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We investigate the stability of surjective functions in Banach spaces. As a corollary
to the main theorem we obtain a new stability result for isometries. � 2000 Academic Press
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1. INTRODUCTION

About 1940 S. Ulam [7] posed the question of stability of additive
functions. This problem was solved by D. H. Hyers in [4]. Since then the
stability of various functional equations has been studied. For some further
information on this subject we refer the reader to the survey papers [3, 5].

In this paper we propose a slightly different approach. Instead of study-
ing the stability of functional equations, we propose to study the stability
of a property of a function��surjectivity. Our idea is based on the fact that
real-world observations have always some minimal error. Thus it seems
natural to ask if a function which ``looks like'' a surjection to within some
small possible error can be approximated by a surjection. We characterize
those Banach spaces for which the answer to the above problem is positive.

2. APPROXIMATE SURJECTIONS

The notion of an approximate surjection introduced by R. Bourgin in
[2] has proved to be useful in investigating the stability of isometries.

Definition. Let S be a set, let X be a Banach space, and let =�0 be
arbitrary. We say that a function f : S � X is =-onto if

\x # X _s # S, &x& f (s)&�=.
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Clearly a given function is 0-onto function if and only if it is a surjection.
A natural question of stability of =-onto functions arises.

Definition 2. A Banach space X is said to have property (D) if every
dense subset of X has the same cardinality as X.

As show Theorems 1 and 2 property (D) is crucial in characterization
of those Banach spaces for which approximately surjective functions are
stable. Moreover, many (possibly all) nonseparable Banach spaces have
this property (see Problem 1 and Proposition 1).

By B(a, r) we denote the closed ball with center at a and radius r.

Theorem 1. Let X be a Banach space which has property (D) and let
=>0. Then for every set S and every =-onto function f: S � X there exists a
surjective function F: S � X such that

& f (s)&F(s)&�7= for s # S.

Moreover, given a countable subset C of S we can choose F in such a way
that F |C= f |C .

Proof. By the Kuratowski�Zorn Lemma there exists a maximal with
respect to inclusion subset A of X such that

B(a, 7
3 =) & B(b, 7

3 =)=< for a, b # A, a{b. (2)

The fact that A is maximal implies that

X= .
a # A

B(a, 14
3 =).

For arbitrary a # A we now define

Aa :=f (S) & B(a, 7
3 =).

We will now show in Steps 1 and 2 that for every a # A the set Aa has the
same cardinality as X. So let a # A be arbitrary.

Step 1. We put

Xa :=linQ (Aa _ [a])

(by linQ (W)/X we denote the vector space over the field Q generated by
the set W). In the first step we show that Xa is a dense subset of X.

For an indirect proof let us suppose that there exists an x # X such that

d(x, Xa)= 9
8 =. (3)
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This implies the existence of x1 # Xa satisfying

&x&xa&� 8
7 =. (4)

Let z :=(x&xa)+a. Then (3) and (4) are equivalent to

d(z, Xa)= 9
8 =, (5)

&z&a&� 8
7 =. (6)

Let s # S be arbitrary. If f (s) # Aa then f (s) # Xa , so by (5)

&z& f (s)&� 9
8 =>=.

If f (s) � Aa , then by the definition of Aa

& f (s)&a&� 7
3 =,

so by (6),

& f (s)&z&�& f (s)&a&&&z&a&� 7
3 =& 8

7 =>=.

Thus we have obtained that

& f (s)&z&>= for every s # S,

a contradiction to the assumption that f is =-onto. This means that Xa is
dense in X.

Step 2. We are now going to show that

card Aa=card Xa .

First notice that Aa is not finite. If Aa were finite, then Xa=linQ(Aa _ [a])
would be countable, so we would have a dense countable subset of X,
which by assumption would imply that the Banach space X is countable��
a contradiction.

The inequality card Aa�card N implies that

card Q_(Aa _ [a])=card Aa ,

card An
a=card Aa for n # N, (7)

card N } card Aa=card Aa .

Clearly

card linQ (Aa _ [a])�card .
n # N

(Q_(Aa _ [a]))n. (8)
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Then by (8) and (7) we get that

card Xa =card .
n # N

(Q_(A _ [a]))n

� :
n # N

card Q_(Aa _ [a])n� :
n # N

card An
a

� :
n # N

card Aa�card N } card Aa=card Aa .

It follows from Step 1, Step 2, and the assumptions of the theorem that

card Aa=card X. (9)

We can construct a surjective approximation F of f which satisfies the
assertions of the theorem.

Step 3. Let C be a fixed countable subset of S. For a # A we define

Ba :=Aa " f (C).

As Aa is not countable and C is, we obtain by (9) that

card Ba=card Aa=card X.

This implies that for every a # A there exists a surjective function ha :
Ba � B(a, 14

3 =). We define a function F: S � X by the formula

F(s) :={ f (s)

ha( f (s))

if f (s) # X> .
a # A

Ba ,

if f (s) # Ba , a # A.

First note that F is well-defined as the sets Aa (and consequently Ba) are
pairwise disjoint.

Clearly f (C)/X"�a # A Ba , so by the definition of F, F | C= f |C . For
a # A,

F( f &1(Ba))=ha( f ( f &1(Ba)))=ha(Ba)=B(a, 14
3 =),

and therefore

.
a # A

B(a, 14
3 =)/F(S).
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By (2) this means that

X=F(S).

Thus we have shown that F is a surjection.
Now we will show that (1) holds. So let s # S be arbitrary. If f (s) �

�a # A Ba then f (s)=F(s). So let s # S be such that f (s) # Ba /B(a, 2 1
3=) for

some a # A. Then

&F(s)& f (s)&�&F(s)&a&+& f (s)&a&

=&ha( f (s))&a&+ 7
3 =.

By definition ha( f (s)) # B(a, 14
3 =), so &ha( f (s))&a&� 14

3 =. Thus

&F(s)& f (s)&� 14
3 =+ 7

3 ==7=. K

We now show that the assumption in Theorem 1 that X has the property
(D) is essential.

Theorem 2. Let X be a Banach space which does not have the property
(D). Then there exists a function f: X � X which is =-onto for every =>0, but
for every surjection F: X � X

sup
x # X

& f (x)&F(x)&=�.

Proof. Let S be a dense subset of X with cardinality strictly smaller
then cardinality of X. We define

f (x) :={0
x

for x # X"S,
for x # S.

As S is dense f is obviously =-onto for every =>0.
Suppose, on the contrary, that there exists a surjective function F: X � X

such that

K :=sup
x # X

&F(x)& f (x)&<�.

Then for x # X"S,

&F(x)&=&F(x)& f (x)&�K,
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which implies that F(X"S)/B(0, K). As F is surjective, F(X)=X, so we
obtain that X"B(0, K)/F(S), and consequently that

card(X)=card(X"B(0, K))�card(F(S))�card(S).

Thus we have obtained that card(S)=card(X)��a contradiction. K

In view of Theorems 1 and 2 it seems to be important to characterize
Banach spaces X which have property (D).

Problem 1. Let X be a Banach space. Are the following two conditions
equivalent?

v X has property (D),

v X is not separable.

Let B be a dense subset of a Banach space X. Then clearly card B�
card X�card BN, so the question whether card B=card BN is relevant.
Although we do not know the general answer to this question, in the
following proposition we show how to construct Banach spaces in which
all dense subsets have this property.

Proposition 1. Let X be a Banach space of infinite dimension and let B
be a subset of X such that linQ (B) is dense and

&b0&b1&�1 for b0 , b1 # B, b0 {b1 . (10)

If card B=card 20, for some 0, then card B=card BN and X has the
property (D).

Proof. Let D be an arbitrary dense subset of X. Then for every b # B
there exists db # D such that

&db&b&� 1
3 .

Then by (10) for b0 , b1 # B, b0 {b1 ,

&bb0
&db1

&�&b0&b1&&&db0
&b0&&&db1

&b1&�1& 2
3= 1

3 ,

which implies that db0
{db1

, so card B�card D. As linQ (B) is dense in X,
for every element e of X there exists a sequence [bn] of elements of linQ (B)
such that limn � � bn=e, which implies that

card X�card linQ (B)N.
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However,

card(linQ (B))N=card linQ (B)card N=card Bcard N

=card(20)N=card 20_N=2card 0_N=card Bn

which implies that

card B�card X�card B,

so

card D=card X. K

We immediately obtain the following corollary to the proposition.

Corollary 1. Let H be an infinite dimensional Hilbert space with ortho-
normal base of cardinality 2card(0), for certain 0. Then H has the property (D).

3. STABILITY OF THE ISOMETRY EQUATION

As approximate surjections appear to be important in the investigation
of isometries, we now show that the results of Section 2 can easily be
applied to obtain some new results from the stability of isometries.

We generalize the Main Theorem from [6]. For the convenience of the
reader we will quote this result and the definition of =-isometric functions.

Definition 3. Let X, Y be Banach spaces. A function f: X � Y is said
to be an =-isometry if

|& f (x)& f ( y)&&&x& y&|�=

for x, y # X.

Theorem O-S [6]. Let X and Y be real Banach spaces. Suppose that
=>0 and that f: X � Y is a surjective =-isometry satisfying f (0)=0. Then
there exists a unique linear isometry U: X � Y such that

& f (x)&U(x)&�2=

for every x # X.

Theorem O-S is important as it finally solved the question of the mini-
mal constant of the Hyers�Ulam stability of surjective isometries. However,
if we study stability, we often assume that we cannot measure the distances
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exactly and therefore we cannot check if the function f is surjective��the
most we can do is to check if f is $-onto, for some $>0. Thus in the follow-
ing theorem we generalize Theorem O-S to $-onto functions.

Theorem 3. Let X, Y be Banach spaces, and let f: X � Y be an
=-isometry which is $-onto and such that f (0)=0.

Then there exists a unique linear isometry U: X � Y such that

& f (x)&U(x)&�2=+35$ for x # X. (11)

Proof. Let H be a Hilbert space with orthonormal basis of cardinality
card(2Y). First we show that every dense subset of Y_H has the cardinality
of Y_H. So let D be a dense subset of Y_H and let pH : Y_H � H be the
canonical projection. Then clearly C :=pH(D) is a dense subset of H, so by
Corollary 1, card C=card H=card 2Y. Then

card D�card C=card 2Y=card(Y_2Y)=card(Y_H)

which implies that card D=card(Y_H).
Now we define the function fH : X_H � Y_H by the formula

fH(x, h) :=( f (x), h) for (x, h) # X_H.

Note that as f is $-onto fH is also $-onto. So by Theorem 1 there exists a
surjective function FH : X_H � Y_H such that

&FH(x, h)& fH(x, h)&�7$ for (x, h) # X_H. (12)

and

FH(0)= fH(0)=0.

As fH is an '-isometry

|&FH(a)&FH(b)&&&a&b&|�|& fH(a)& fH(b)&&&a&b&|

+&FH(a)& fH(a)&+&FH(b)& fH(b)&

�=+7$+7$==+14$.

for a, b # X_H, which means that FH is an (=+14$)-isometry. As FH is
surjective, we can now appeal to Theorem O-S and conclude that there
exists a unique linear isometry UH : X_H � Y_H such that

&UH(a)&FH(a)&�2(=+14$) for a # X_H.
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This and (12) yields that

&UH(a)& fH(a)&�2=+35$ for a # X_H. (13)

Because UH is linear (13) implies that

UH(a)= lim
n � �

1
n

fH(na) for a # X_H. (14)

Clearly fH(a) # Y_[0] for a # X_[0], so (14) implies that

UH(a) # Y_[0] for a # X_[0]. (15)

We define the function U: X � Y by the formula

U(x) :=pY (UH(x, 0)) for x # X,

where pY is the canonical projection onto Y. As UH is a linear isometry by
(15) we obtain that U is also a linear isometry. Now, by (13),

&U(a)& f (a)&�2=+35$ for a # X. K

We would like to mention that in our opinion it would be interesting to
check whether the estimation in (11) is independent of $. We show that in
finite dimensional normed vector spaces this is the case. This result is
related to that obtained in [1].

Proposition 2. Let X, Y be finite dimensional normed vector spaces. Let
f: X � Y be an =-isometry such that f (0)=0. Suppose that one of the follow-
ing conditions holds

(i) dim X=dim Y,

(ii) f is $-onto for some $>0.

Then there exists a unique linear isometry U: X � Y such that

& f (x)&U(x)&�37=

for x # X.

Proof. Suppose that (i) holds. R. D. Bourgin proved that then f is
=-onto (see Lemma 2.8 and Proposition 4.1 in [2]). So by Theorem 3 we
obtain the assertion of the proposition.

Now suppose that (ii) holds. Then by Theorem 3 there exists a linear
isometry U: X � Y, such that & f (x)&U(x)&�2=+35$ for x # X. As f is
$-onto, this implies that U is 2=+36$-onto; however, as U is linear and X
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finite dimensional this implies that U is a linear bijection. Hence dim X=
dim Y. Case (i) makes the proof complete. K
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