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Abstract

We show that the group Q � Q∗+ of orientation-preserving affine transformations of the rational numbers
is quasi-lattice ordered by its subsemigroup N � N×. The associated Toeplitz C∗-algebra T (N � N×) is
universal for isometric representations which are covariant in the sense of Nica. We give a presentation of
T (N � N×) in terms of generators and relations, and use this to show that the C∗-algebra QN recently
introduced by Cuntz is the boundary quotient of (Q � Q∗+,N � N×) in the sense of Crisp and Laca. The
Toeplitz algebra T (N � N×) carries a natural dynamics σ , which induces the one considered by Cuntz on
the quotient QN, and our main result is the computation of the KMSβ (equilibrium) states of the dynamical
system (T (N � N×),R, σ ) for all values of the inverse temperature β. For β ∈ [1,2] there is a unique
KMSβ state, and the KMS1 state factors through the quotient map onto QN, giving the unique KMS state
discovered by Cuntz. At β = 2 there is a phase transition, and for β > 2 the KMSβ states are indexed by
probability measures on the circle. There is a further phase transition at β = ∞, where the KMS∞ states
are indexed by the probability measures on the circle, but the ground states are indexed by the states on the
classical Toeplitz algebra T (N).
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0. Introduction

Cuntz has recently introduced and studied a C∗-algebra QN which is generated by an iso-
metric representation of the semidirect product N � N× of the additive semigroup N by the
natural action of the multiplicative semigroup N× [7]. Cuntz proved that QN is simple and
purely infinite, and that it admits a natural dynamics for which there is a unique KMS state,
which occurs at inverse temperature 1. He also showed that QN is closely related to other very
interesting C∗-algebras, such as the Bunce–Deddens algebras and the Hecke C∗-algebra of Bost
and Connes [1].

In recent years there has been a great deal of interest in other C∗-algebras generated by iso-
metric representations of a semigroup P , such as the Toeplitz algebra T (P ) which is generated
by the canonical isometric representation on �2(P ), and it is natural to ask how Cuntz’s alge-
bra relates to these other C∗-algebras. It is obviously not the same as T (N � N×): in QN, the
isometry associated to the additive generator is unitary. So one is led to guess that QN might
be a quotient of T (N � N×). If so, the Toeplitz algebra T (N � N×) looks very interesting in-
deed. There is a general principle, going back at least as far as [8] and used to effect in [9,14],
which suggests that the Toeplitz algebra should have a much richer KMS structure than its sim-
ple quotient. (The principle is illustrated by the gauge action on the Cuntz algebra On, where the
Toeplitz–Cuntz analogue T On has KMS states at every inverse temperature β � logn, but only
the one with β = logn factors through a state of On.)

Our goal here is to answer these questions. We first prove that the pair consisting of the semi-
group N � N× and its enveloping group Q � Q∗+ form a quasi-lattice ordered group in the sense
of Nica [21]; this is itself a little surprising, since it is not one of the semidirect product quasi-
lattice orders discussed in [21]. However, once we have established that (Q � Q∗+,N � N×)

is quasi-lattice ordered, it follows that the Toeplitz algebra T (N � N×) is universal for Nica-
covariant isometric representations of N � N×. We can then run this pair through the general
theory of [6], and with some effort we can recognise QN as the boundary quotient of T (N � N×).
From this we deduce that QN is a partial crossed product, and thereby provide another proof that
it is purely infinite and simple.

We then consider a natural dynamics σ on T (N � N×) which induces that studied by Cuntz
on QN, and compute the simplices of KMSβ states for every inverse temperature β . For β > 2
the KMSβ states are parametrised by probability measures on the unit circle. For β ∈ [1,2], only
the one corresponding to Lebesgue measure on the circle survives, and there is a unique KMSβ

state. This phase transition is associated to the pole of the partition function, which is the shifted
Riemann zeta function ζ(β − 1).

Our system (T (N � N×),R, σ ) therefore exhibits some of the behaviour of other number-
theoretic systems [1,12,11,3,17,18], even though our system lacks some of the features which
make the other number-theoretic systems so interesting, such as the presence of a large sym-
metry group like the idele class group of Q in [1] or its two-dimensional analogue in [3].
However, the KMS states in our system also display several interesting phenomena which have
not previously occurred for dynamical systems of number-theoretic origin. First, not all KMS
states factor through the expectation onto the commutative subalgebra spanned by the range
projections of the isometries: for β > 2, the KMSβ states do not necessarily vanish on the ad-
ditive generator, which for this system is fixed by the dynamics. Second, the unique KMSβ

states for 1 � β � 2 have a circular symmetry, which is broken at β = 2, but this symmetry
does not come from an action of the circle on the C∗-algebra T (N � N×). This phenomenon
appears to be related to the fact that the enveloping group Q � Q∗ is nonabelian, and the
+
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dual coaction of Q � Q∗+ on T (N � N×) cannot be “restricted” to a coaction of the addi-
tive subgroup Q. And third, as foreshadowed in [4, Definition 3.7], the set of KMS∞ states
(the states that are limits of KMSβ states as β → ∞), which is isomorphic to the simplex
of probability measures on the circle, is much smaller than the set of ground states, which
is isomorphic to the state space of the classical Toeplitz algebra, and hence is not a sim-
plex.

We begin our paper with a brief discussion of notation and preliminaries from quasi-lattice or-
dered groups and number theory. Then in Section 2, we show that the semigroup N � N× induces
a quasi-lattice order on the group Q � Q∗+, and deduce that the associated Toeplitz C∗-algebra is
generated by a universal Nica-covariant isometric representation (Corollary 2.4). In Section 3 we
work out a version of the euclidean algorithm suitable for computations involving Nica-covariant
isometric representations of N � N×. Once this is done, we characterise in Section 4 the Toeplitz
C∗-algebra T (N � N×) of N � N× by giving a presentation in terms of generators and relations
(Theorem 4.1); some of the relations are recognisably variants on Cuntz’s relations for QN, but
others are new.

To apply the structure theory of Toeplitz C∗-algebras of quasi-lattice orders, we need to under-
stand the Nica spectrum of N � N×, and in Section 5 we give an explicit parametrisation of this
spectrum using integral adeles and supernatural numbers. This allows us to identify the bound-
ary of the spectrum, as defined in [6]. The boundary in [6] is the smallest of many boundaries:
there are many ways one can “go to infinity” in the semigroup N � N×. Of particular interest is
the additive boundary, which corresponds to going to infinity along the additive semigroup N.
In Proposition 5.11 we show that the additive boundary has a direct product decomposition,
which later plays a crucial role in our construction and analysis of KMSβ states. In Section 6,
we prove that Cuntz’s QN is isomorphic to the boundary quotient studied in [6] (Theorem 6.3),
and we use the theory developed in [6] to give a quick proof that QN is simple and purely infi-
nite.

In Section 7 we introduce a natural dynamics σ on T (N � N×), and state our main re-
sult, which describes the phase transition associated to this natural dynamics (Theorem 7.1).
We also discuss the significance of this phase transition in relation to the symmetries and
the structure of the C∗-algebra T (N � N×). We begin the proof of the main theorem in Sec-
tion 8. We first show that there are no KMS states for β < 1, and then we characterise the
KMSβ states by their behaviour on a spanning set for T (N � N×). This characterisation im-
plies that a KMSβ state is determined by its behaviour on the C∗-subalgebra generated by the
additive generator (Lemma 8.3). In Lemma 8.4, we give a similar characterisation of ground
states.

In Section 9, we construct KMSβ states for β ∈ [1,∞] by inducing a probability measure on
the additive boundary to a state of T (N � N×) via the conditional expectation of the dual coac-
tion of Q � Q∗+ (Proposition 9.1). In Proposition 9.3, we consider β ∈ (2,∞], and give a spatial
construction of a KMSβ state for each probability measure on the circle. A parallel construc-
tion also yields a ground state for each state of T (N). We complete the proof of Theorem 7.1
in Section 10, by showing that the explicit constructions of Section 9 correspond exactly to the
possibilities left open in Section 8. The interesting case here is β ∈ [1,2], and our key idea is the
reconstruction formula of Lemma 10.1, which was inspired by Neshveyev’s ergodicity proof of
the uniqueness of KMSβ states on the Hecke C∗-algebra of Bost and Connes [20]. Curiously,
though, we can now see that the analogous reconstruction formula for the Bost–Connes system
does not need ergodicity at all. We give this “ergodicity-free” version of Neshveyev’s proof in
Appendix A.
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1. Notation and preliminaries

1.1. Toeplitz algebras

Every cancellative semigroup P has a natural Toeplitz representation T :P → B(�2(P )),
which is characterised in terms of the usual basis {ex : x ∈ P } by Tyex = eyx . Notice that the
operators Ty are all isometries. The Toeplitz algebra T (P ) is the C∗-subalgebra of B(�2(P ))

generated by the operators {Ty}. Our semigroups P will always be generating subsemigroups
of a group G; as a motivating example, consider the subgroup N2 of Z2. Any isometric repre-
sentation V of N2 on Hilbert space is determined by the two commuting isometries V(1,0) and
V(0,1). In the Toeplitz representation of N2, however, the two generators satisfy the extra relation
T ∗

(1,0)
T(0,1) = T(0,1)T

∗
(1,0)

, and it turns out that this relation uniquely characterises the Toeplitz

algebra T (N2) among C∗-algebras generated by non-unitary isometric representations of N2.
Nica’s theory of quasi-lattice ordered groups (G,P ) provides a far-reaching generalisation of
this result.

A submonoid P of a group G naturally induces a left-invariant partial order on G by x � y

iff x−1y ∈ P . Following Nica [21], we say that (G,P ) is quasi-lattice ordered if every pair
of elements x and y in G which have a common upper bound in G have a least upper bound
x ∨ y. When they have a common upper bound we write x ∨ y < ∞, and otherwise x ∨ y = ∞.
(This is not quite Nica’s original definition, but it is equivalent. This and other reformulations are
discussed in [5, §3].) An isometric representation V :P → B(H) is Nica covariant if

VxV
∗
x VyV

∗
y =

{
Vx∨yV

∗
x∨y if x ∨ y < ∞,

0 if x ∨ y = ∞,

or equivalently, if

V ∗
x Vy =

{
Vx−1(x∨y)V

∗
y−1(x∨y)

if x ∨ y < ∞,

0 if x ∨ y = ∞.
(1.1)

Nica showed that there is a C∗-algebra C∗(G,P ) which is generated by a universal Nica-
covariant representation w :P → C∗(G,P ), and we then have C∗(G,P ) = span{wxw

∗
y :

x, y ∈ P }. Nica identified an amenability condition which implies that the representation
πT :C∗(G,P ) → T (P ) is faithful (see [21] or [15, Theorem 3.7]). This amenability hypothesis
is automatically satisfied when the group G is amenable [21, §4.5]. Since the enveloping group
Q � Q∗+ of our semigroup N � N× is amenable, we can use Nica’s theorem to view our Toeplitz
algebra T (N � N×) as the C∗-algebra generated by a universal Nica-covariant representation
w : N � N× → T (N � N×). (Here we use the lower case w to denote the Toeplitz representation
T to emphasise that it has a universal property; the obvious letter t is not available because it
will later denote time.)

Nica studied T (P ) by exploiting what he called its “crossed product-like structure,” which the
present authors subsequently recognised as that of a semigroup crossed product BP �P [15]. The
underlying algebra BP is the closed subset of �∞(P ) spanned by the characteristic functions 1x

of the sets xP = {y ∈ P : y � x}, which is a C∗-subalgebra because 1x1y = 1x∨y . Nica showed
that the homomorphisms from BP to C are given by the nonempty hereditary subsets ω of P

which are directed by the partial order on G: the corresponding homomorphism is defined by

ω̂(f ) := lim f (x),

x∈ω
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which makes sense because ω is directed and f is the uniform limit of functions which are
eventually constant. Notice that ω̂ is characterised by the formula

ω̂(1x) =
{

1 if x ∈ ω,

0 if x /∈ ω.

The collection Ω of nonempty directed hereditary sets ω, viewed as a subset of the compact
space {0,1}P , is now called the Nica spectrum of P .

An important tool in our analysis will be the realisation of C∗(G,P ) as a partial crossed
product C(ΩN ) �α (Q � Q∗+) obtained in [10, §6]. The space ΩN used in [10] looks slightly
different: its elements are the hereditary subsets of G which contain the identity e of G. However,
it was observed in [10, Remark 6.5] that ω �→ ω ∩ P is a homeomorphism of ΩN onto the Nica
spectrum Ω , so we can apply the general theories of [10] and [6] in our situation. For x ∈ P ,
the partial map θx has domain all of Ω , and θx(ω) is the hereditary closure Her(xω) of xω :=
{xy: y ∈ ω}; since the domain of θg is empty unless g ∈ PP−1, this completely determines θ .
The action α is defined by αg(f )(ω) = f (θg−1(ω)) when this makes sense, and αg(f )(ω) = 0
otherwise.

1.2. Number theory

We write N for the semigroup of natural numbers (including 0) under addition and N× for the
semigroup of positive integers under multiplication. We also write Q∗ for the group of nonzero
rational numbers under multiplication, and Q∗+ for the subgroup of positive rational numbers.

We denote the set of prime numbers by P , and we write ep(a) for the exponent of p in the
prime factorisation of a ∈ N×, so that a = ∏

p∈P pep(a); then a �→ {ep(a)} is an isomorphism
of N× onto the direct sum

⊕
p∈P N. We also use the supernatural numbers, which are formal

products N = ∏
p∈P pep(N) in which the exponents ep(N) belong to N ∪ {∞}; thus the set N

of supernatural numbers is the direct product N = ∏
p∈P pN∪{∞}. For M,N ∈ N , we say that

M divides N (written M|N ) if ep(M) � ep(N) for all p, and then any pair M,N has a greatest
common divisor gcd(M,N) in N and a lowest common multiple lcm(M,N).

For N ∈ N , the N -adic integers are the elements of the ring

Z/N := lim←−
(
(Z/aZ): a ∈ N×, a|N)

.

When N is a positive integer, Z/N is the ring Z/NZ, and for each prime p, Z/p∞ is the usual
ring Zp of p-adic integers. When N = ∇ := ∏

p p∞ is the largest supernatural number, Z/∇ is

the ring Ẑ of integral adèles. If M and N are supernatural numbers and M|N , then there is a
canonical topological-ring homomorphism of Z/N onto Z/M , and we write r(M) for the image
of r ∈ Z/N in Z/M .

It is standard practice to freely identify Ẑ with the product
∏

p Zp , and the next proposition
gives a similar product decomposition for Z/N . The main ingredient in the proof is the Chinese
remainder theorem.

Proposition 1.1. Let N = ∏
p pep(N) be a supernatural number. Then the map

r �→ {r(pep(N))}p∈P is a (topological ring) isomorphism of Z/N onto
∏

Z/pep(N).
p∈P
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Our arguments involve a fair bit of modular arithmetic, and we will often need to change base.
So the next lemma will be useful.

Lemma 1.2. Suppose that a and b are integers greater than 1. Then the map n �→ an induces
a well-defined injection ×a : Z/bZ → Z/abZ; the image of this map is {m ∈ Z/abZ: m ≡
0 (mod a)}, so we have a short exact sequence

0 → Z/bZ
×a−−→ Z/abZ

(mod a)−−−−−→ Z/aZ → 0.

As a point of notation, when b is clear from the context, we write an for the image of n ∈ Z/bZ
under the map ×a.

2. A quasi-lattice order on Q � Q∗+Q � Q∗+Q � Q∗+

Let Q � Q∗+ denote the semidirect product of the additive rationals by the multiplicative pos-
itive rationals, where the group operation and inverses are given by

(r, x)(s, y) = (r + xs, xy) for r, s ∈ Q and x, y ∈ Q∗+, and

(r, x)−1 = (−x−1r, x−1) for r ∈ Q and x ∈ Q∗+.

Proposition 2.1. The group Q � Q∗+ is generated by the elements (1,1) and {(0,p): p ∈ P}
which satisfy the relations

(0,p)(1,1) = (1,1)p(0,p) and (0,p)(0, q) = (0, q)(0,p) for all p,q ∈ P , (2.1)

and this is a presentation of Q � Q∗+.

Proof. It is easy to check that the elements (1,1) and (0,p) satisfy (2.1). Suppose G is a group
containing elements s and {vp: p ∈ P} satisfying the relations vps = spvp and vpvq = vqvp .
Since Q∗+ is the free abelian group generated by P and vp commutes with vq , the map p �→ vp

extends to a homomorphism v : Q∗+ → G. Since Z is free abelian, for each n ∈ N× there is a
homomorphism φn :n−1Z → G satisfying φn(n

−1k) = v−1
n skvn, and these combine to give a

well-defined homomorphism φ: Q = ⋃
n n−1Z into G. Now the first relation extends to vrs

k =
srkvr , and it follows easily that v and φ combine to give a homomorphism of the semidirect
product Q � Q∗+ into G. �

We shall consider the unital subsemigroup N � N× of Q � Q∗+, which has the same presen-
tation, interpreted in the category of monoids. Since (N � N×) ∩ (N � N×)−1 = {(0,1)}, the
subsemigroup N � N× induces a left-invariant partial order on Q � Q∗+ as follows: for (r, x) and
(s, y) in Q � Q∗+,

(r, x) � (s, y) ⇐⇒ (r, x)−1(s, y) ∈ N � N×

⇐⇒ (−x−1r, x−1)(s, y) ∈ N � N×

⇐⇒ (−x−1r + x−1s, x−1y
) ∈ N � N×

⇐⇒ x−1(s − r) ∈ N and x−1y ∈ N×. (2.2)
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Our first goal is to show that this ordering has the quasi-lattice property used in [21] and [15].

Proposition 2.2. The pair (Q � Q∗+,N � N×) is a quasi-lattice ordered group.

Proof. By [5, Lemma 7], it suffices to show that if an element (r, x) of Q � Q∗+ has an upper
bound in N � N×, then it has a least upper bound in N � N×. Suppose (k, c) ∈ N � N× and
(r, x) � (k, c). Then from (2.2) we have k ∈ r + xN, so (r + xN) ∩ N is nonempty; let m be the
smallest element of (r + xN) ∩ N. Write x = a/b with a, b ∈ N and a, b coprime. We claim that
(m,a) is a least upper bound for (r, x) in N � N×.

To see that (r, x) � (m,a), note that m ∈ r + xN and x−1a = b ∈ N×, and apply (2.2). To see
that (m,a) is a least upper bound, suppose that (l, d) ∈ N � N× satisfies (r, x) � (l, d), so that
by (2.2) we have (i) x−1d ∈ N× and (ii) x−1(l − r) ∈ N. Property (i) says that a−1bd = x−1d

belongs to N×, which since (a, b) = 1 implies that a−1d ∈ N×. Property (ii) implies that l ∈
r + xN, so that l � m := min((r + xN) ∩ N). Property (ii) also implies that

a−1b(l − m) = x−1(l − m) ∈ x−1((r + xN) − (r + xN)
) ⊂ Z,

which, since (a, b) = 1, implies that a−1(l−m) ∈ Z. Since l � m, we have a−1(l−m) ∈ N. Now
we have a−1d ∈ N× and a−1(l−m) ∈ N, which by (2.2) say that (m,a) � (l, d), as required. �
Remark 2.3. Two elements (m,a) and (n, b) of N � N× have a common upper bound if and
only if the set (m + aN) ∩ (n + bN) is nonempty, and in fact it is easy to check that

(m,a) ∨ (n, b) =
{∞ if (m + aN) ∩ (n + bN) = ∅,

(l, lcm(a, b)) if (m + aN) ∩ (n + bN) �= ∅,
(2.3)

where l is the smallest element of (m + aN) ∩ (n + bN). In the next section we will see that
(m + aN) ∩ (n + bN) �= ∅ if and only if m − n is divisible by the greatest common divisor
gcd(a, b), and provide an algorithm for computing l when it exists.

As we remarked in the Introduction, we found Proposition 2.2 a little surprising, because the
pair of semigroups P = N× and Q = N do not satisfy the hypotheses of [21, Example 2.3.3].
Since its proof is really quite elementary, we stress that Proposition 2.2 has some important
consequences. In particular, since the group Q � Q∗+ is amenable, we can immediately deduce
from the work of Nica discussed in Section 1.1 that the Toeplitz algebra T (N � N×) enjoys a
universal property.

Corollary 2.4. The Toeplitz algebra T (N � N×) is generated by a universal Nica-covariant
isometric representation w : N � N× → T (N � N×).

3. The euclidean algorithm

Suppose that c, d ∈ N are relatively prime. Then we know from the usual euclidean algorithm
that, for every k ∈ N, there are integers α and β such that k = αc − βd . Since α + md and
β + mc then have the same property for each m ∈ Z, we can further assume that α and β are
non-negative. Since the set

{α ∈ N: there exists β ∈ N such that k = αc − βd}
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is bounded below, it has a smallest element, and then the corresponding β is the smallest non-
negative integer for which there exists an α with k = αc − βd . Thus it makes sense to talk about
the smallest non-negative solution (α,β) of k = αc−βd . In the proof of Theorem 4.1 we use the
numbers αi and βi arising in the following variation of the euclidean algorithm which computes
this smallest solution (α,β).

Proposition 3.1. Suppose gcd(c, d) = 1 and k ∈ N. Define sequences αn, βn inductively as fol-
lows:

• define α0 to be the unique non-negative integer such that −c < k − α0c � 0;
• given αi for 0 � i � n and βi for 0 � i < n, define βn by

0 � k −
(

n∑
i=0

αi

)
c +

(
n∑

i=0

βi

)
d < d; (3.1)

• given αi for 0 � i � n and βi for 0 � i � n, define αn+1 by

−c < k −
(

n+1∑
i=0

αi

)
c +

(
n∑

i=0

βi

)
d � 0. (3.2)

Then there exist n(α) and n(β) (which is either n(α) or n(α) − 1) such that αi = 0 for i > n(α)

and βi = 0 for i > n(β), and the pair (α,β) = (
∑n(α)

i=0 αi,
∑n(β)

i=0 βi) is the smallest non-negative
solution of k = αc − βd .

Proof. We know from the discussion at the start of the section that there is a smallest solution
(α,β); our problem is to show that the sequences {αn} and {βn} behave as described. We first
note that if any αn or any βn is zero, then so are all subsequent αi and βi . We deal with the cases
c > d and c < d separately.

Suppose that c > d . Then for every n � 0, Eq. (3.1) implies that

−c � k −
(

n∑
i=0

αi

)
c +

(
n∑

i=0

βi

)
d − c < d − c < 0,

so αn+1 is either 0 (if we have equality at the left-hand end) or 1. So the sequence {αn} starts off
{α0,1,1, . . .}, and is eventually always 1 or always 0. Since k = αc −βd � αc, we have α0 � α.
We define n(α) = α − α0, and claim that αn = 1 for 1 � n � n(α). To see this, suppose to the
contrary that αn = 0 for some n satisfying 1 � n � n(α). Then (3.1) and (3.2) imply that

k −
(

n−1∑
αi

)
c +

(
n−1∑

βi

)
d = 0,
i=0 i=0
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which, since
∑n−1

i=0 αi = α0 + n− 1 < α0 + (α − α0) = α, contradicts the assumption that (α,β)

is the smallest solution. So αn = 1 for 1 � n � n(α), as claimed. But now α = ∑n(α)
i=0 αi , and

(3.1) becomes

0 � k −
(

n(α)∑
i=0

αi

)
c +

(
n(α)∑
i=0

βi

)
d = −βd +

(
n(α)∑
i=0

βi

)
d < d, (3.3)

which is only possible if −β +∑n(α)
i=0 βi = 0; then we have equality in (3.3), and this implies that

αn = 0 and βn = 0 for n > n(α). So when c > d , n(α) = α − α0 and either n(β) = n(α) − 1 (if
βn(α) = 0) or n(β) = n(α) (if βn(α) �= 0) have the required properties.

For c < d , a similar argument shows that βn = 1 for 0 � n � β − 1, so n(β) := β − 1 and
either n(α) = n(β) or n(α) = n(β) + 1 have the required properties. �

If k ∈ Z and k < 0, we can apply Proposition 3.1 to −k and the pair d , c, obtaining a smallest
non-negative solution of −k = βd − αc. Notice that we then have k = αc − βd . This situation
occurs so often that it is worth making the following simplifying convention:

Convention 3.2. When k is an integer and we say that “(α,β) is the smallest non-negative solu-
tion of k = αc − βd ,” we mean that (α,β) is the smallest non-negative solution of k = αc − βd

when k � 0 (as before), and that (β,α) is the smallest non-negative solution of −k = βd − αc

when k < 0.

The next proposition explains why this discussion of the euclidean algorithm is relevant to the
semigroup N � N×. Recall that lcm(a, b) is the lowest common multiple of a and b.

Proposition 3.3. Suppose that (m,a) and (n, b) are in N � N×. Then (m + aN) ∩ (n + bN) is
nonempty if and only if gcd(a, b)|m − n. If so, write a′ = a/gcd(a, b), b′ = b/gcd(a, b), and let
(α,β) be the smallest non-negative solution of (n − m)/gcd(a, b) = αa′ − βb′ (using Conven-
tion 3.2). Then l := m + aα = n + bβ is the smallest element of (m + aN) ∩ (n + bN), and we
have

(m,a) ∨ (n, b) = (
l, lcm(a, b)

)
,

(m,a)−1(l, lcm(a, b)
) = (

a−1(l − m),a−1 lcm(a, b)
) = (

α,b′),
(n, b)−1(l, lcm(a, b)

) = (
b−1(l − n), b−1 lcm(a, b)

) = (
β,a′).

Proof. The discussion at the start of the section shows that

(m + aN) ∩ (n + bN) �= ∅ ⇐⇒ (m + aZ) ∩ (n + bZ) �= ∅
⇐⇒ m ≡ n

(
mod gcd(a, b)

)
.

Then any solution of (n − m)/gcd(a, b) = αa′ − βb′ will satisfy m + aα = n + bβ , and the
smallest non-negative solution of (n−m)/gcd(a, b) = αa′ −βb′ will give the smallest common
value. The last two formulas are an easy calculation. �
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4. A presentation for the Toeplitz algebra of N � N×N � N×N � N×

Our goal in this section is to verify the following presentation for T (N � N×). Recall
from Section 1.1 that T (N � N×) is generated by a universal Nica-covariant representation
w : N � N× → T (N � N×).

Theorem 4.1. Let A be the universal C∗-algebra generated by isometries s and {vp: p ∈ P}
satisfying the relations

(T1) vps = spvp ,
(T2) vpvq = vqvp ,
(T3) v∗

pvq = vqv∗
p when p �= q ,

(T4) s∗vp = sp−1vps∗, and
(T5) v∗

pskvp = 0 for 1 � k < p.

Then there is an isomorphism π of T (N � N×) onto A such that π(w(1,1)) = s and π(w(0,p)) =
vp for every p ∈ P .

Remark 4.2. We usually use upper case V or W to denote isometric representations of semi-
groups, and lower case v or w if we are claiming that they have some universal property.
Similarly, we usually write S for a single isometry to remind us of the unilateral shift and s

for a single isometry with a universal property. We discovered towards the end of this project
that our notation clashes with that used by Cuntz—indeed, we couldn’t have got it more different
if we had tried. (He denotes his additive generator by u and his isometric representation of N×
by s.) By the time we noticed this, the shift s and the isometries vp were firmly embedded in our
manuscript and in our minds, and it seemed to be asking for trouble to try to correct them all, so
we didn’t. But we apologise for any confusion this causes.

To prove this theorem, we show

(a) that the operators S = w(1,1) and Vp = w(0,p) satisfy the relations (T1)–(T5), and hence there
is a homomorphism ρw :A → T (N � N×) such that ρw(s) = w(1,1) and ρw(vp) = w(0,p);
and

(b) that the formula

X(m,a) := smva := sm
∏
p∈P

v
ep(a)
p

defines a Nica-covariant isometric representation X = Xs,v of N � N× in A, and hence in-
duces a homomorphism πs,v : T (N � N×) → A.

Given these, it is easy to check that ρw and πs,v are inverses of each other, and π := πs,v is the
required isomorphism.

In view of (1.1) and Proposition 3.3, an isometric representation W of N � N× is Nica covari-
ant if and only if
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W ∗
(m,a)W(n,b) =

{
0 if m �≡ n (mod gcd(a, b)),

W(α,b′)W ∗
(β,a′) if m ≡ n (mod gcd(a, b)), (4.1)

where a′ = a/gcd(a, b), b′ = b/gcd(a, b), and (using Convention 3.2) (α,β) is the smallest non-
negative solution of (n−m)/gcd(a, b) = αa′ −βb′. The proof of Theorem 4.1 uses the euclidean
algorithm of Proposition 3.1 to recognise the α and β appearing on the right-hand side of (4.1).

To prove (a) we note that (T1) holds because (0,p)(1,1) = (p,1)(0,p) and W is a homomor-
phism, and (T2) holds because (0,p)(0, q) = (0,pq) = (0, q)(0,p). Eqs. (T3), (T4) and (T5) are
the Nica covariance relation (4.1) for (m,a) = (0,p) and (n, b) = (0, q); for (m,a) = (1,1) and
(n, b) = (0,p); and for (m,a) = (0,p) and (n, b) = (k,p), respectively.

So now we turn to (b). The first observation, which will be used many times later, is that the
relations (T1)–(T5) extend to the va , as follows.

Lemma 4.3. Suppose that s and {vp: p ∈ P} are isometries satisfying the relations (T1)–(T5).

Then the isometries va := ∏
p∈P v

ep(a)
p for a ∈ N× satisfy

(T1′) vas = sava ,
(T2′) vavb = vbva ,

(T3′) v∗
avb = vbv

∗
a whenever gcd(a, b) = 1,

(T4′) s∗va = sa−1vas
∗, and

(T5′) v∗
askva = 0 for 1 � k < a.

After we have proved this lemma, a reference to (T5), for example, could refer to either the
original (T5) or to (T5′).

Proof. Eqs. (T1′), (T2′) and (T3′) follow immediately from their counterparts for a prime. We
prove (T4′) by induction on the number of prime factors of a. We know from (T4) that (T4′)
holds when a is prime. Suppose that (T4′) is true for every a ∈ N× with n prime factors, and
b = aq ∈ N× has n + 1 prime factors. Then

s∗vb = s∗vaq = s∗vavq = sa−1vas
∗vq = sa−1vas

q−1vqs∗

= sa−1sa(q−1)vavqs∗ = saq−1vaqs∗ = sb−1vbs
∗,

and we have proved (T4′). For (T5′), first prove by induction on n (using (T1) as well as (T4))
that v∗n

p skvn
p �= 0 implies pn|k. Then

v∗
askva �= 0 �⇒ v

∗ep(a)
p skv

∗ep(a)
p �= 0 for all p|a

�⇒ pep(a)|k for all p|a
�⇒ a|k,

which is a reformulation of (T5′). �
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Relations (T1′) and (T2′) imply that X is an isometric representation of N � N×, and it re-
mains for us to prove that the representation X in (b) satisfies the Nica-covariance relation (4.1).
Since

X∗
(m,a)X(n,b) = (

smva

)∗
snvb = v∗

a

(
s∗)m

snvb, (4.2)

the following lemma gives the required Nica-covariance (the formula (4.3) which expresses this
covariance in terms of generators will be useful later).

Lemma 4.4. Suppose that s and {vp: p ∈ P} are isometries satisfying the relations (T1)–(T5).
For m,n ∈ N and a, b ∈ N×, we let a′ := a/gcd(a, b), b′ := b/gcd(a, b), and suppose that (α,β)

is the smallest non-negative solution of (n − m)/gcd(a, b) = αa′ − βb′. Then

v∗
as∗msnvb =

{
0 if m �≡ n (mod gcd(a, b)),

sαvb′v∗
a′s∗β if m ≡ n (mod gcd(a, b)).

(4.3)

Proof. First suppose that m �≡ n (mod gcd(a, b)), so that (m,a) ∨ (n, b) = ∞. Then gcd(a, b)

has a prime factor p which does not divide n − m and we can write n − m = cp + k with
0 < k < p. Now we factor a = a0p, b = b0p and apply (T4′) to get

v∗
as∗msnvb =

{
v∗
a0

v∗
pskscpvpvb0 if c � 0,

v∗
a0

v∗
ps∗|c|pskvpvb0 if c < 0,

=
{

v∗
a0

v∗
pskvpscvb0 if c � 0,

v∗
a0

s∗|c|v∗
pskvpvb0 if c < 0;

in both cases, the inside factor v∗
pskvp vanishes by (T5), and we have v∗

as∗msnvb = 0, as required.
Suppose now that m ≡ n (mod gcd(a, b)), so that (m,a) ∨ (n, b) < ∞. Write k = (n −

m)/gcd(a, b). As in the proof of (T4′), we can use (T1′) to pull sk gcd(a,b) or s∗|k|gcd(a,b) past
vgcd(a,b) or v∗

gcd(a,b), obtaining

v∗
as∗msnvb =

{
v∗
a′skvb′ if k � 0,

v∗
a′s∗|k|vb′ if k < 0.

It suffices by symmetry to compute v∗
a′skvb′ for k > 0.

Peeling one factor off sk and applying the adjoint of (T4′) gives

v∗
a′skvb′ = sv∗

a′s∗(a′−1)sk−1v∗
b′ =

{
sv∗

a′s(k−a′)v∗
b′ if k − a′ > 0,

sv∗
a′s∗(a′−k)v∗

b′ if k − a′ � 0.

If k − a′ > 0, we can peel another s off sk−a′
, and pull it across v∗

a′ ; we can do it yet again if
k − 2a′ > 0. The number of times we can do this is precisely the number α0 appearing in the
euclidean algorithm of Proposition 3.1, applied to a′, b′ and k. We wind up with

v∗′skvb′ = sα0v∗′s∗(α0a
′−k)vb′ .
a a
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Now we apply (T4′) to pull factors of s∗ through vb′ : we can do this β0 times, and obtain

v∗
a′skvb′ = sα0v∗

a′s(k−α0a
′+β0b

′)vb′s∗β0 .

We can continue this process, using alternately the adjoint of (T4′) to pull out factors of s to
the left and (T4′) to pull out s∗ to the right. This finishes when there aren’t any left, and this is
precisely when the euclidean algorithm terminates. Now the equations α = ∑

i αi and β = ∑
j βj

from Proposition 3.1 give

v∗
a′skvb′ = sα0sα1 · · · sαn(α)v∗

a′vb′s∗β0 · · · s∗βn(β) = sαv∗
a′vb′s∗β.

Finally, we observe that since a′ and b′ are coprime, (T3) implies that v∗
a′vb′ = vb′v∗

a′ . Thus,
if n − m > 0, we have k > 0 and

v∗
as∗msnvb = sαv∗

a′vb′s∗β = sαvb′v∗
a′s∗β.

On the other hand, if n − m < 0, we have

v∗
as∗msnvb = v∗

a′s∗|k|vb′ = (
v∗
b′s|k|va′

)∗
= (

sβva′v∗
b′s∗α

)∗ = sαvb′v∗
a′s∗β,

where we now use Convention 3.2 to interpret “(α,β) is the smallest non-negative solution of
k = αa′ − βb′.” �

It follows from Lemma 4.4 that the representation X is Nica covariant, and we have proved (b).
This completes the proof of Theorem 4.1.

5. The Nica spectrum of (Q � Q∗+,N � N×Q � Q∗+,N � N×Q � Q∗+,N � N×)

To get a convenient parametrisation of the Nica spectrum, we need to identify the nonempty
hereditary directed subsets of N � N×. First we give some examples (which will turn out to cover
all the possibilities).

Proposition 5.1. Suppose N is a supernatural number. For each k ∈ N, we define

A(k,N) := {
(m,a) ∈ N � N×: a|N and a−1(k − m) ∈ N

}
,

and for each r ∈ Z/N , we recall that r(a) denotes the projection of r in Z/a and we define

B(r,N) := {
(m,a) ∈ N � N×: a|N and m ∈ r(a)

}
.

Then A(k,n) and B(r,N) are nonempty hereditary directed subsets of N � N×.

Remark 5.2. The map (k, c) �→ A(k, c) = {(m,a) ∈ N � N×: (m,a) � (k, c)} is the standard
embedding of the quasi-lattice ordered semigroup N � N× in its spectrum, see [21, Section 6.2].
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Proof of Proposition 5.1. Let N be given. If (m,a) and (n, b) are in A(k,N), then
(k, lcm(a, b)) ∈ A(k,N) is a common upper bound for (m,a) and (n, b), and hence A(k,N)

is directed. To see that A(k,N) is hereditary, suppose (m,a) ∈ A(k,N) and (0,1) � (n, b) �
(m,a). Then b|a and b−1(m − n) ∈ N. Since a|N and a−1(k − m) ∈ N we have b|a|N , and thus
b−1(k − n) = (b−1a)a−1(k − m) + b−1(m − n) belongs to N. Thus A(k,N) is hereditary.

We next prove that B(r,N) is directed. Suppose (m,a) and (n, b) are in B(r,N), so that a

and b divide N and m ∈ r(a), n ∈ r(b). Since r(a) = r(lcm(a, b))(a), there exists k ∈ Z such
that m + ak ∈ r(lcm(a, b)), and similarly there exists l ∈ Z such that n + bl ∈ r(lcm(a, b));
by adding multiples of lcm(a, b) to both sides, we can further suppose that k, l ∈ N and that
m + ak = n + bl = t , say. Then t ∈ (m + aN) ∩ (n + bN), and (t, lcm(a, b)) is an upper bound
for (m,a) and (n, b). Since t = m + ak ∈ r(lcm(a, b)), and lcm(a, b) divides N , this upper
bound belongs to B(r,N). Thus B(r,N) is directed.

To see that B(r,N) is hereditary, suppose (0,1) � (n, b) � (m,a) ∈ B(r,N). Then we have
b|a and b−1(m − n) ∈ N. Then m ∈ r(a) ⊂ r(b), and since n has the form n = m − bk for some
k ∈ N, we have n ∈ r(b) also. Thus (n, b) ∈ B(r,N), as required. �
Lemma 5.3. Suppose ω is a nonempty hereditary directed subset of N � N×. For each prime p

let ep(ω) := sup{ep(a): (m,a) ∈ ω} ∈ N ∪ {∞}, and define a supernatural number by Nω :=∏
p pep(ω). Define kω ∈ N ∪ {∞} by

kω := sup
{
m: (m,a) ∈ ω for some a ∈ N×}

.

Suppose a|Nω. Then there exists m ∈ N such that (m,a) ∈ ω, and moreover

(1) if kω < ∞, then (kω, a) ∈ ω;
(2) if kω = ∞, then there is a sequence ni ∈ N such that (ni, a) ∈ ω and ni → ∞.

Proof. For each prime p with ep(a) > 0, we have ep(a) � ep(ω), so there exists (mp,b) ∈ ω

such that ep(a) � ep(b). Then (mp,pep(a)) � (mp,pep(b)) � (mp,b), and (mp,pep(a)) belongs
to ω because ω is hereditary. Since ω is directed, the finite set {(mp,pep(a)): p ∈ P , ep(a) > 0}
has an upper bound in ω, and since ω is hereditary, (m, c) := ∨

p(mp,pep(a)) also belongs to ω.

But c = ∏
p pep(a) = a, so we have found m such that (m,a) ∈ ω.

When kω is finite, there exists d ∈ N× such that (kω, d) ∈ ω, and since ω is directed, it contains
the element (l, lcm(a, d)) = (m,a) ∨ (kω, d), where l := min((m + aN) ∩ (kω + dN)). But then
l � kω by definition of kω, and since l ∈ kω + dN, we conclude that l = kω. Since (kω, a) �
(kω, lcm(a, d)), we deduce that (kω, a) ∈ ω, proving part (1).

To prove part (2), suppose a|Nω, and choose (n1, a) ∈ ω. Assume that we have obtained
n1 < n2 < · · · < ni such that (ni, a) ∈ ω. Since {m ∈ N: (m,b) ∈ ω} is unbounded, we may
choose (m,b) with m > ni . Then (ni+1, lcm(a, b)) := (ni, a) ∨ (m,b) belongs to ω; since
(ni+1, a) � (ni+1, lcm(a, b)) and ω is hereditary, (ni+1, a) belongs to ω, and part (2) follows
by induction. �
Remark 5.4. Part (2) of the lemma implies that B(r,M) is never contained in A(k,N). The
possible inclusions are characterised as follows:

B(t,N) ⊂ B(r,M) ⇐⇒ N |M and t (a) = r(a) for every a|N;
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A(k,N) ⊂ B(r,M) ⇐⇒ N |M and k ∈ r(a) for every a|N;
A(l,N) ⊂ A(k,M) ⇐⇒ N |M and k − l ∈ aN for every a|N.

For N ∈ N \ N×, we have k − l ∈ aN for every a|N if and only if k = l, so for such N ,
A(l,N) ⊂ A(k,M) implies k = l. Notice also that it follows easily from these inclusions that
the sets A(k,N) and B(r,N) are distinct for different values of the parameters.

Next we show that every hereditary directed subset of N � N× is either an A(k,N) or a
B(r,N).

Proposition 5.5. Suppose ω is a nonempty hereditary directed subset of N � N×, and let kω and
Nω be as in Lemma 5.3;

(1) if kω < ∞, then ω = A(kω,Nω);
(2) if kω = ∞, then there exists rω ∈ Z/Nω such that rω(a) = m for every (m,a) ∈ ω, and we

then have ω = B(rω,Nω).

Proof. Suppose first that kω < ∞, and (m,a) ∈ A(kω,Nω). Then a|Nω and a−1(kω − m) ∈ N.
Then part (1) of Lemma 5.3 implies that (kω, a) is in ω, and since ω is assumed to be directed and
(m,a) � (kω, a), we conclude that (m,a) ∈ ω and A(kω,Nω) ⊂ ω. On the other hand, suppose
that (m,a) ∈ ω. Since (kω, a) ∈ ω and ω is directed, (m,a) ∨ (kω, a) belongs to ω; but m �
kω by definition of kω, so min((m + aN) ∩ (kω + aN)) = kω, (m,a) ∨ (kω, a) = (kω, a), and
(m,a) � (kω, a). Since A(kω,Nω) is hereditary, we conclude that (m,a) is in A(kω,Nω), and
ω ⊂ A(kω,Nω).

Now suppose that kω = ∞. We need to produce a suitable rω ∈ Z/Nω. We know from
Lemma 5.3 that for every a|Nω there exists (m,a) ∈ ω, and we naturally want to take rω(a)

to be the class of m in Z/a. To see that this is well defined, suppose (m,a) and (n, a) are both
in ω; since ω is directed, they have a common upper bound (l, b), and then (l −m) ≡ 0 ≡ (l −n)

(mod a), so m ≡ n (mod a).
Next we have to show that rω := (rω(a))a|Nω is an element of the inverse limit, or in other

words that a|b|Nω implies rω(a) = rω(b)(a). Let m be such that (m,b) ∈ ω, so that m ∈ rω(b).
Since a|b, we have (m,a) � (m,b), and (m,a) also belongs to ω. Thus we also have m ∈ rω(a),
and rω(b)(a) = [m] = rω(a), as required. Thus there is a well-defined class rω in Z/Nω with the
required property.

It is clear from the way we chose rω that ω ⊂ B(rω,Nω), so it remains to show the reverse
inclusion. Suppose (m,a) ∈ B(rω,Nω). Since a|Nω and kω = ∞, part (2) of Lemma 5.3 implies
that we can choose n > m such that (n, a) ∈ ω. Now both m and n are in rω(a), so a|(n − m);
since n − m > 0, this implies that a−1(n − m) ∈ N, and we have (m,a) � (n, a). Since ω is
hereditary, (m,a) ∈ ω. Thus B(rω,Nω) ⊂ ω, and we have proved (2). �
Corollary 5.6. The Nica spectrum of N � N× is

Ω = {
A(k,M): M ∈ N , k ∈ N

} ∪ {
B(r,N): N ∈ N , r ∈ Z/N

}
.

To identify Cuntz’s QN as the boundary quotient of T (N � N×), we need to identify the
boundary ∂Ω of Ω , as defined in [13, Definition 3.3] or [6, Lemma 3.5].
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Proposition 5.7. Let ∇ := ∏
p p∞ be the largest supernatural number. Then the map r �→

B(r,∇) is a homeomorphism of the finite integral adeles Ẑ onto the boundary ∂Ω of
(Q � Q∗+,N � N×). Under this homeomorphism, the left action of (m,a) ∈ N � N× on Ẑ is
given, in terms of the ring operations in Ẑ, by (m,a) · r = m + ar .

A substantial part of the argument works in greater generality, and this generality will be
useful for the construction of KMS states.

Lemma 5.8. The subset ΩB := {B(r,N) ∈ Ω: N ∈ N , r ∈ Z/N} is a closed subset of Ω . For
each fixed N ∈ N , the map r �→ B(r,N) is a homeomorphism of Z/N onto a closed subset
of ΩB .

Proof. Suppose that B(rλ,Nλ) → ω in Ω , so that

B(rλ,Nλ)
∧
(1m,a) → ω̂(1m,a) for every (m,a) ∈ N � N×.

Since the sets in Ω are nonempty, there exists (m,a) such that ω̂(1m,a) = 1. Then there exists
λ0 such that

λ � λ0 �⇒ B(rλ,Nλ)
∧
(1m,a) = 1

�⇒ a|Nλ and m ∈ rλ(a)

�⇒ B(rλ,Nλ)
∧
(1m+ka,a) = 1 for all k ∈ N.

But this implies that the integer kω in Lemma 5.3 is infinity, and Proposition 5.5(2) implies that
ω = B(rω,Nω). Thus ΩB is closed.

Since Z/N is compact and r �→ B(r,N) is injective (see Remark 5.4), it suffices to prove that
r �→ B(r,N) is continuous. So suppose that rλ → r in Z/N , and let a ∈ N×; we need to show
that

B(rλ,N)
∧
(1m,a) → B(r,N)

∧
(1m,a) for every m ∈ N. (5.1)

If a � N , then B(rλ,N)
∧
(1m,a) = 0 = B(r,N)

∧
(1m,a). So suppose a|N . Then

B(r,N)
∧
(1m,a) =

{
1 if m ∈ r(a),
0 otherwise.

Since the maps r �→ r(a) are continuous, we can choose λ0 such that λ � λ0 ⇒ rλ(a) = r(a).
But then m ∈ rλ(a) if and only if m ∈ r(a), and

λ � λ0 �⇒ B(rλ,N)
∧
(1m,a) = B(r,N)

∧
(1m,a),

confirming (5.1). �
Proof of Proposition 5.7. By definition, ∂Ω is the closure in the Nica spectrum Ω of the set of
maximal hereditary directed subsets (see [13, Definition 3.3] or [6, Lemma 3.5]). From Proposi-
tion 5.5 and the characterisation of the inclusions given in Remark 5.4, we see that a hereditary
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directed set is maximal if and only if it has the form B(r,∇). Since {B(r,∇): r ∈ Ẑ} is the image
of the compact space Ẑ under the homeomorphism r �→ B(r,∇) from Lemma 5.8, it is already
closed and is equal to ∂Ω .

The action θ(m,a) on Ω satisfies

θ(m,a)

(
B(r,∇)

) = Her
(
(m,a)B(r,∇)

)
= Her

{
(m,a)(n, b): n ∈ r(b)

}
= Her

{
(m + an,ab): n ∈ r(b)

}
= Her

{
(k, ab): k ∈ (m + ar)(ab)

}
, (5.2)

since n ∈ r(b) ⇔ an ∈ (ar)(ab). But this is precisely {(k, c): k ∈ (m + ar)(c)} which is
B(m + ar,∇). �
Remark 5.9. We think of supernatural numbers as limits of (multiplicatively) increasing se-
quences in N×, and of classes in Z/N as limits of (additively) increasing sequences in N.
So the set ΩB lies “at additive infinity” and we call it the additive boundary of Ω . The set
ΩA := {A(k,N): N /∈ N×} lies “at multiplicative infinity,” and we call it the multiplicative
boundary. Each of these defines a natural quotient of T (N � N×), and we plan to discuss these
quotients elsewhere. The minimal boundary ∂Ω characterised in Proposition 5.7 lies at both
additive and multiplicative infinity, and might be more descriptively called the affine boundary
of Ω .

In our construction of KMS states in Section 9 we need a product decomposition of the ad-
ditive boundary ΩB over the set P . We describe the factors in the next lemma, and the product
decomposition in the following proposition.

Lemma 5.10. For each prime p, the set

Xp := {
B

(
r,pk

)
: k ∈ N ∪ {∞}, r ∈ Z/pk

}
,

is a closed subset of Ω , and each singleton set {B(r,pk)} with k < ∞ is an open subset of Xp .

Proof. Suppose that the net {B(rλ,p
kλ): λ ∈ Λ} converges in Ω ; since ΩB is closed in Ω ,

the limit has the form B(r,N), and it suffices to prove that B(r,N) ∈ Xp , or, equiva-
lently, that N = pk for some k ∈ N ∪ {∞}. Suppose that a|N . Then (r(a), a) ∈ B(r,N), so
B(r,N)

∧
(1r(a),a) = 1, and there exists λ0 such that

λ � λ0 �⇒ B
(
rλ,p

kλ
)∧

(1r(a),a) = 1 �⇒ (
r(a), a

) ∈ B
(
rλ,p

kλ
) �⇒ a|pkλ.

(5.3)

Since every divisor of N is a power of p, so is N . Thus Xp is closed.
Now suppose that k < ∞, and r ∈ Z/pk . To see that {B(r,pk)} is open, it suffices to prove

that if B(rλ,p
kλ) → B(r,pk), then B(rλ,p

kλ) is eventually equal to B(r,pk) (for then the com-
plement Xp \ {B(r,pk)} is closed). Choose an integer n in the class r . Then the element (n,pk)

of N � N× belongs to B(r,pk), so the argument in (5.3) implies that there exists λ1 such that
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λ � λ1 �⇒ (
n,pk

) ∈ B
(
rλ,p

kλ
)

�⇒ pk|pkλ and n ∈ rλ
(
pk

)
�⇒ pk|pkλ and r = rλ

(
pk

); (5.4)

in particular, we have k � kλ for λ � λ1. On the other hand, no element of the form (m,pk+1)

belongs to B(r,pk), so B(r,pk)
∧
(1m,pk+1) = 0, and there exists λ2 such that

λ � λ2 �⇒ B
(
rλ,p

kλ
)∧

(1m,pk+1) = 0

�⇒ (
m,pk+1) /∈ B

(
rλ,p

kλ
)

for 0 � m < pk+1; (5.5)

since membership of an element (m,a) in a set B(t,M) depends only on the class of m in Z/a,
at least one m in the range belongs to rλ(p

k+1), so we deduce from (5.5) that

λ � λ2 �⇒ pk+1 � pkλ �⇒ kλ � k.

Now we choose λ3 such that λ3 � λ1 and λ3 � λ2, and then kλ = k for λ � λ3. Since (5.4) says
that rλ(p

k) = r for λ � λ3 � λ1, we eventually have rλ = rλ(p
kλ) = rλ(p

k) = r , and hence

λ � λ3 �⇒ B
(
rλ,p

kλ
) = B

(
r,pk

)
,

as required. �
Proposition 5.11. The map f :B(r,N) �→ {B(r(pep(N)),pep(N)): p ∈ P} is a homeomorphism
of the additive boundary ΩB onto the product space

∏
p∈P Xp .

Proof. For p ∈ P we define fp :ΩB → Xp by fp(B(r,N)) = B(r(pep(N)),pep(N)). Then the
maps fp are the coordinate maps of f , and f is continuous if and only if all the fp are. So we
fix p, and consider a convergent net B(rλ,Nλ) → B(r,N) in ΩB . Let (m,a) ∈ N � N×. Then
eventually

B(rλ,Nλ)
∧
(1m,a) = B(r,N)

∧
(1m,a), (5.6)

and we need to show that we eventually have

B
(
rλ

(
pep(Nλ)

)
,pep(Nλ)

)∧
(1m,a) = B

(
r
(
pep(N)

)
,pep(N)

)∧
(1m,a). (5.7)

Both sides of (5.7) vanish unless a = pk , so we just need to consider a = pk . But then for all
B(t,M) we have

B(t,M)
∧
(1m,pk ) = B

(
t
(
pep(M)

)
,pep(M)

)∧
(1m,pk ),

so for a = pk , (5.7) follows immediately from (5.6). Thus fp is continuous, and so is f .
To see that f is injective, we suppose f (B(r,N)) = f (B(s,M)). Then
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f
(
B(r,N)

) = f
(
B(t,M)

) �⇒ fp

(
B(r,N)

) = fp

(
B(t,M)

)
for all p ∈ P

�⇒ B
(
r
(
pep(N)

)
,pep(N)

) = B
(
t
(
pep(M)

)
,pep(M)

)
for all p ∈ P

�⇒ pep(N) = pep(M) and r
(
pep(N)

) = t
(
pep(N)

)
for all p ∈ P

�⇒ N = M and r(a) = t (a) for all a such that a|N
�⇒ N = M and r = t in Z/N = lim←−

a|N
Z/aZ.

To see that f is surjective, suppose that {B(rp,pkp ): p ∈ P} is an element of
∏

p Xp . Take N to

be the supernatural number
∏

p pkp . Since the map r �→ {r(pkp ): p ∈ P} is a homeomorphism

of Z/N onto
∏

p∈P Z/pep(N) (by Proposition 1.1), there exists r ∈ Z/N such that r(pkp ) = rp

for all primes p. Then {B(rp,pkp )} = f (B(r,N)), and f is onto.
We have now shown that f is a bijective continuous map of the compact space ΩB onto∏

p Xp , and hence f is a homeomorphism. �
6. Cuntz’s QNNN as a boundary quotient

The C∗-algebra considered by Cuntz in [7] is the universal C∗-algebra QN generated by a
unitary s and isometries {ua : a ∈ N×} satisfying

(C1) uas = saua for a ∈ N×,
(C2) uaub = uab for a, b ∈ N×, and
(C3)

∑a−1
k=0 skuau

∗
as

∗k = 1 for a ∈ N×.

We aim to prove that QN is the boundary quotient of the Toeplitz algebra T (N � N×), and it is
helpful for this purpose to have a slightly different presentation of QN which looks more like the
presentation of T (N � N×) in Theorem 4.1.

Proposition 6.1. QN is the universal C∗-algebra generated by isometries s and {vp: p ∈ P}
satisfying

(Q1) vps = spvp for every p ∈ P ,
(Q2) vpvq = vqvp for every p,q ∈ P ,

(Q5)
∑p−1

k=0 (skvp)(skvp)∗ = 1 for every p ∈ P , and
(Q6) ss∗ = 1.

We then also have

(Q3) v∗
pvq = vqv∗

p for p,q ∈ P and p �= q , and

(Q4) s∗vp = sp−1vps∗ for every p ∈ P .

Proof. If s is unitary and ua satisfy (C1), (C2) and (C3), then clearly s and vp := up satisfy (Q1),
(Q2), (Q5) and (Q6). Suppose, on the other hand, that s and vp satisfy (Q1), (Q2), (Q5) and (Q6),
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and define ua := ∏
p∈P v

ep(a)
p . Then (Q1) implies that vpsk = skpvp; thus vn

ps = spn
vn
p , and it

follows that vas = sava for all a, which is (C1). Eq. (Q2) implies that the vp form a commuting
family, and (C2) follows easily. To prove (C3), it suffices to show that if (C3) holds for a = b and
a = c, then it holds also for a = bc. So suppose (C3) holds for a = b and a = c, and note that

{k: 0 � k < bc} = {l + mb: 0 � l < b, 0 � m < c}.

Thus, using (C1) and (C2), we have

bc−1∑
k=0

skubcu
∗
bcs

k =
b−1∑
l=0

c−1∑
m=0

slsmbubucu
∗
cu

∗
bs

∗mbs∗l

=
b−1∑
l=0

slub

(
c−1∑
m=0

smucu
∗
cs

∗m

)
u∗

bs
∗l ,

which equals 1 because (C3) holds for a = c and a = b. Thus {s, ua} satisfies (C1)–(C3), and the
two presentations are equivalent.

Since s is unitary, multiplying (Q1) on the left and right by s∗ gives (Q4). To see (Q3), we
apply (C3) with a = pq and

v∗
pvq = v∗

p

(
pq−1∑
k=0

skupqu∗
pqs∗k

)
vq =

pq−1∑
k=0

v∗
pskvpvqv∗

pv∗
qs∗kvq, (6.1)

where we used that upq = vpvq = vqvp . Since v∗
pskvp = 0 unless p|k, and v∗

qskvq = 0 unless
q|k, the only nonzero term in the sum on the right of (6.1) occurs when k = 0, and we have

v∗
pvq = v∗

pvpvqv∗
pv∗

qvq = vqv∗
p. �

Clearly condition (Q3) implies that v∗
mvn = vnv

∗
m for m,n ∈ N× with gcd(m,n) = 1 (this is

[7, Lemma 3.2(c)] and has already been observed as (T3) ⇒ (T3′) in Lemma 4.3).

Corollary 6.2. Cuntz’s C∗-algebra QN is the quotient of the Toeplitz algebra T (N � N×) =
C∗(s, vp: p ∈ P ) by the ideal I generated by the elements 1−ss∗ and {1−∑p−1

k=0 (skvp)(skvp)∗:
p ∈ P}.

Proof. Relations (Q1) and (Q2) are the same as (T1) and (T2), and hence hold in any quotient
of T (N � N×); clearly (Q5) and (Q6) hold in T (N � N×)/I . So Proposition 6.1 gives a homo-
morphism π : QN → T (N � N×)/I .

On the other hand relations (T1)–(T4) are the same as (Q1)–(Q4), and hence hold in QN;
(Q5) implies that the isometries {skvp: 0 � k < p} have mutually orthogonal ranges, which is
the content of (T5). So Theorem 4.1 gives a homomorphism ρ : T (N � N×) → QN that van-
ishes on I , and hence induces a homomorphism ρ̃ : T (N � N×)/I → QN which is an inverse
for π . �
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Recall from [6, Lemma 3.5] that the boundary ∂Ω of a quasi-lattice order (G,P ) is the spec-
trum (in the sense of [10, Definition 4.2]) of the elementary relations

∏
x∈F (1 − WxW

∗
x ) = 0

corresponding to the sets in the family

F := {
F ⊂ P : |F | < ∞ and ∀y ∈ P ∃x ∈ F such that x ∨ y < ∞}

(6.2)

from [6, Definition 3.4], taken together with the Nica relations from [10, Proposition 6.1]. Since
we are working with covariant isometric representations, we will carry the implicit assumption
that the Nica relations always hold, so the spectrum of a set R of extra relations is always a subset,
denoted Ω(R), of the Nica spectrum Ω . In this notation, [6, Lemma 3.5] says that ∂Ω = Ω(F ),
and the set ΩN = Ω(∅) of [10, §6] is just Ω .

Since (T (N � N×),w) is universal for Nica-covariant representations, Theorem 6.4 of [10]
implies that T (N � N×) is canonically isomorphic to the partial crossed product C(Ω) �
(Q � Q∗+). The boundary quotient of [6] is then the partial crossed product C(∂Ω)� (Q � Q∗+),
which by [10, Theorem 4.4] and [10, Proposition 6.1] is isomorphic to the universal C∗-algebra
generated by a Nica-covariant semigroup of isometries W subject to the extra (boundary) rela-
tions ∏

x∈F

(
1 − WxW

∗
x

) = 0 for F ∈ F .

Theorem 6.3. Cuntz’s C∗-algebra QN is the boundary quotient C(∂Ω) � (Q � Q∗+) of the
Toeplitz algebra T (N � N×).

Proof. Since (T (N � N×),w) is universal for Nica-covariant isometric representations of
N � N×, Corollary 6.2 implies that QN is universal for Nica-covariant representations (S,V )

of N � N× which satisfy

1 − SS∗ = 0 and 1 −
p−1∑
k=0

(
SkVp

)(
SkVp

)∗ = 0 for p ∈ P . (6.3)

Since the terms in the sum are mutually orthogonal projections, the relations (6.3) are equivalent
to

1 − SS∗ = 0, and (6.4)

p−1∏
k=0

(
1 − (

SkVp

)(
SkVp

)∗) = 0 for every p ∈ P . (6.5)

We will prove that ∂Ω := Ω(F ) coincides with Ω({(6.4), (6.5)}).
To see that ∂Ω ⊂ Ω({(6.4), (6.5)}), it suffices to show that {(1,1)} and {(k,p): 0 � k < p}

belong to F . Suppose (m,a) ∈ N � N×. Since (1,1)∨ (m,a) = (m,a) when m > 0 and (1,1)∨
(0, a) = (a, a), the set {(1,1)} is in F . On the other hand, m is in exactly one coset modulo p,
say m ∈ k +pN, and then (m+ aN)∩ (k +pN) �= ∅, so (m,a)∨ (k,p) < ∞. Thus {(k,p): 0 �
k < p} is in F . Hence ∂Ω ⊂ Ω({(6.4), (6.5)}).

For the reverse inclusion, we use the parametrisation of the spectrum obtained in Lemma 5.5.
Suppose ω ∈ Ω({(6.4), (6.5)}). Then, since the spectrum of a set of relations is invariant by
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Proposition 4.1 of [10], ω is a hereditary directed subset of N � N× such that for all (m,a) ∈
N � N×, the (m,a)-translates of the relations (6.4) and (6.5) (corresponding to conjugation of
the relations by the isometry corresponding to (m,a)) hold at the point ω. Thus

ω̂(1(m,a) − 1(m+1,a)) = 0 for all (m,a) ∈ N � N×, and (6.6)

ω̂

(
p−1∏
k=0

(1(m,a) − 1(m+ak,ap))

)
= 0 for all (m,a) ∈ N � N×. (6.7)

From (6.6) we see that if (m,a) ∈ ω, then (m + 1, a) ∈ ω; none of the A(k,n) have this property
(take m = k), so we have ω = B(r,N) for some N ∈ N and r ∈ Z/N . Now, using (6.7), we get

p−1∏
k=0

(
B(r,N)

∧
(1(m,a)) − B(r,N)

∧
(1(m+ak,ap))

) = 0 for all (m,a) ∈ N � N×. (6.8)

Suppose now that a|N and p is a prime. Then for every m ∈ r(a) we have (m,a) ∈ B(r,N), and
(6.8) implies that there exists k such that (m + ak, ap) ∈ B(r,N), which implies in particular
that ap|N . Thus N is the largest supernatural number ∇ , and A = B(r,∇) ∈ ∂Ω by Proposi-
tion 5.7. Thus ∂Ω ⊃ Ω({(6.4), (6.5)}) and we have proved that Ω(F ) = Ω({(6.4), (6.5)}), as
required. �

The core of a quasi-lattice ordered group (G,P ) is the subgroup G0 of G generated by the
monoid

P0 = {x ∈ P : x ∨ y < ∞ for all y ∈ P }

(see [6, Definition 5.4]). By [6, Proposition 5.5], the partial action of G on Ω is topologically
free if and only if its restriction to the core G0 is topologically free. So we want to identify the
core:

Lemma 6.4. The core of (Q � Q∗+,N � N×) is (Z � {1},N � {1}).

Proof. Each (m,1) is in the core, because k := min(m + N) ∩ (n + bN) is always finite and by
(2.3), we have (m,1)∨ (n, b) = (k, b) ∈ N � N×. Suppose now a �= 1; then m �= m+ 1 (mod a),
so (m,a) ∨ ((m + 1), a) = ∞ by (2.3), and thus (m,a) /∈ P0. �
Proposition 6.5. The partial action of Q � Q∗+ on the boundary ∂Ω is amenable and topologi-
cally free.

Proof. The expectation of C0(∂Ω) � (Q � Q∗+) onto C0(∂Ω) is obtained by averaging over the
dual coaction of Q � Q∗+, and hence is faithful (by the argument of [15, Lemma 6.5], for exam-
ple). Thus the partial action of Q � Q∗+ on ∂Ω is amenable. Next, recall from Proposition 5.7
that (k,1)B(r,∇) = B(r + k,∇); since B(r + k,∇) = B(r,∇) implies k = 0, the core acts freely
on ∂Ω . The result now follows from [6, Proposition 5.5]. �

We can now recover [7, Theorem 3.4] from the analysis of [6].
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Corollary 6.6 (Cuntz). The C∗-algebra QN is simple and purely infinite.

Proof. The boundary quotient is simple and purely infinite by [6, Theorem 5.1], so the result
follows from Theorem 6.3. �
Corollary 6.7. There is a faithful representation π of QN on �2(Z) such that π(s)en = en+1 and
π(vp)en = epn.

Proof. We define isometries S and Vp on �2(Z) by Sen = en+1 and Vpen = epn, and check
easily that they satisfy (Q1), (Q2), (Q5) and (Q6). Thus Proposition 6.1 gives a representation
π of QN such that π(s) = S and π(vp) = Vp . Since S �= 0, the representation is certainly not 0,
and hence by Corollary 6.6 is faithful. �
7. The phase transition theorem

Standard arguments using the presentation in Theorem 4.1 show that there is a strongly con-
tinuous action σ of R on T (N � N×) such that

σt (s) = s and σt (vp) = pitvp for p ∈ P and t ∈ R. (7.1)

The action σ is spatially implemented in the identity representation of T (N � N×) on
�2(N � N×) by the unitary representation U : R → U (�2(N � N×)) defined in terms of the usual
basis by

Ute(m,a) := ait e(m,a).

Our goal in this section is to describe the equilibrium states of the system (T (N � N×),R, σ ),
which we do in Theorem 7.1, and to discuss the implications of this theorem for the interplay
between equilibrium and symmetries. The notion of equilibrium appropriate in this context is
that of KMS states; since there are some subtleties involved, we begin by recalling the relevant
definitions.

Suppose that α is an action of R on a C∗-algebra A. An element a of A is analytic for the
action α if the function t �→ αt (a) is the restriction to R of an entire function on C; it is shown at
the start of [22, §8.12], for example, that the set Aa of analytic elements is a dense ∗-subalgebra
of A. For β ∈ (0,∞), a state φ of A is a KMS state at inverse temperature β for α, or a KMSβ

state for α, if it satisfies the following KMSβ condition:

φ(dc) = φ
(
cαiβ(d)

)
for all c, d ∈ Aa. (7.2)

In fact, it suffices to check (7.2) for a set of analytic elements which spans a dense subspace
of A [22, Proposition 8.12.3], and hence this definition agrees with the one used in [2, §5.3].
For β > 0, every KMSβ state is α-invariant [22, Proposition 8.12.4]; for a state φ to be a KMS0
state, it is standard to require that φ satisfies (7.2) with β = 0 (so that φ is a trace), and that φ is
α-invariant.

For every system (A,R, α), the set Kβ of KMSβ states is a compact convex subset of the state
space S(A). The affine structure of the set Kβ is studied in [2, §5.2.3]: it is always a simplex in
the sense of Choquet, and the extremal KMSβ states (that is, the extreme points of Kβ ) are
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always factor states. The same section in [2] also discusses the relationship between KMS states
and equilibrium states in models from quantum statistical mechanics.

For β = ∞ there are two possible notions of equilibrium. Following Connes and Marcolli [4,
Definition 3.7], we distinguish between KMS∞ states, which are by definition the weak* limits
of nets φi of KMSβi

states with βi → ∞, and ground states, which are by definition states φ for
which the entire functions

z �→ φ
(
dαz(c)

)
for c, d ∈ Aa

are bounded on the upper half-plane. With this distinction in mind, [2, Proposition 5.3.23] and [4,
Proposition 3.8] imply that the KMS∞ states form a compact convex subset of the ground states.
As observed by Connes and Marcolli [4, p. 447], ground states need not be KMS∞ states, and
our system provides another example of this phenomenon, see parts (3) and (4) of Theorem 7.1
below. We point out that this relatively recent distinction was not made in [2] or [22], where the
terms “ground state” and “KMS∞ state” are used interchangeably to refer to the ground states of
[4, Definition 3.7]. The definition of ground state in [22] looks different: there it is required that
the functions z �→ φ(dαz(c)) are bounded by ‖c‖‖d‖. However, as pointed out in the proof of
[2, Proposition 5.3.19, (2) �⇒ (5)], a variant1 of the Phragmen–Lindelöf theorem implies that
an entire function which is bounded on the upper half-plane is bounded by the sup-norm of its
restriction to the real axis, which in this case is at most ‖c‖ ‖d‖. It follows from the definition
in [22] that it suffices to check boundedness for a set of elements which spans a dense subspace
of Aa.

For our system (T (N � N×),R, σ ), the spanning elements smvav
∗
bv∗n for T (N � N×) satisfy

σt

(
smvav

∗
bs∗n

) = (
ab−1)it

smvav
∗
bs∗n,

and hence are all analytic. Thus to see that a state φ of T (N � N×) is a KMSβ state or ground
state for σ , it suffices to check the appropriate condition for c and d of the form smvav

∗
bs∗n.

We can now state our main theorem. The function ζ appearing in the formulas is the Riemann
zeta-function, defined for r > 1 by ζ(r) = ∑∞

n=1 n−r .

Theorem 7.1. Let σ be the dynamics on T (N � N×) which satisfies (7.1).

(1) For β ∈ [0,1) there are no KMSβ states for σ .
(2) For β ∈ [1,2] there is a unique KMSβ state ψβ for σ , and it is characterised by

ψβ

(
smvav

∗
bs∗n

) =
{

0 if a �= b or m �= n,

a−β if a = b and m = n.

(3) For β ∈ (2,∞], the simplex of KMSβ states for σ is isomorphic to the simplex of probability
measures on T; for z ∈ T, the extremal KMSβ state ψβ,z corresponding to the point mass δz

is a type I factor state satisfying

ψβ,z

(
smvav

∗
bs∗n

) =
{0 if a �= b or m �≡ n (mod a),

1
aζ(β−1)

∑
{x: a|x|(m−n)} x1−βz(m−n)/x if a = b and m ≡ n (mod a).

1 One suitable variant is formulated as Exercise 9 on p. 264 of [23].
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(4) If ψ is a ground state for σ , then the restriction ω := ψ |C∗(s) is a state of C∗(s) ∼= T (N),
and we have

ψ
(
smvav

∗
bs∗n

) =
{

0 unless a = b = 1,

ω(sms∗n) when a = b = 1.
(7.3)

The map ψ �→ ψ |C∗(s) is an affine isomorphism of the compact convex set of ground states
onto the state space of T (N), and a state ψ is an extremal ground state if and only if ψ |C∗(s)
is either a vector state of T (N) or is lifted from an evaluation map on the quotient C(T) of
T (N).

We will prove these assertions in the next three sections. Before we start, though, we make
some remarks on the significance of the theorem for symmetries and equilibrium.

Remarks 7.2. (i) Although a KMSβ state ψ (and in fact any state of T (N � N×)) is uniquely
determined by its value on products of the form smvav

∗
bs∗n, it is not obvious that there are

states satisfying the formulas in parts (2), (3), and (4). We will prove existence of such states
in Section 9 using spatial constructions.

(ii) The C∗-algebra T (N � N×) carries a dual action τ̂ of (Q∗+)∧, which is characterised on
generators by τ̂γ (s) = s and τ̂γ (vp) = γ (p)vp , and a dual coaction δ of Q � Q∗+ (see [15, Propo-
sition 6.1]). It may help coaction fans to observe that τ̂ is the action of (Q∗+)∧ corresponding to
the restriction δ| of the coaction δ to the quotient Q∗+ = (Q � Q∗+)/Q. The coaction δ gives an
expectation EQ�Q∗+ onto the fixed-point algebra span{smvav

∗
as∗m: m ∈ N, a ∈ N×}, which is

faithful because Q � Q∗+ is amenable (see [15, Lemma 6.5]), and τ̂ gives a faithful expectation
Eτ̂ onto

T
(
N � N×)τ̂ = span

{
smvav

∗
as∗n: m,n ∈ N, a ∈ N×}

.

The dynamics σ is the composition of τ̂ with the embedding t �→ (γt : r �→ rit ) of R as a dense
subgroup of (Q∗+)∧. So T (N � N×)τ̂ = T (N � N×)σ , and Eτ̂ is also the expectation onto the
fixed-point algebra for σ .

(iii) It follows from Theorem 7.1 that KMSβ states vanish on the products smvav
∗
bs∗n with

a �= b, and hence factor through the conditional expectation Eτ̂ of the dual action of (Q∗+)∧;
for β ∈ [1,2] they also vanish on the products smvav

∗
as∗n with m �= n, and hence factor through

the conditional expectation EQ�Q∗+ of the dual coaction of Q � Q∗+. Hence, for small β , the
equilibrium states are symmetric with respect to the coaction of Q � Q∗+ but for β > 2 they are
symmetric only with respect to the (quotient) coaction of Q∗+. Since the extreme states in part (3)
are indexed by the circle, there is a circular symmetry at the level of KMS states which is broken
as β increases through 2.

(iv) The relation (T1) makes it unlikely for there to be an action of the Pontryagin dual T of
Z on T (N � N×) that sends s �→ zs for z ∈ T, and certainly not one which has any vp as an
eigenvector. Thus the symmetry which is apparently being broken as β passes from 2− to 2+ in
Theorem 7.1 does not obviously come from a group action on the C∗-algebra T (N � N×).

(v) There is a further phase transition “at infinity”: the KMS∞ states form a proper subset
of the ground states. Indeed, it follows from the formula in (3) that every KMS∞ state satisfies
ψ(ss∗) = 1, and hence the extremal KMS∞ states are the ground states such that ψ |C∗(s) is
lifted from an evaluation map on C(T). Notice also that the existence of the affine isomorphism
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in (4) implies that the ground states of T (N � N×) do not form a simplex, because the state
space of the noncommutative subalgebra C∗(s) ∼= T (N) is not a simplex (see, for example, [2,
Example 4.2.6]).

(vi) (The partition function.) The extremal KMSβ states (for β > 2) are related to the KMS∞
states in the following way. Since each extremal KMS∞ state φ is R-invariant, the dynamics
is implemented in the GNS representation (Hφ,πφ, ξφ) by a unitary group U : R → U(Hφ).
The Liouville operator is the infinitesimal generator H of this one-parameter group, which is an
unbounded self-adjoint operator on Hφ . The functionals

φβ :T �→ Tr(e−βH T )

Tr e−βH

are then the extremal KMSβ states; the normalising factor β �→ Tr e−βH is called the partition
function of the system. On the face of it, the partition function will depend on the choice of
KMS∞ state φ, but in these number-theoretic systems it doesn’t seem to. In the Bost–Connes
system, for example, there is a large symmetry group of the underlying C∗-algebra which com-
mutes with the dynamics and acts transitively on the extreme KMS∞ states, and all the Liouville
operators in the associated GNS representations match up (see [1, §6]). The same thing happens
for similar systems over more general number fields (see [17, Remark 3.5]). Here, even though
there is no obvious symmetry group of T (N � N×) which implements the circular symmetry of
the simplex of KMS∞ states, the GNS representations of the extreme KMS∞ states ψ∞,z are
all realisable on the same space �2(X), with the same cyclic vector e0,1, the same unitary group
implementing the dynamics, and the same Liouville operator (see the discussion at the start of the
proof of Proposition 9.3). That discussion shows also that the eigenvalues of H are the numbers
lnx for x ∈ N×, and that the multiplicity of the eigenvalue lnx is x, so that Tr e−βH = ζ(β − 1).
So it makes sense for us to claim that: “The partition function of the system (T (N � N×),R, σ )

is ζ(β − 1).”

8. Characterisation of KMS and ground states of the system

We begin with the case β < 1.

Proposition 8.1 (Theorem 7.1(1)). The system (T (N � N×),R, σ ) has no KMSβ states for
β < 1.

Proof. (Notice that our argument also rules out the existence of KMSβ states for β < 0.) Suppose
ψ is a KMSβ state for σ . Then the KMSβ condition implies that, for a ∈ N× and 0 � k < a, we
have

ψ
(
skvav

∗
as∗k

) = ψ
(
v∗
as∗kσiβ

(
skva

)) = ψ
(
v∗
as∗ka−βskva

) = a−βψ(1) = a−β.

The relation (T5) (or strictly speaking, (T5′) in Lemma 4.3) implies that the projections
skvav

∗
as∗k for 0 � k < a are mutually orthogonal, and hence 1 �

∑a−1
k=0 skvav

∗
as∗k . Now pos-

itivity of ψ implies that

1 = ψ(1) � ψ

(
a−1∑
k=0

skvav
∗
as∗k

)
= aa−β,

which implies β � 1. �
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For β � 1 we need the characterisation of the KMSβ states in Lemma 8.3. Here and later we
use the following notational convention to simplify formulas.

Convention 8.2. We write s((k)) to mean sk when k � 0 and s∗(−k) when k < 0.

Lemma 8.3. Let β ∈ [1,∞). A state φ of T (N � N×) is a KMSβ state for σ if and only if for
every a, b ∈ N× and m,n ∈ N we have

φ
(
smvav

∗
bs∗n

) =
{

0 if a �= b or m �≡ n (mod a),

a−βφ(s(( m−n
a

))) if a = b and n ≡ m (mod a).
(8.1)

Proof. Suppose first that φ is a KMSβ state. Applying the KMS condition twice gives

φ
(
smvav

∗
bs∗n

) = a−βφ
(
v∗
bs∗nsmva

) = (a/b)−βφ
(
smvav

∗
bs∗n

)
,

which implies that

φ
(
smvav

∗
bs∗n

) =
{

0 if a �= b,

a−βφ(v∗
as((m−n))va) if a = b. (8.2)

When m �≡ n (mod a), the relation (T5) implies that v∗
as((m−n))va = 0, and when m ≡ n (mod a),

relation (T1) implies that v∗
as((m−n))va = s(((m−n)/a)). Thus (8.2) says that φ satisfies (8.1).

Suppose now that φ satisfies (8.1). Since it suffices to check the KMS condition (7.2) on
spanning elements, φ is a KMSβ state for σ and if and only if

aβφ
(
smvav

∗
bs∗n sqvcv

∗
ds∗r

) = bβφ
(
sqvcv

∗
ds∗r smvav

∗
bs∗n

)
(8.3)

for a, b, c, d ∈ N× and m,n,q, r ∈ N. We prove this equality by computing both sides.
To compute the left-hand side of (8.3), we first reduce the expression using the covariance

relation in Lemma 4.4:

smvav
∗
bs∗n sqvcv

∗
ds∗r = smvav

∗
bs((q−n))vcv

∗
ds∗r

=
{

0 if q �≡ n (mod gcd(b, c)),

smva(s
βvc′v∗

b′s∗γ )v∗
ds∗r if q ≡ n (mod gcd(b, c)),

=
{

0 if q �≡ n (mod gcd(b, c)),

sm+βavac′v∗
db′s∗r+γ d if q ≡ n (mod gcd(b, c)),

where b′ = b/gcd(b, c), c′ = c/gcd(b, c), and (β, γ ) is the smallest non-negative solution of
(q − n)/gcd(b, c) = βb′ − γ c′. Now (8.1) implies that the left-hand side of (8.3) vanishes unless
q ≡ n (mod gcd(b, c)), ac′ = db′, and m + βa ≡ r + γ d (mod ac′), in which case it equals

(
c′)−β

φ
(
s
((

m+βa−r−γ d

ac′ )))
. (8.4)

The analogous computation shows that the right-hand side of (8.3) vanishes unless m ≡ r

(mod gcd(d, a)) and ca′ = bd ′. If so, we take (δ,α) to be the smallest non-negative solution of
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(m− r)/gcd(d, a) = δd ′ −αa′. Now the right-hand side of (8.3) vanishes unless q +δc ≡ n+αb

(mod bd ′), and then equals

(
d ′)−β

φ
(
s
((

q+δc−n−αb

bd′ )))
. (8.5)

We need to verify that the conditions for a nonvanishing left-hand side match those for the
right-hand side, and that when they hold, the values of (8.4) and (8.5) coincide. The situation is
symmetric, so we suppose that q ≡ n (mod gcd(b, c)), that ac′ = db′, and that, with (β, γ ) as
defined two paragraphs above, m + βa ≡ r + γ d (mod ac′).

Notice that

ac′ = db′ ⇐⇒ a/d = b′/c′ ⇐⇒ a′/d ′ = b′/c′ ⇐⇒ a′/d ′ = b/c

⇐⇒ ca′ = bd ′;

these are all equivalent to ac = bd , and from the reduced form in the middle we deduce that
a′ = b′ and c′ = d ′. This implies in particular that the coefficients (c′)−β in (8.4) and (d ′)−β in
(8.5) coincide. Next, notice that m+βa ≡ r +γ d (mod ac′) implies that m ≡ r (mod gcd(d, a)),
so it makes sense to take (δ,α) to be the smallest non-negative solution of (m − r)/gcd(d, a) =
δd ′ − αa′.

Consider now the exponent of s on the left-hand side of (8.3). The definition of (δ,α) implies
that m − r = δd − αa, so, remembering that a′ = b′ and c′ = d ′, we have

m + βa − r − γ d

ac′ = (δ − γ )d + (β − α)a

gcd(d, a)a′c′ = (δ − γ )d ′ + (β − α)a′

a′c′

= (δ − γ )c′ + (β − α)b′

b′d ′ = βb − γ c + δc − αb

gcd(b, c)b′d ′

= q − n + δc − bα

bd ′ ,

which is the exponent of s on the right-hand side of (8.3). Since ac′ divides m + βa − r − γ d ,
this calculation also shows that bd ′ divides q + δc − n − αb, or equivalently that q + δc ≡ n +
αb (mod bd ′). This completes the proof of (8.3), and hence we have shown that φ is a KMSβ

state. �
Lemma 8.4. A state φ of T (N � N×) is a ground state for σ if and only if

φ
(
smvav

∗
bs∗n

) = 0 whenever a �= 1 or b �= 1. (8.6)

Proof. Let φ be a state of T (N � N×). The expression

φ
(
sqvcv

∗
ds∗r σα+iβ

(
smvav

∗
bs∗n

)) = (a/b)iα−βφ
(
sqvcv

∗
ds∗r smvav

∗
bs∗n

)
is bounded on the upper half plane (β > 0) if and only if

φ
(
sqvcv

∗s∗r smvav
∗s∗n

) = 0 whenever a < b. (8.7)
d b
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Suppose φ is a ground state and choose r = m and d = a = 1; then (8.7) implies φ(sqvcv
∗
bs∗n) =

0 for 1 < b. Taking adjoints gives the same for 1 < c. This proves (8.6) (with q in place of m and
c in place of a). Conversely, suppose φ(smvav

∗
bs∗n) = 0 whenever a or b is not 1 and choose

two analytic elements X = smvav
∗
bs∗n and Y for σ ; then the Cauchy–Schwarz inequality yields∣∣φ(

Y ∗σα+iβ

(
smvav

∗
bs∗n

))∣∣2 = ∣∣(a/b)iα−βφ
(
Y ∗smvav

∗
bs∗n

)∣∣2

� (a/b)−βφ
(
Y ∗Y

)
φ
(
snvbv

∗
as∗m smvav

∗
bs∗n

)
= (b/a)βφ

(
Y ∗Y

)
φ
(
snvbv

∗
bs∗n

)
.

Since the last factor vanishes for b �= 1, the function α + iβ �→ φ(Y ∗σα+iβ(X)) is bounded for
β > 0, so φ is a ground state. �
9. Construction of KMS and ground states

To prove that there exists a KMSβ state satisfying the formula in part (2) of Theorem 7.1
we use a product measure arising on the factorisation ΩB

∼= ∏
p∈P Xp of Proposition 5.11. The

construction makes sense for β � 1, but the case β = 1 requires special consideration.

Proposition 9.1 (Theorem 7.1(2): existence of a KMSβ state that factors through EQ�Q∗+ ). For

k ∈ N and r ∈ Z/pk , let δ(r,pk) denote the unit point mass at B(r,pk) ∈ Xp . For β > 1, the series

μβ,p = (
1 − p1−β

) ∑
(r,pk)∈Xp

p−βkδ(r,pk)

defines a Borel probability measure on Xp; for β = 1, we let μ1,p be the probability measure on
Xp coming from additive Haar measure on Zp via the embedding r �→ B(r,p∞) of Zp in Xp

(see Lemma 5.8). Let μβ be the measure on ΩB coming from the product measure
∏

p∈P μβ,p on∏
p∈P Xp via the homeomorphism of Proposition 5.11, let μ∗

β :f �→ ∫
f dμβ be the associated

state on C(Ω), and view μ∗
β as a state on T (N � N×)δ using the isomorphism of

T
(
N � N×)δ = span

{
smvav

∗
as∗m: (m,a) ∈ N � N×}

onto C(Ω) which takes smvav
∗
as∗m to 1m,a . Then ψβ := μ∗

β ◦ EQ�Q∗+ is a KMSβ state for
1 � β � ∞, and it satisfies

ψβ

(
smvav

∗
bs∗n

) =
{

0 unless a = b and m = n,

a−β if a = b and m = n.
(9.1)

Proof. Suppose first that 1 < β < ∞. Then the series∑
(r,pk)∈Xp

p−βk =
∑
k∈N

pkp−βk

converges with sum (1 − p1−β)−1, so the sum defining μβ,p converges in norm in M(Ω) to a
probability measure.
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To prove that ψβ is a KMSβ state, we compute ψβ(smvav
∗
bs∗n) and apply Lemma 8.3. Since

ψβ factors through EQ�Q∗+ , we have ψβ(smvav
∗
bs∗n) = 0 whenever m �= n or a �= b. So sup-

pose that m = n and a = b = ∏
p|a pep(a). The isomorphism of T (N � N×)δ with C(Ω) carries

smvav
∗
as∗m into 1m,a , which is the characteristic function of the set {B(r,N): a|N, r(a) =

m(a)}; the homeomorphism of Proposition 5.11 carries this set into(∏
p|a

{
B

(
r,pk

)
: k � ep(a), r

(
pep(a)

) = m
(
pep(a)

)}) ×
(∏

q�a

Xq

)
. (9.2)

Thus

ψβ

(
smvav

∗
as∗m

) =
∫

1m,a dμβ = μβ

({
B(r,N): a|N, r(a) = m(a)

})
=

∏
p|a

μβ,p

({
B

(
r,pk

)
: k � ep(a), r

(
pep(a)

) = m
(
pep(a)

)}) ×
(∏

q�a

μq,β(Xq)

)

=
∏
p|a

μβ,p

({
B

(
r,pk

)
: k � ep(a), r

(
pep(a)

) = m
(
pep(a)

)})

=
∏
p|a

(
1 − p1−β

)( ∞∑
k=ep(a)

p−βk
(
#
{
r ∈ Z/pk: r

(
pep(a)

) = m
(
pep(a)

)}))
.

For k � ep(a) there are pk−ep(a) elements r in Z/pk such that r(pep(a)) = m(pep(a)). Thus

ψβ

(
smvav

∗
as∗m

) =
∏
p|a

(
1 − p1−β

)( ∞∑
k=ep(a)

p(1−β)kp−ep(a)

)

=
∏
p|a

(
1 − p1−β

)
p−βep(a)

( ∞∑
l=0

p(1−β)l

)

=
∏
p|a

p−βep(a) =
(∏

p|a
pep(a)

)−β

= a−β.

Since the expectation EQ�Q∗+ kills the nonzero powers of s, this calculation shows that ψβ

satisfies (8.1), and hence Lemma 8.3 implies that ψβ is a KMSβ state.
Now suppose β = 1. Then the measure μ1 is the product of normalised Haar measures on

the Zp , which is the normalised Haar measure on Ẑ ∼= ∂Ω . This satisfies μ1(aE) = a−1μ1(E),
and since the support of 1m,a is m + aẐ, we have

ψ1
(
smvav

∗
as∗m

) =
∫
Ẑ

1m,a dμ1 = μ1(m + aẐ) = a−1μ1(Ẑ) = a−1.

So Lemma 8.3 also implies that ψ1 is a KMS1 state.
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When β = ∞, the usual interpretation a−∞ = 0 for a > 1 and 1−∞ = 1 yields probability
measures μ∞,p on Xp concentrated at the point (0,1) ∈ Xp , and their product corresponds to
the unit point mass μ∞ concentrated at the point B(0,1) ∈ ΩB . Then ψ∞ := (μ∞)∗ ◦ EQ�Q∗+
satisfies

ψ∞
(
smvav

∗
bs∗n

) =
{

0 unless a = b = 1 and m = n,
1 if a = b = 1 and m = n,

(9.3)

and is a ground state by Lemma 8.4. The characterisations of ψβ and ψ∞ show that ψβ(c) →
ψ∞(c) as β → ∞ for c = smvav

∗
bs∗n, and hence ψ∞ is a KMS∞ state. �

To construct KMSβ states for β > 2, we use the Hilbert-space representation of N � N×
described in the next lemma. For 2 < β < ∞, the state ω in the lemma will be lifted from a
state on the quotient C(T) of T (N), hence given by a probability measure μ on T, and then
the isometry U in the GNS representation is the multiplication operator (Uf )(z) = zf (z) on
L2(T, dμ). When we construct ground states, ω can be any state of T (N).

Lemma 9.2. Let ω be a state of the Toeplitz algebra T (N), and let U be the generating isometry
for the GNS representation (Hω,πω, ξω) of T (N). Set

X := {
(r, x): x ∈ N×, r ∈ Z/x

}
and let er,x be the usual basis for �2(X). Let S and Vp be the isometries on �2(X, Hω) which are
characterised by the following behaviour on elements of the form f e(r,x) for f ∈ Hω:

S(f er,x) =
{

f er+1,x if r + 1 �= 0Z/x,

(Uf )e0,x if r + 1 = 0Z/x,
and

Vp(f er,x) = f epr,px.

Then S and {Vp: p ∈ P} satisfy the relations (T1)–(T5) of Theorem 4.1.

Proof. To verify (T1), first observe that

VpS(f er,x) =
{

f epr+p,px if r + 1 �= 0Z/x,

(Uf )e0,px if r + 1 = 0Z/x .
(9.4)

To compute SpVp , first note that for k � x we have

Sk(f er,x) =
{

f er+k,x if r + i �= 0Z/x for i satisfying 0 < i � k,
(Uf )ek−i,x if there exists i such that 0 < i � k and r + i = 0Z/x ,

which, since p � px, implies that

SpVp(f er,x) =
{

f epr+p,px if pr + i �= 0Z/px for i satisfying 0 < i � p,
(Uf )ep−i,px if there exists i such that 0 < i � p and pr + i = 0Z/px,

=
{

f epr+p,px if pr + p �= 0Z/px ,
(Uf )e if pr + p = 0 ,
0,px Z/px
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which is the same as (9.4) because ×p : Z/x → Z/px is injective (see Lemma 1.2). Thus (T1)
holds.

To verify relation (T2), we just need to observe that (×p)◦ (×q) = (×q)◦ (×p): indeed, both
are just ×pq : Z/x → Zpqx . For (T3), we suppose that p and q are distinct primes. The adjoint
V ∗

p is given by

V ∗
p (f er,x) =

{
f ew,p−1x if p|x and r = pw for some w ∈ Z/p−1x,
0 otherwise.

Thus we have

V ∗
p Vq(f er,x) =

{
f ew,p−1qx if p|qx and qr = pw for some w ∈ Z/p−1qx,
0 otherwise,

(9.5)

whereas

VqV ∗
p (f er,x) =

{
f eqζ,qp−1x if p|x and r = pζ for some ζ ∈ Z/p−1x,
0 otherwise.

(9.6)

We know from Lemma 1.2 that r = pζ ⇐⇒ r ≡ 0 (mod p), which is equivalent to qr ≡ 0
(mod p) because gcd(q,p) = 1; thus the nontrivial cases in (9.5) and (9.6) coincide, with w =
qζ , and we have V ∗

p Vq = VqV ∗
p , which is (T3).

To verify (T4), we first compute the left-hand side:

S∗Vpf er,x = S∗f epr,px =
{

f epr−1,px if pr �= 0Z/px,

(U∗f )epx−1,px if pr = 0Z/px . (9.7)

For the right-hand side, we have

Sp−1VpS∗f er,x =
{

Sp−1Vpf er−1,x if r �= 0Z/x,

Sp−1Vp(U∗f )ex−1,x if r = 0Z/x,

=
{

Sp−1f epr−p,px if r �= 0Z/x,

Sp−1(U∗f )epx−p,px if r = 0Z/x,

=
{

f epr−p+p−1,px if pr �= 0Z/px,

(U∗f )epx−p+p−1,px if pr = 0Z/px ,

which is the same as (9.7).
Finally, we verify (T5). Suppose 1 � k < p. Then

V ∗
p SkVp(f er,x) =

{
V ∗

p (f epr+k,px) if pr + i �= 0Z/px for 0 < i � k,

V ∗
p ((Uf )ek−i,x) if there exists i such that 0 < i � k and pr + i = 0Z/px .

Since 0 < k < p, the second possibility does not arise. Thus

V ∗
p SkVp(f er,x) =

{
f ew,x if pr + k = pw,

0 otherwise,
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which has to be 0 because pr + k cannot be in the range of ×p for k in the given range. This
confirms (T5), and completes the proof. �

We can now prove the existence of many KMSβ states for β > 2.

Proposition 9.3 (Theorem 7.1(3): KMSβ states from probability measures on T). Suppose β ∈
(2,∞) and μ is a probability measure on T. Then there is a state ψβ,μ of T (N � N×) such that

ψβ,μ

(
smvav

∗
bs∗n

)
=

{
0 if a �= b or m �≡ n (mod a),

1
aζ(β−1)

∑
a|x|(m−n) x

1−β
∫

T z(m−n)/x dμ(z) if a = b and m ≡ n (mod a). (9.8)

There is also a KMS∞ state ψ∞,μ such that

ψ∞,μ

(
smvav

∗
bs∗n

) =
{

0 unless a = b = 1,∫
T zm−n dμ(z) if a = b = 1.

(9.9)

For β ∈ (2,∞], the correspondence μ → ψβ,μ is an affine map of the set P(T) of probability
measures on the unit circle into the simplex of KMSβ states. Moreover, the extremal states ψ∞,z

for z ∈ T are pure and pairwise inequivalent.

Proof. As anticipated before Lemma 9.2, we apply that lemma to the state ω of T (N) lifted
from the measure μ on T, so the Hilbert space Hω is L2(T, dμ) and (Uf )(z) = zf (z). The
resulting family S,V gives us a representation πμ := πS,V of T (N � N×) on the Hilbert space
�2(X,L2(T, dμ)). We aim to use this representation to define the states ψβ,μ. For motivation, we
suppose first that μ = δz; then U is multiplication by z on C and the Hilbert space is �2(X) with
the usual orthonormal basis {er,x : (r, x) ∈ X}. In this special case, we can borrow a construction
from [1].

We first note that there is a unitary representation W : R → U(�2(X)) such that Wter,x =
xit er,x , and this representation implements the dynamics σ in the representation πμ—in other
words, (πμ,W) is a covariant representation of the system (T (N � N×),R, σ ). The infinitesimal
generator H of W is the (unbounded) self-adjoint operator H on �2(X) such that Wt = eitH , and
is diagonal with respect to the basis {er,x}, with eigenvalues lnx of multiplicity x. Then e−βH

is a positive bounded operator which is also diagonalised by the er,x and satisfies e−βH er,x =
x−βer,x . Thus for β > 2, e−βH is a trace-class operator with

Tr e−βH =
∑

(r,x)∈X

〈
x−βer,x, er,x

〉 = ∑
x∈N×

x1−β = ζ(β − 1),

and ζ(β − 1)−1e−βH is a bounded positive operator with trace one, which defines a state ψβ,μ

on T (N � N×) through the representation πμ:

ψβ,μ(T ) := 1

ζ(β − 1)
Tr

(
e−βH πμ(T )

) = 1

ζ(β − 1)

∑
(r,x)∈X

x−β
〈
πμ(T )er,x, er,x

〉
. (9.10)

For more general μ, we can still define H formally by H(f er,x) = (lnx)f er,x , but now e−βH

is no longer trace-class. (If we view Hμ as �2(X) ⊗ L2(T, dμ), the new e−βH is the tensor
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product e−βH ⊗ 1 of the old one with the identity operator on L2(T, dμ), which is not trace-
class unless L2(T, dμ) is finite-dimensional.) Nevertheless, using (9.10) as motivation, we can
still define ψ = ψβ,μ using the elements er,x = 1er,x by

ψ(T ) = 1

ζ(β − 1)

∑
(r,x)∈X

x−β
〈
πμ(T )er,x, er,x

〉
,

and verify directly that ψ is a positive functional with ψ(1) = 1, hence is a state. We want to
show that ψ is a KMSβ -state satisfying (9.8).

We check (9.8) first. We have

ψ
(
smvav

∗
bs∗n

) = 1

ζ(β − 1)

∑
(r,x)∈X

x−β
〈
V ∗

b S∗ner,x,V
∗
a S∗mer,x

〉
.

Now V ∗
b S∗ner,x has the form f es,b−1x and V ∗

a S∗mer,x has the form get,a−1x , so the inner product
in the (r, x)-summand is zero unless a−1x = b−1x in N×, or equivalently, unless a = b and a|x.
Similarly, since S∗ner,x has the form hes,x , it is either in the range of VaV

∗
a or orthogonal to it.

Thus

ψ
(
smvav

∗
as∗n

) = 1

ζ(β − 1)

∑
{(r,x)∈X: a|x}

x−β
〈
SmVaV

∗
a S∗ner,x, er,x

〉
= 1

ζ(β − 1)

∑
{(r,x)∈X: a|x, S∗ner,x∈VaV ∗

a (Hμ)}
x−β

〈
SmS∗ner,x, er,x

〉
.

For each x such that a|x, there are precisely a−1x elements r ∈ Z/x such that S∗ner,x belongs to
the range of VaV

∗
a . For each such element,

〈
SmS∗ner,x, er,x

〉 = {
0 unless x divides m − n,∫

T z(m−n)/x dμ(z) if x|(m − n).

So the right-hand side of (9.8) vanishes unless a = b and a|(m − n) (which ensures that there
exist x satisfying a|x|(m − n)), and in that case

ψ
(
smvav

∗
as∗n

) = 1

ζ(β − 1)

∑
{x∈N×: a|x,x|(m−n)}

(
a−1x

)
x−β

∫
z(m−n)/x dμ(z), (9.11)

as required.
To check that ψ is a KMSβ state using Lemma 8.3, we need to see that when a|(m − n) we

have

ψ
(
smvav

∗
as∗n

) = a−βψ
(
s(((m−n)/a))

)
,

where we use double parentheses according to Convention 8.2. However, expanding out the
right-hand side gives
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a−βψ
(
s(((m−n)/a))

) = a−β

ζ(β − 1)

∑
(w,y)∈X

y−β
〈
S(((m−n)/a))ew,y, ew,y

〉
= a−β

ζ(β − 1)

∑
{(w,y)∈X: y|(m−n)/a}

y−β

(
y

∫
T

z(m−n)/ay dμ(z)

)
,

which is another way of writing the right-hand side of (9.11).
For β = ∞, we use the same representation πμ, and set

ψ∞,μ(T ) := 〈
πμ(T )e0,1, e0,1

〉;
the state ψ∞,μ satisfies (9.9), and is a ground state by Lemma 8.4. To see that ψ∞,μ is a KMS∞
state, notice first that the only term on the right of (9.8) which survives the limit as β → ∞ has
x = 1, and there is such a term only when a = 1. Since limβ→∞ ζ(β − 1) = 1, we deduce that
ψβ,μ converges weak* to ψ∞,μ as β → ∞, and hence ψ∞,μ is a KMS∞ state. Formula (9.8),
or formula (9.9) for β = ∞, shows that the map μ �→ ψβ,μ is affine and weak*-continuous from
P(T) into the simplex of KMSβ states.

We claim that the states ψ∞,z for z ∈ T are pure and mutually inequivalent. The vector e0,1 ∈
Hz = �2(X) is cyclic for πz for each z ∈ T, and thus πz can be regarded as the GNS representation
of the corresponding vector state

ψ∞,z(T ) := 〈
πz(T )e0,1, e0,1

〉
.

So it suffices to show that if A ∈ B(�2(X)) is a nonzero projection intertwining πz and πw for
some z,w ∈ T, then z = w and A = 1. Before we do this, we observe that the product

Q :=
∏
p∈P

p−1∏
j=0

(
1 − πz

(
sj

)
VpV ∗

p πz

(
s∗j

))
,

converges in the weak-operator topology on �2(X) to the rank-one projection onto Ce0,1. Indeed,
we have V ∗

p πz(s
∗j )e0,1 = z̄j V ∗

p e0,1 = 0 for every (j,p), and hence for each finite subset F of
P we have (1 − πz(s

j )VpV ∗
p πz(s

∗j ))e0,1 = e0,1 for all p ∈ F and j < p; on the other hand, if
b �= 1, there are a prime p that divides b and a value of j such that (j,p) � (n, b) in the quasi-
lattice order (see the proof of Theorem 6.3), and then (1 − πz(s

j )VpV ∗
p πz(s

∗j ))en,b = 0. More
generally, for each a ∈ N× and 0 � m < a,

Qm,a := πz

(
sm

)
VaQV ∗

a πz

(
s∗m

)
,

is the rank-one projection onto the vector em,a , and is in πz(T (N � N×))′′ for every z ∈ T. Notice
that the operator Qm,a on �2(X) is the same for every z.

Suppose now that A ∈ B(�2(X)) is a projection intertwining πz and πw for some z,w ∈ T.
Since Qm,a belongs to πz(T (N � N×))′′ and πw(T (N � N×))′′, it commutes with A. This im-
plies that there are scalars λk,a such that Aek,a = λk,aek,a . Then we have

znλk,aek,a = A
(
znek,a

) = A
(
πz

(
sna

)
ek,a

) = A
(
πz

(
sna+k

)
Vae0,1

)
= πw

(
sna+k

)
Va(Ae0,1) = πw

(
sna+k

)
Va(λ0,1e0,1) = λ0,1w

nek,a.
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Thus λk,a = (w/z)nλ0,1 for every n ∈ N, and this implies that either λk,a = 0 for every (k, a), or
z = w, in which case λk,a = λ0,1 for every (k, a). Either way, A is a multiple of the identity, and
the representations πz are irreducible and mutually inequivalent. Thus the corresponding vector
states ψ∞,z are pure and mutually inequivalent. �

We now prove the parts of Theorem 7.1 which describe the ground states on T (N � N×).

Proof of part (4) of Theorem 7.1. Since the additive generator s of T (N � N×) is a proper
isometry, Coburn’s Theorem implies that C∗(s) is naturally isomorphic to T (N). The restriction
ω := ψ |C∗(s) is then a positive functional satisfying ω(1) = 1, and hence is a state of C∗(s) ∼=
T (N). So ψ �→ ψ |C∗(s) maps ground states to states of T (N). Lemma 8.4 implies that ψ satisfies
(7.3), which implies that ψ �→ ψ |C∗(s) is injective on ground states.

To see that ψ �→ ψ |C∗(s) is surjective, let ω be a state of T (N), let πS,V be the representation
of T (N � N×) on �2(X, Hω) constructed in Lemma 9.2, and define

ψω(T ) := 〈
π(T )ξωe0,1, ξωe0,1

〉
for T ∈ T

(
N � N×)

.

We then have

ψω

(
smvav

∗
bs∗n

) = 〈
SmVaV

∗
b S∗nξωe0,1, ξωe0,1

〉 = 〈
V ∗

b S∗nξωe0,1,V
∗
a S∗mξωe0,1

〉
. (9.12)

Since V ∗
b S∗nξωe0,1 vanishes unless b = 1, the right-hand side of (9.12) vanishes unless a =

b = 1, and Lemma 8.4 implies that ψω is a ground state. On the other hand, if a = b = 1, then
(9.12) gives

ψω

(
smvav

∗
bs∗n

) = 〈
SmS∗nξωe0,1, ξωe0,1

〉 = 〈
πω

(
sms∗n

)
ξω, ξω

〉 = ω
(
sms∗n

)
,

which implies that ψω|C∗(s) = ω. We now know that ψ �→ ψ |C∗(s) is a bijection from the set of
ground states onto the state space of T (N).

The map ψ �→ ψ |C∗(s) is obviously affine. Eq. (7.3) implies that it is a homeomorphism for the
respective weak* topologies, and hence it is an affine isomorphism of compact convex sets. This
implies in particular that the extremal ground states are those of the form ψω where ω is a pure
state of T (N). Since the GNS representation πω of T (N) is irreducible, the Wold decomposition
for the isometry πω(s) implies that πω is either equivalent to the identity representation of T (N)

on �2 or is lifted from an irreducible representation of C(T). Thus, since ω is a vector state in its
GNS representation, ω is either a vector state for the identity representation or is lifted from an
evaluation map on C(T). �
10. Surjectivity of the parametrisation of KMS states

To show that all KMS states arise via the above construction, we need to show that in any
GNS representation, there are analogues of the projection Q which we used in the proof of
Proposition 9.3. To deal with the case where ζ(β − 1) does not converge, we need to use also
analogous projections involving products over finite sets of primes. For each subset E of P , let
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N×
E denote the semigroup of positive integers with all prime factors in E; the corresponding zeta

function and Euler product are given by

ζE(β) :=
∑

a∈N×
E

a−β =
∏
p∈E

(
1 − p−β

)−1
. (10.1)

For every E, the series converges for β > 1, but if E is finite it also converges for β > 0.
The reconstruction formula in part (3) of the following lemma is one of our main technical

innovations. We will see in Appendix A how this technique also simplifies the proof of unique-
ness for the KMS states of the Bost–Connes system, and we believe that it is likely to be useful
elsewhere.

Lemma 10.1. Let β > 1 and suppose φ is a KMSβ state. Form the GNS representation
(Hφ,πφ, ξφ) of T (N � N×), so that φ(·) = 〈πφ(·)ξφ, ξφ〉, and denote by φ̃ the vector state ex-
tending φ to all bounded operators on Hφ . Write S = πφ(s), Vp = πφ(vp), and let E be a subset
of P . Then the product

QE :=
∏
p∈E

p−1∏
j=0

(
1 − SjVpV ∗

p S∗j
)

converges in the weak-operator topology to a projection QE in πφ(T (N � N×))′′, which satisfies

(1) φ̃(QE) = ζE(β − 1)−1;
(2) if E is a subset of P such that ζE(β − 1) < ∞, then φQE

(T ) := ζE(β − 1)φ̃(QEπφ(T )QE)

defines a state φQE
of T (N � N×), called the conditional state of φ with respect to QE;

(3) if ζE(β −1) < ∞, then φ can be reconstructed from its conditional state φQE
by the formula

φ(T ) =
∑

a∈N×
E

a−1∑
k=0

a−β

ζE(β − 1)
φQE

(
v∗
as∗kT skva

); (10.2)

in particular, for n � 0 we have

φ
(
sn

) = 1

ζE(β − 1)

∑
{a∈N×

E : a|n}
a1−βφQE

(
sn/a

)
. (10.3)

Proof. When E is finite, the product is finite and belongs to πφ(T (N � N×)). When E is infinite,
QE is the weak-operator limit of a decreasing family of projections in the range of πφ , and
therefore belongs to πφ(T (N � N×))′′.

Suppose p and q are relatively prime. Since for each a the projections sj vav
∗
as∗j with 0 �

j < a have mutually orthogonal ranges, we have

φ

(∏(
1 − sj vpv∗

ps∗j
)∏(

1 − skvqv∗
qs∗k

))

j k
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= φ

((
1 −

∑
j

sj vpv∗
ps∗j

)(
1 −

∑
k

skvqv∗
qs∗k

))

= φ

(
1 −

∑
j

sj vpv∗
ps∗j −

∑
k

skvqv∗
qs∗k +

∑
j,k

sj vpv∗
ps∗j skvqv∗

qs∗k

)
.

The covariance relation in Lemma 4.4 implies that

v∗
ps∗j skvq = sαvqv∗

ps∗β,

where (α,β) is the smallest non-negative solution of k − j = αp − βq . So

φ

(∏
j

(
1 − sj vpv∗

ps∗j
)∏

k

(
1 − skvqv∗

qs∗k
))

= 1 −
∑
j

φ
(
sj vpv∗

ps∗j
) −

∑
k

φ
(
skvqv∗

qs∗k
) +

∑
j,k

φ
(
sj vpv∗

ps∗j skvqv∗
qs∗k

)
= 1 −

∑
j

p−β −
∑

k

q−β +
∑
j,k

φ
(
sj+pαvpvqv∗

qv∗
ps∗(k+qβ)

)
= 1 − p

(
p−β

) − q
(
q−β

) +
∑
j,k

(pq)−β

= (
1 − p1−β

)(
1 − q1−β

)
= φ

(∏
j

(
1 − sj vpv∗

ps∗j
))

φ

(∏
k

(
1 − skvqv∗

qs∗k
))

where we have used formula (8.1) in the third equality. From this we deduce that for every finite
subset F of E, we have

φ

( ∏
p∈F

p−1∏
j=0

(
1 − sj vpv∗

ps∗j
)) =

∏
p∈F

(
1 − p1−β

)
,

and (1) follows on taking limits and using the product formula (10.1) for ζE .
Since A �→ QEAQE is positive and linear, φQE

is a positive linear functional; part (1) implies
that φQE

(1) = 1, and we have proved (2).
We next claim that the projections{

QE,k,a := SkVaQEV ∗
a S∗k: a ∈ N×

E, 0 � k < a
}

are mutually orthogonal. Suppose a, b ∈ N×
E , 0 � k < a and 0 � l < b satisfy (k, a) �= (l, b).

Then

QE,k,aQE,l,b = SkVaQE

(
V ∗

a S∗kSlVb

)
QEV ∗S∗l , (10.4)
b
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and the covariance relation of Lemma 4.4 implies that the factor in parenthesis has the form
Sγ Vb′V ∗

a′S∗δ , where (γ, b′) and (δ, a′) cannot both be equal to (0,1) because (k, a) �= (l, b). We
can now use (T1) to extract from either Sγ Vb′ or SδVa′ a factor of the form SkVp with p ∈ E and
0 � k < p; since QE � 1 − SkVpV ∗

p S∗k , this implies that the right-hand side of (10.4) vanishes,
and the claim is proved.

If ζE(β − 1) < ∞, then

φ̃

(∑
k,a

QE,k,a

)
=

∑
k,a

a−βφ̃(QE) =
∑
a

aa−βφ̃(QE) = φ̃(QE)ζE(β − 1) = 1,

so that φ̃ is carried by the projection
∑

k,a QE,k,a . Thus we have

φ(T ) = φ̃

((∑
k,a

QE,k,a

)
πφ(T )

(∑
l,b

QE,l,b

))
=

∑
k,a,l,b

φ̃
(
QE,k,aπφ(T )QE,l,b

)
.

Now the orthogonality of the projections QE,k,a and the KMSβ condition imply that

φ(T ) =
∑

k,l,a,b

a−βφ̃
(
QEV ∗

a S∗kπφ(T )SlVbQEV ∗
b S∗lSkVaQE

);
as in (10.4), we have QEV ∗

b S∗lSkVaQE = 0 unless (k, a) = (l, b), and hence

φ(T ) =
∑

k=l, a=b

a−βφ̃
(
QEV ∗

a S∗kπφ(T )SlVbQE

)
,

which implies the reconstruction formula (10.2). To get the formula (10.3) for φ(sn), we deduce
from the formulas in Lemma 4.3 that

v∗
as∗msnsmva =

{
v∗
asnva = sn/a if a|n,

0 otherwise,

so that for each a|n there are a equal summands on the right-hand side of (10.2). This completes
the proof of part (3). �
Proposition 10.2 (Theorem 7.1(2): uniqueness for 1 � β � 2). The state ψβ constructed in
Proposition 9.1 is the unique KMSβ state for 1 � β � 2.

Before proving Proposition 10.2 we need to do some preliminary work.

Lemma 10.3. Suppose β � 1 and φ is a KMSβ state of T (N � N×). If P is a projection in the
span of {smvav

∗
bS∗n} such that σt (P ) = P for all t ∈ R and φ(P ) = 0, then φ(RPT ) = 0 for all

R,T ∈ T (N � N×).

Proof. We first observe that for every T ∈ T (N � N×) we have

0 � φ
(
PT ∗T P

)
� φ

(
P ‖T ‖2P

) = ‖T ‖2φ(P ) = 0,
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and hence φ vanishes on the corner P T (N � N×)P . Next, we consider analytic elements R =
smvav

∗
bs∗n and T = sqvcv

∗
ds∗r . Since z �→ P − σz(P ) is analytic and vanishes on R, it vanishes

everywhere. Thus the KMSβ condition gives

φ(RPT ) = φ
(
(RP )(PT )

) = φ
(
PT σiβ(RP )

) = (a/b)−βφ(PRT P ) = 0,

and this extends to arbitrary R and T by continuity of φ. �
Lemma 10.4. Suppose that φ is a KMSβ state of T (N � N×) for some β � 1. Then φ vanishes
on the ideal in T (N � N×) generated by 1 − ss∗. If β = 1, then φ also vanishes on the ideal
generated by {1 − ∑p−1

j=0 sj vpv∗
ps∗j : p ∈ P}.

Proof. From (8.1) we have φ(1−ss∗) = φ(1)−φ(ss∗) = 1−1 = 0, so the first assertion follows
from Lemma 10.3. Now suppose β = 1. Then another application of (8.1) shows that

φ

(
1 −

p−1∑
j=0

sj vpv∗
ps∗j

)
= 1 −

p−1∑
j=0

p−1 = 1 − p
(
p−1) = 0,

so the second assertion also follows from Lemma 10.3. �
Proof of Proposition 10.2. Let φ be a KMSβ state, and suppose first that 1 < β � 2. For every
finite set E ⊂ P and every n > 0, the sum in (10.3) has finitely many summands, each satisfying
a1−β |φQE

(sn/a)| � a1−β . Thus, since ζE(β − 1) → ∞ as E increases, the right-hand side of
(10.3) tends to zero as E increases through a listing of P . Thus φ(sn) = 0 for every n ∈ Z \ {0},
and Lemma 8.3 implies that

φ
(
snvbv

∗
as∗m

) =
{

0 unless a = b and m = n,

a−β if a = b and m = n.

Comparing this with (9.1) shows that φ = ψβ .
Now suppose β = 1. Then Lemma 10.4 implies that φ factors through the boundary quotient,

and thus comes from a state of Cuntz’s QN. Thus the result follows from [7, Theorem 4.3]. �
For β > 2 we can take E = P in Lemma 10.1, and deduce that a KMSβ state is determined

by its conditioning to Q := QP . We shall use this to prove that the map described in part (3) of
Theorem 7.1 is surjective. Since KMS states vanish on the ideal generated by 1− ss∗, the state φ,
the GNS-representation πφ , and the conditional state φQ all vanish on that ideal. In particular, this
implies that the restriction of φQ to C∗(s) factors through the quotient map q :C∗(s) → C(T),
and hence there is a probability measure μ = μφ on T such that

φQ

(
sn

) =
∫
T

q
(
sn

)
dμ =

∫
T

zn dμ(z) for n ∈ Z. (10.5)

Proposition 10.5 (Theorem 7.1(3): the map μ → ψβ,μ is a bijection). Let β > 2 and take
Q := QP . If φ is a KMSβ state and μφ is the probability measure on T such that (10.5) holds,
then φ = ψβ,μφ . Conversely, if μ is a probability measure on T, then μ = μψβ,μ .
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Proof. By Lemma 8.3, to prove the first assertion it suffices to check that φ and ψβ,μ agree on
positive powers of s (taking adjoints then shows that they also agree on powers of s∗). Since
ζ(β − 1) < ∞, the reconstruction formula (10.3) gives

φ
(
sn

) = 1

ζ(β − 1)

∑
{a∈N×: a|n}

a1−βφQ

(
sn/a

)
= 1

ζ(β − 1)

∑
{a∈N×: a|n}

a1−β

∫
T

zn/a dμ(z),

which by (9.8) is precisely ψβ,μ(sn).
For the converse, we show that the moment sequences

∫
T zm dμ(z) and

∫
T zm dμψβ,μ(z) for

the two measures coincide, and then an application of the Riesz representation theorem shows
that μ = μψβ,μ . Since the measures are positive it suffices to deal with m � 0. We know that (9.8)
holds for both measures, for μ by definition and for μψβ,μ by the first part. When m = 1, we take
n = 0 and x = y = 1 in (9.8), which then reduces to a single term, and we can deduce that the
first moments coincide:

∫
T

z dμ(z) = ζ(β − 1)ψβ,μ(s) =
∫
T

z dμψβ,μ(z).

When m = p ∈ P , Eq. (9.8) gives

∫
T

zp dμ(z) + p1−β

∫
T

z dμ(z) = ζ(β − 1)ψβ,μ

(
sp

)

=
∫
T

zp dμψβ,μ(z) + p1−β

∫
T

z dμψβ,μ(z). (10.6)

Since we already know that
∫

T z dμ(z) = ∫
T z dμψβ,μ(z), we conclude that

∫
T

zp dμ(z) =
∫
T

zp dμψβ,μ(z).

We can extend this result to non-prime n ∈ N× by an induction argument on the number of prime
factors of m (counting multiplicity); the key inductive step is established by an argument like
that of (10.6). Thus the moments are equal for all n, and the result follows. �

This concludes the proof of Theorem 7.1.
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Appendix A. Uniqueness of equilibrium for the Bost–Connes algebra

The Hecke C∗-algebra CQ of Bost and Connes [1] is the universal unital C∗-algebra gener-
ated by a unitary representation e : Q/Z → U(CQ) and an isometric representation μ : N× → CQ

satisfying

1

n

∑
{s∈Q/Z: ns=r}

e(s) = μne(r)μ
∗
n

(see [16, Corollary 2.10]). The isometric representation μ is then automatically Nica covari-
ant [16, Proposition 2.8], so there is a natural homomorphism πμ : T (N×) → CQ, and the main
theorem of [15] implies that πμ is injective. The unitary representation e induces a unital ho-
momorphism πe :C∗(Q/Z) → CQ. Since Q/Z is an abelian group with dual isomorphic to the
additive group Ẑ of integral adeles, we can view πe as a homomorphism π :C(Ẑ) → CQ. There
is an action α of N× on C(Ẑ) defined by

αn(f )(z) =
{

f (n−1z) if n divides z in Ẑ,

0 otherwise,

and then the relations defining CQ say that (π,μ) satisfies

π
(
αn(f )

) = μnπ(f )μ∗
n, (A.1)

and that (π,μ) is universal for such pairs (see, for example, [12, Proposition 32]). Next, note that
the endomorphism γn of C(Ẑ) defined by γn(f )(z) = f (nz) satisfies αn ◦ γn(f ) = αn(1)f , so
the embedding π :C(Ẑ) → CQ satisfies

μ∗
nπ(f )μn = μ∗

nμnμ
∗
nπ(f )μn = μ∗

nπ
(
αn(1)f

)
μn = μ∗

nπ
(
αn ◦ γn(f )

)
μn

= μ∗
n

(
μnπ

(
γn(f )

)
μ∗

n

)
μn = π

(
γn(f )

)
. (A.2)

Example A.1. In Theorem 6.3 we identified QN as the boundary quotient C(∂Ω) � (Q � Q∗+).
Proposition 5.7 shows that the homeomorphism of Ẑ onto ∂Ω carries the action of N× ⊂ Ẑ by
left multiplication (in the ring Ẑ) into the left action of N× ⊂ Q∗+ ⊂ Q � Q∗+ on ∂Ω . Thus if
we use this homeomorphism to define a homomorphism π :C(Ẑ) → C(∂Ω) � (Q � Q∗+), then
the pair (π, v|N×) satisfies (A.1), and hence gives a homomorphism π × v|N× of CQ into QN.
Theorem 3.7 of [16] implies that π ×v|N× is injective. (Cuntz gave a slightly different description
of this embedding in [7, Remark 3.5].)

The universal property of CQ implies that there is an action σ : R → Aut CQ which fixes the
subalgebra C∗(Q/Z) ∼= C(Ẑ) and satisfies σt (μn) = nitμn. Our goal in this short appendix is to
use the ideas of Section 10 to give a relatively elementary proof of the following theorem, which
is a key part of the Bost–Connes analysis of CQ. This approach bypasses the technical proofs of
[1, Lemmas 27(b) and 28] and of [12, Lemma 45].

Theorem A.2. For β ∈ (0,1], the system (CQ,R, σ ) has at most one KMSβ state.
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As in [1], the idea is to prove that a KMSβ state is invariant under the action of a large sym-
metry group as well as the dynamics. When we view CQ as being generated by C(Ẑ) and an
isometric representation μ of N×, the symmetry group is the multiplicative group Ẑ∗ of invert-
ible elements in the ring Ẑ, which acts on C(Ẑ) by τu(f )(z) = f (uz). The automorphisms τu

commute with the endomorphisms αn, and hence give an action θ : Ẑ∗ → Aut CQ. This action
commutes with the dynamics σ , and we know from Proposition 21 of [1] (or Propositions 30 and
32 of [12]) that the fixed-point algebra Cθ

Q is the copy of the Toeplitz algebra T (N×) in CQ.
The key lemma is:

Lemma A.3. Any KMSβ state for 0 < β � 1 is Ẑ∗-invariant, cf. [1, Lemma 27(c)].

Given this lemma, we know that any KMSβ state ψ factors through the expectation Eθ onto
the fixed point algebra Cθ

Q = T (N×), and hence is determined by its values on T (N×). Since N×
is quasi-lattice ordered (in fact it is lattice ordered), we have T (N×) = span{μmμ∗

n}. Since the
KMS state ψ is invariant for the dynamics σ , and since σt (μmμ∗

n) = (m/n)itμmμ∗
n, we must

have ψ(μmμ∗
n) = 0 for m �= n, and ψ is determined by its values on span{μnμ

∗
n}. But there it is

completely determined by the KMS condition:

ψ
(
μnμ

∗
n

) = ψ
(
μ∗

nσiβ(μn)
) = n−βψ

(
μ∗

nμn

) = n−βψ(1) = n−β.

So there can only be one such state, and Lemma A.3 implies Theorem A.2.
It remains for us to prove Lemma A.3. The key ingredient is an analogue of Lemma 10.1 for

the Bost–Connes system, which stems from the observation that the reconstruction formula from
[12, Theorem 20] also works for small β if one restricts to finitely many primes, as Neshveyev
did in the proof of the proposition in [20].

Suppose that φ is a KMSβ state of (CQ, σ ). For E ⊂ P finite, we set QE := ∏
p∈E(1−μpμ∗

p).
For distinct primes p,q we have

φ
(
μpμ∗

pμqμ∗
q

) = φ
(
μpqμ∗

pq

) = (pq)−β = p−βq−β = φ
(
μpμ∗

p

)
φ
(
μqμ∗

q

)
,

and thus

φ(QE) =
∏
p∈E

(
1 − φ

(
μpμ∗

p

)) =
∏
p∈E

(
1 − p−β

) = ζE(β)−1,

as defined in (10.1). We define the conditional state φQE
(φ given QE) by

φQE
(·) := ζE(β)φ(QE · QE).

Lemma A.4. If φ is a KMSβ state of (CQ, σ ) and E is a finite subset of P , then

φ(T ) =
∑

n∈N×
E

n−β

ζE(β)
φQE

(
μ∗

nT μn

)
for T ∈ CQ.

Proof. We first claim that the projections μnQEμ∗
n for n ∈ N×

E are mutually orthogonal. To see
this, suppose m,n ∈ N× and m �= n. Then there exists q ∈ E such that eq(m) �= eq(n); say we
E
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have eq(m) < eq(n), and write m = m′qeq(m), n = n′qeq(n). Then gcd(q,m′) = 1, so μ∗
m′μq =

μqμ∗
m′ and

(
μmQEμ∗

m

)(
μnQEμ∗

n

) = μmQEμ∗
m′μ

eq(n)−eq (m)
q μn′QEμ∗

n

= μmQEμ
eq(n)−eq (m)
q μ∗

m′μn′QEμ∗
n

vanishes because the factor (1 − μqμ∗
q)μq of QEμ

eq(n)−eq (m)
q does.

The normal extension φ̃ of φ to πφ(CQ)′′ satisfies

φ̃

( ∑
n∈N×

E

πφ

(
μnQEμ∗

n

)) =
∑

n∈N×
E

φ
(
μnQEμ∗

n

) =
∑

n∈N×
E

n−βφ(QE) = 1,

so the state φ̃ is supported by the projection
∑

m∈N×
E

μmQEμ∗
m, and

φ(T ) = φ̃
(
πφ(T )

)
= φ̃

(( ∑
m∈N×

E

πφ

(
μmQEμ∗

m

))
πφ(T )

( ∑
n∈N×

E

πφ

(
μnQEμ∗

n

)))

=
∑

m,n∈N×
E

φ
(
μmQEμ∗

mT μnQEμ∗
n

)
.

The KMS condition (7.2) (with c = μmQEμ∗
m) and the orthogonality of the {μnQEμ∗

n} imply
that the terms with m �= n vanish, and another application of the KMS condition gives

φ(T ) =
∑

n∈N×
E

n−βφ
(
QEμ∗

nT μnQEμ∗
nn

−βμn

) =
∑

n∈N×
E

n−βφ
(
QEμ∗

nT μnQE

)
. �

Proof of Lemma A.3. As indicated at the beginning of [1, Section 7], to prove that a state is
Ẑ∗-invariant it suffices to show that it vanishes on the spectral subspaces

C(Ẑ)χ := {
f ∈ C(Ẑ): θg(f ) = χ(g)f for all g ∈ Ẑ∗}

for nontrivial characters χ of Ẑ∗. So suppose that2 χ ∈ (Ẑ∗)∧ and χ �= 1. Since Ẑ∗ is the inverse
limit lim←−(Z/nZ)∗, the dual (Ẑ∗)∧ is the direct limit lim−→((Z/nZ)∗)∧, and there exists m such
that χ belongs to ((Z/mZ)∗)∧—in other words, such that χ factors through the canonical map
r �→ r(m) from Ẑ∗ to (Z/mZ)∗. Let F be a finite set of primes containing all the prime factors of
m, so that m ∈ N×

F . When we identify Ẑ with
∏

p∈P Zp , the subalgebras CF := C(
∏

p∈F Zp)⊗1

span a dense subspace of C(Ẑ); since Eχ :f �→ ∫
Ẑ∗ θu(f )χ(u) du onto C(Ẑ)χ is continuous, the

union
⋃

F (CF ∩C(Ẑ)χ ) is dense in C(Ẑ)χ . Thus it suffices to prove that φ(π(f )) = 0 for every
f ∈ CF (where π is the embedding of C(Ẑ) in CQ discussed at the beginning of the section).

2 Sorry about the hats. The one in Ẑ∗ is the hat in Ẑ, which is standard number-theoretic notation for the integral
adeles, and the outside one in (Ẑ∗)∧ is the standard harmonic-analytic notation for the Pontryagin dual.
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As in the proof of [1, Lemma 27], see also [12, pp. 369–370], we modify the embedding of
N× in Ẑ so that every positive integer lands in Ẑ∗: for q ∈ P we take uq to be the element of∏

p Z∗
p defined by

(uq)p =
{

q if p �= q,

1 if p = q,

and extend the map q �→ uq to N× by prime factorisation. Notice that if p � n, then (un)p = n in
Zp , so for functions f ∈ CF and n ∈ N×

P\F , we have θun(f ) = γn(f ) (where γn is the left inverse
for αn discussed at the start of the section), and hence (A.2) implies that μ∗

nπ(f )μn = π(θun(f )).
Now suppose that F is a fixed finite set of primes containing the prime factors of m, and take

f ∈ CF ∩ C(Ẑ)χ . Then for each finite subset E of P \ F , Lemma A.4 implies that

φ
(
π(f )

) =
∑

n∈N×
E

n−β

ζE(β)
φQE

(
μ∗

nπ(f )μn

)

=
∑

n∈N×
E

n−β

ζE(β)
φQE

(
π

(
θun(f )

))

= φQE

(
π(f )

) ∑
n∈N×

E

n−β

ζE(β)
χ(un). (A.3)

Since n �→ χ(un) is a nontrivial Dirichlet character modulo m, we have∑
n∈N×

E

n−βχ(un) =
∏
p∈E

(
1 − p−βχ(up)

)
for β > 0;

as E increases through a listing of P \ F , this product converges to
∏

p∈P\F (1 − p−βχ(up)),
which is finite (by, for example, Theorem 5 on p. 161 of [19]). On the other hand, since β � 1,
we have ζE(β) → ζP\F (β) = ∞ as E increases. Thus (A.3) implies that φ(π(f )) = 0. �
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