.C. Jena, H. Raheman, Prediction of optimized

pretreatment process parameters for biodiesel production using

ANN and GA, Fuel 88 (2009) 868–875.

[39] J. Prakash Maran, V. Sivakumar, K. Thirgananasambandham,

R. Sridhar, Model development and process optimization for

solvent extraction of polyphenols from red grapes using Box-

Behnken design, Prep. Biochem. Biotech. (2013), http://

dx.doi.org/10(1080/10826068), 2013, 791629.

[40] J. Prakash Maran, S. Manikandan, Response surface modeling

and optimization of process parameters for aqueous extraction

of pigments from prickly pear (Opuntia ficus-indica) fruit, Dye.

Pigm. 95 (2012) 465–472.

[41] J. Prakash Maran, S. Manikandan, B. Priya, P. Gurumoorthi,

Box-Behnken design based multi-response analysis and

optimization of supercritical carbon dioxide extraction of

bioactive flavonoid compounds from tea (Camellia sinensis L.)

leaves, J. Food Sci. Technol. (2013), doi: http://dx.doi.org/

10.1007/s13197-013-0985-z.

[42] F.K. Ertekin, T. Akaloz, Osmotic dehydration of peas: I.

Influence of process variables on mass transfer, J. Food. Process.

Preserv. 20 (1996) 87–104.

[43] P. Genina-Soto, J. Barrera-Cortes, G. Gutierra-Lopez, A.E.

Nieto, Temperature and concentration effects of osmotic media

on osmotic dehydration profiles of sweet potato cubes, Dry.

Technol. 19 (2001) 547–558.

[44] H.N. Lazarides, E. Katsanidis, A. Nickolaidis, Mass transfer

kinetics during osmotic preconcentration aiming at minimal

solid uptake, J. Food Eng. 25 (1995) 151–166.

[45] J. Shi, M. Le Maguer, Osmotic dehydration of foods: mass

transfer and modeling aspects, Food. Rev. Int. 18 (2002) 305–

335.

[46] D.R. Bongirwar, A. Sreenivasan, Studies on osmotic dehydration

of bananas, J. Food. Sci. Technol. 14 (1977) 104–112.

http://refhub.elsevier.com/S1110-0168(13)00060-4/h0055
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0055
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0055
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0060
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0060
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0060
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0060
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0065
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0065
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0065
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0065
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0070
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0070
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0070
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0070
http://dx.doi.org/10/1016/j.arabjc.2013.002.007
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0080
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0080
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0080
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0080
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0085
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0085
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0085
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0085
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0090
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0090
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0090
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0090
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0095
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0095
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0095
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0100
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0100
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0100
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0105
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0105
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0105
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0105
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0110
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0110
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0110
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0115
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0115
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0115
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0120
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0120
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0120
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0120
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0125
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0125
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0125
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0125
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0130
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0130
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0130
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0135
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0135
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0135
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0135
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0135
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0140
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0140
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0140
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0140
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0145
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0145
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0145
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0150
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0150
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0150
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0150
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0155
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0155
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0155
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0160
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0160
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0160
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0160
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0165
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0165
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0165
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0165
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0165
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0165
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0165
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0170
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0170
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0170
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0170
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0175
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0175
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0175
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0175
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0180
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0180
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0180
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0180
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0180
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0185
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0185
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0185
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0190
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0190
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0190
http://dx.doi.org/10(1080/10826068),2013,791629
http://dx.doi.org/10(1080/10826068),2013,791629
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0200
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0200
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0200
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0200
http://dx.doi.org/10.1007/s13197-013-0985-z
http://dx.doi.org/10.1007/s13197-013-0985-z
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0210
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0210
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0210
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0215
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0215
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0215
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0215
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0220
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0220
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0220
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0225
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0225
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0225
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0230
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0230


516 J. Prakash Maran et al.
[47] J. Hawkes, J.M. Flink, Osmotic concentration of fruit slices prior

to freeze dehydration, J. Food. Process. Preserv. 2 (1978) 265–284.

[48] M.N. Islam, J.M. Flink, Dehydration of potato. II. Osmotic

concentration and its effect on air drying behaviour, J. Food

Technol. 17 (1982) 387–403.

[49] A.L. Raoult-Wack, S. Guilbert, M. Le Maguer, G. Andrios,

Simultaneous water and solute transport in shrinking media:
application to dewatering and impregnation soaking process

analysis (osmotic dehydration), Dry. Technol. 9 (1991) 589–

612.

[50] N.E. Mavroudis, V. Gekas, I. Sjoholm, Osmotic dehydration of

apples – effect of agitation and raw material characteristics, J.

Food Eng. 35 (1998) 191–209.

http://refhub.elsevier.com/S1110-0168(13)00060-4/h0235
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0235
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0240
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0240
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0240
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0245
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0245
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0245
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0245
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0245
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0250
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0250
http://refhub.elsevier.com/S1110-0168(13)00060-4/h0250

	Artificial neural network and response surface  methodology modeling in mass transfer  parameters predictions during osmotic dehydration of Carica papayaL L.
	1 Introduction
	2 Materials and methods
	2.1 Raw materials
	2.2 Experimental procedure
	2.3 Mathematical calculations
	2.4 Response surface methodology modeling
	2.5 Artificial neural network modeling
	2.6 Comparison of RSM and ANN models

	3 Results and discussion
	3.1 RSM modeling
	3.2 Response surface and contour plots
	3.3 Optimization
	3.4 ANN modeling
	3.5 Comparison of RSM and ANN models

	4 Conclusion
	References


