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Abstract

The dual coalgebra of Podlequantum spher@q(Sg) is determined explicitly. This result is
used to classify all finite-dimensional covariant first-order differential calculi 6yg(s?) for all but
exceptional values of the parameter
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1. Introduction

Podl&s’ quantum spher@q(Sf) [10] is one of the best investigated examples of
a quantum space, i.e., of a comodule algebra overgtideformed coordinate ring of
some affine algebraic group. Nevertheless, classification of covariant first-order differential
calculus (FODC) oveO, (Sf) in the sense of Woronowicz [13] has so far been achieved
only under additional assumptions and in low dimensions. In [11] certain 2-dimensional
covariant FODC ove0, (Sf) which in many respects behave similarly as their classical
counterparts have been classified. It turned out that only in the so-called quantum subgroup
casec = 0 such a calculus exists and is then uniquely determined. All covariant FODC
which as right modules are freely generated by the differentials of the geneeators
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i =-101, of O, (Sf.) have been determined in [1]. It was shown by computer
calculations that for all but exceptional values ©fexactly one such calculus exists.
Finally, in [3] a general notion of dimension of covariant FODC was introduced and all
2-dimensional covariant FODC ovél, (Sf) have been classified.

In the present papeall finite-dimensional covariant FODC ove(@q(Sf) for all
but exceptional values of are classified. It turns out that for geneticthere exists
precisely one irreducible covariant FODC for any irreduciblgSL(2))-subcomodule of
04(S?). The subcomodul€ - 1 corresponds to the trivial calculus while in general the
irreducible differential calculus has the same dimension as the correspadglis.(2))-
subcomodule. For genericany covariant FODC ovef), (Sf) can be uniquely written as
a direct sum of irreducible FODC. The exceptional cases include the quantum subgroup
casec =0.

The main tool on this way is the notion of quantum tangent space introduced for
qguantum groups in [13] and generalized to a large class of quantum spaces in [4%’ Podle
guantum sphere can be obtained as rigtinvariant elements 0, (SL(2)) where K,
denotes a left coideal subalgebrdgf(sl) generated by one twisted primitive elemét
The notion of quantum tangent space allows one to identify finite-dimensional covariant
FODC overQ, (Sf) with finite-dimensional left subcomodulds C O, (Sf)" of the dual
coalgebra which are righk.-invariant and contain the counit Thus, as a first step
towards classification, the dual coalgek’ﬁ@(Sf)" is determined explicitly in Theorem 4.

It turns out that for all but exceptional valuesofhe restriction0, (SL(2))° — O, (S?)°
is onto.

Next, the subspacB (0O, (S?)°, K.) of elements o), (S2)° with finite right K .-action
is determined. The action of the generaxgrinduces &, (sl)-action onF (0, (Sf)", K.)
such that the decomposition into irreducildlg(s(>)-modules corresponds to the decom-
position into rightk .-invariant leftO, (S2)°-comodules. To calculaté(O, (S)°, K.) ex-
plicit results of [9] are employed.

The quantum tangent spaces of the covariant FODC constructed in [2] are calculated. It
turns out that for genericthe resulting tangent spaces cover all tangent spaces obtained in
the classification. Therefore up to exceptional valuesaif covariant FODC ove®), €5)
can be constructed by this method. Moreover, it is shown in Proposition 17 that these
FODC are free left and right?, (Sf)-modules and inner calculi.

The organization of this paper is as follows. In Section 2 the definition and some
properties ofO, (Sf) are recalled. Section 3 serves to give a complete description of the
dual coalgebrad, (S?)°. The main idea on this way is to show that all representations
of O, (Sf) can be written as direct sums of representations of certain localizations of
Oy (Sf). These localizations are seen to be isomorphié tth_)°P and the dual coalgebra
of U,(b_)°P is known [6]. In Section 4 the subspad&O,(S?)°, K.) is determined
and decomposed intd/, (slz)-modules. The notion of covariant FODC and quantum
tangent space are recalled in the last section. Combination of the above steps lead to the
classification result in Theorem 11.

If not stated otherwise, all notations and conventions coincide with those introduced
in [8]. Throughout this papeg, € C\ {0} will be assumed not to be a root of unity. For any
elementz of a coalgebrad with counite and a distinguished group-like elemdndefine
at:=a —e(a)1 and for any subsef C A setBT :={bT | b e A)}.
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2. Podl&s’ quantum sphere

Letuil., i, j =1, 2, denote the matrix coefficients of the vector representatid@n 6l>),

i.e., the generators of the quantum gradp(SL(2)). Recall that the elementé}. satisfy
the relations '

1.1 1.1 1.2 2.1 1.2 2.1 2.2 2.2

Uty =quslq, Uy =quqltq, UsUs = qUslUy, Uy =qUslUq,
1.2 2.1 1.2 2.1 -1\..1.2 1.2 1.2
upiy =uqty, Uiy —uxug = (q -4 )“2“1’ uiuz —quzuy =1

and that the coalgebra structure®f (SL(2)) takes the form
Au’l = Z u;{ ® u];
k

In the notation of [10], the matrix coefficients of the three-dimensional representation of
U, (slp) are given by

_ u%uz —(q2+ 1)u%u% —qu%u%
(77); j=—101= _‘171’4%’42 1+ +41711”%1”% ”i“i :
—q Tuzuy (g +q)uzug ujUy
where upper and lower indices afandr refer to lines and columns, respectively. For
anye_i, €o, e1 € C, whereegg # 0 ore_1e1 # 0 consider the subalgebé, (83_1,80,81) @

0,4(SL(2)) generated bye; := Zj 8]‘7Tj i =—1,0,1. Note thate(e;) = ¢; and that

Oy (S? ) obtains the structure of a rigld?, (SL(2))-comodule algebra byi(e;) =

£€-1,€0,€1
Y iei® nl.’. A complete set of defining relations 6%, (Sg_l,go,gl) is given by

J

2 2
616—1) +ey = p,

(L+4?)(e-re1+q~
—qzefleo +epe_1 = Ae_1,
(14 ¢?)(e—1e1 — ere—1) + (1 — g?)e§ = heo,
eleq — q26061 = Aeq,

wherep = ¢2(q? + 1)?e_1e1 + ¢& andi = (1 — ¢?)eo. Up to isomorphism the comodule
algebra®, (S2 ) depends only o = (¢_1¢1 : €0) € C P! [10] and will therefore be

£_1,80.€1
denoted by, (S?).
For ¢ #£ oo = (1:0) one can choosep =1, ¢_1 = ¢1. ThenA =1 — q2 andp =

(g + ¢~ 1)%c + 1. DefiningA = (1 +¢2)~1(1 - ep), the above relations can be rewritten as

e_1e1 = A — A%+ c, Q)
ele_1 = q2A — q4A2 +c, (2)
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e1A = g“Ae, 3)
e_1A = q_erfl. (4)

Similarly, for ¢ = co = (1:0) choosesg =0 ande_1 =¢1 =1, i.e,A =0 andp =
(g + ¢~ H2. DefiningA = — (1 + g% e, the above relations are equivalent to

e_1e1 = —A%+1, (5)
ere-1 = —q*A%+1, (6)

e1A = q2Ae1, @)
e_1A = q_er_l. (8)

If in the sequel it is necessary to fix an explicit realizatiorﬂgf(Sf) C 04(SL(2)), the
coefficientss_1, gg, €1 Will be chosen as above.

Define linear functionalg),, » € C\ {0}, andg in the dual Hopf algebré&, (SL(2))° of
0, (SL(2)) by

A =5 %) ww@n=(5 %) ©
where as above upper and lower indices refer to lines and columns, respectively, and
Afy= L ® fr, Ag=gR®e+e®g. (10)
Note that (9) and (10) imply in particulgf(1) = 1 andg(1) = 0.

Recall that the dual pairing [8] betweeli,(sl) and O,(SL(2)) induces linear
functionalsE and F in O, (SL(2))° satisfying

i 00 i 0 1
@) =(9 5).  F@n=(3 o) )
and
AE=EQK+¢®E, AF=FQe¢+K '®F (12)

wherek = f,-1. Letid C O, (SL(2))° denote the algebra generated by the functiogials
A eC\ {0}, E, F, and g. For transcendenta} the Hopf algebrd/ is isomorphic to
04(SL(2))° [6, 9.4.9]. The above functionals satisfy the relations:

Hduw = s HE=1T2Ef;, HF =32Ff;,
frg=28s Eg=(g+2E, Fg=(g—2F,
K-—kKk1

q9—49
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Note that the subalgebra 6, (SL(2))° generated by, F, K, andK1lis isomorphic'to
U, (slp),[8,4.4.1]. Evaluating the functionaf3, g, E, andF on the matrix coefficients;,
one obtains '

£((7h)) =A"2E"] + E§ + A2E7.
7)) =—2E-}+2E},
#(l) =2+ 2ed .
E((m})) = —(q* + 1) Eg" + E3,
F((n}))=—a"*E21 + (¢ +4 ") Eq.

whereE;ﬂ, i,j =-1,0,1, denotes th&€3 x 3)-matrix with entry 1 at positior(i, j) and
zero elsewhere.

Many interesting examples of quantum homogeneous spaces can be defined by
infinitesimal invariants [9, Section 2]. The method of classification of differential calculi
developed in [4] and used in Section 5 applies precisely to this class of comodule algebras.
Podlé’ quantum sphere fits into this scheme as follows. Fix a square;fédof ¢. For
n € No/2 sete(n) = —1/(¢" + ¢")?. Sinceq is not a root of unityc(n) # c(m) for all
n,m € No/2,n # m. Define subsets df P! by

J1 = {CE(CPl | c#c(n)Vn EN/Z\N},
J2 = {ceCPY | c#c(n) ¥n e No/2}.

Itis known [9, Remark 4.5.3] that the following statements are equivalent:

(1) ceJn,
(2) 04SP ={be Oy(SL(2)) | X (by)b(2) = 0} for a twisted primitive element

X=a(K'-1)+BKE+yFeld and

Brat
7z f
{aZ(q—q—l)Z ta70

o0 if @ =0andBy #0.

Calculating the pairing betweel and the explicit generatorg € O,(SL(2)) chosen
above, one obtains-e1(g — ¢ o = y and B = ¢y in the caser # oco. Similarly, for
¢ = oo one obtaing: = 0 andB = ¢gy. Thus the embeddings from above are realized by

gKYE+F if ¢ = o0,
Xe=3K1-1 if c=0, (15)
—(Y2g—g ) MK T-D) +gKE+F else

for any square root; = c%/2 of c. Define K, = C[X.] C U,(slp). If ¢ € Jo then any
finite-dimensional, (slz)-module is a direct sum of irreducibl&.-modules and therefore
0,4(SL(2)) is a faithfully flat left (and right)0, (Sf)-module [9, Theorem 5.2].
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3. The dual coalgebraB® = O, (S?)°

To understand the dual coalgebra [12, Section @,}I]Sf)" of Podl&s’ quantum sphere,
it is useful to consider first the dual Hopf algelid, (b—)°P)° whereU, (b_) C U, (sl2)
denotes the subalgebra generatedby , andK ~1. Further, letly, U;(ny),Uy(no), and
U, (b4) denote the subalgebraof, (sl2) generated byK, K}, E, F, and{E, K, K1},

respectively. By [6, Theorem 2.1.8] the dual Hopf algebk&)° is isomorphic to the
commutative Hopf algebra

Cly. 20 | A € C\{O}]/ Gooxp = s x1=1),

wherey (K) =1, x,(K) = X, and the coalgebra structure is given by

Ay =y ®1+1Qy, Axy = xr ® X (16)
The subalgebr&, (ny) C U, (sl2) is a rightUp-comodule algebra with coaction

SR(E)=E'® K™

and therefore has a lefUp)°-module structure. The corresponding left crossed product
algebral, (ny) x (Up)° is a Hopf algebra Wit ME =1® E + E ® Xq-2 containing
Uy(by) whereK e U, (by) corresponds tg, 2. The dual pairing of Hopf algebras (in
the conventions of [8, 6.3.1])

()1 Ug(b4) ® Uy (b-)°P — C (17)

given by (K, K) = ¢ =2, (K, F) = (E,K) =0, and(E, F) = 1/(¢"1—¢) extends to a
pairing of Hopf algebras

{2 ) 1 (Ug(ny) % (Uo)°) ® Uy (b-)P — C (18)
such that
(v.K)=1, (., K) =4, (v, F)={(x., F)=0.
Lemma 1.Fora e U;(ny), u € Ug, b € Uy (n_), and f € (Up)° one has
(af,bu) = fu)a,b).
In particular, the pairing(18)is non-degenerate.
By the above lemma the map of Hopf algebras

@ (Uy(ny) % (Uo)°) = (Uy(6-)°P)° (19)
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induced by (18) is injective. The following result is proven in [6, 9.4.8] for transcenden-
tal ¢. Yet it also holds forg € C \ {0} not a root of unity and is reproduced here in our
setting for the convenience of the reader.

Proposition 2. The map® is an isomorphism.

Proof. Recall that there is a canonical isomorphisip(b_)°P = U, (n_) ® Ug of vector
spaces. Let/ C U,(b_)°P denote any two-sided ideal of finite codimension. Ass

No-graded via the adjoint action &fy, it contains some idedl C Up of finite codimension
and(U, (n—)*)" for somen € N. Therefore/ contains the left ideal

(Uy(n)T)" ® U+ Uy(n-) ® I C Uy(n-) ® Ug

of finite codimension. Thus

(Ug(0)%P/0)" C ((Ug(o) [/ (Ug(m)h)") @ (Uo/ D)
= (Ug(2) [ (Ug())")* @ (Uo/ D
C U;(ny) ® (Uo)°,

where in the last inclusion one uses tliat(n ) is the graded dual o/, (n_) via the
pairing (17). By Lemma 1 one obtaing,(n;) ® (Ug)° C Im@ and therefored is
onto. O

For the computation o0, (S2)°, some results about the representation theory of the
algebra0, (S?) are collected.

Lemma 3. Any finite-dimensional representation: (’)q(SE) — EndV) is a direct sum
w = o ® uxo where ug(A) is nilpotent andu.o(A) is invertible. In particular, the
coalgebraQ, (SE)" is a direct sumCo @ C+o WhereCg and C.o denote the coalgebras
of matrix coefficients of finite-dimensional representation®pfS?) with nilpotent and
invertible A action, respectively. In addition,

(i) If c#c(n)forall n e N thenuxo=0.

(ii) If ¢ #0thenug(er1) are isomorphisms.

(iii) If ¢ = c(n) for somen € N then there exists exactly one indecomposable represen-
tation p, : O, (Sf) — EndV) such thatu, (A) is invertible. This representation is
n-dimensional.

(iv) If ¢ =0 then Co = Cotr @ Coo @ Co— Where Coy, Co—, and Cop denote the
coalgebras of matrix coefficients of finite-dimensional representations with the
following properties
e Co;: the action ok is invertible,

e Co_:the action ofe_1 is invertible,
e Coo: the action of botle; ande_ is nilpotent.
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Proof. Relations (3) and (4) imply thaty ande_1 transform the generalized eigenspace
V, of A with corresponding eigenvalueto the generalized eigenspatg -2, andV,z,,
respectively. SeVg := EB#O Vi. ThenV = Vo @ Vg is a direct sum of representations
of 0, (S?).

Sinceg is not a root of unitye; ande_1 act nilpotently onV.g. Assume thab € Vg is
an eigenvector ofA with eigenvalue. such thae_jv =0, efv =0, andw := e’{‘lv #0.
Then relations (2), (6) and (1), (5) appliedit@ndw, respectively, imply

0=¢g% —g*2%+¢

0= g—20—Dy _ g=40-D;2 4 for ¢ # oo, (20)
0=—¢*2+1

0= _q74(nfql))t2 +1 for ¢ = oco. (21)

The second set of equations cannot be fulfilled as not a root of unity. The first set of
equations implies = c(n) and therefore proves (i).

Sinceuo(A) is nilpotent the second statement follows from (1) and (5).

To prove the third statement assume first that there exists V.o such that
(A—v)2u =0 but (A—v)u # 0 for somev € C \ {0}. Applying e_1 several times, we
may assume, using the notations from above, ¢hatA — v)u = 0 and hence = A and
(A—v)u = v. Then (20) implies. = ¢"~2/(¢" + q¢~"). The relatiore_1v = 0 implies that
e_1u is an eigenvector oft with corresponding eigenvalug or e_1u = 0. Suppose
thate ,u = 0 for somek > 1 ande*;*u # 0. Then, on the one hand, the eigenvalue of

A corresponding te‘7lu coincides withg%~21. On the other hand*7* fulfills the
properties ofv considered above (20) and hence is an eigenvectar obrresponding
to the eigenvalu@”2/(¢" + ¢~") = A. Thereforek = 1 ande_iu = 0. By Eq. (2) and
(A — 2)2u =0, one now obtains

2qn _ q—n

(a2 =20 A+ (e + 492 = —* 5T du+ (e + g2 =0

Asn > 1 andg?* # 1, this is a contradiction to the assumption thas not an eigenvector
of A. Thus A is diagonalizable. The relations (20) imply that all eigenvalues die

in the set{¢"%/(¢" + ¢~ |k =1,2,...,n}. In view of (1) and (2), the eigenspaces
for different eigenvalues are isomorphic a¥igy is the direct sung®;; O, (S?)b; where
{b; |i € I} is an arbitrary basis of; . By construction, din®, (Sf)b,» =nforalliel.

To validate the last statement, note first that any finite-dimensional representation
1n:0y(S3) — EndV) is a direct sumu = puy & 1/, V = V4 & V/, where . (e1) is
invertible andu/(e1) is nilpotent. Indeed, (3) implies thatV, c V. andAV’ C V'. On
the other hand, (1) leads to

e_1Vi=e_1e1V4 = (A — AZ) ViC Vst
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ande7 V' =0 yields
e]f"le_lV/ = e]{(qu — q4A2) vV'c e]i V' =0.

Note then that (1), (3), and the nilpotency @fA) imply that x4 (e—1) is nilpotent.
Similarly, u’ = ug @ u— whereug(e_1) is nilpotent ands _(e_1) is invertible. O

The inclusiong), (S?) = O, (Sfl/2 1L2) € O04(SL(2) wherecl/2 s a fixed square root
of ce C andO, (Sgo) =0y (Sio,l) C O4(SL(2)) of right O, (SL(2))-comodule algebras
induce homomorphisms of riglki?, (SL(2))°-module coalgebra®, (SL(2))° — O, (Sf)"
foranyc € CPY. Form,l € Noandi € C\ {0}, lety” denote the image of, ¢ E' under

this projection. It follows from (14) thaf;, = f—, on O, (Sf) and therefore the definition
of wz” does not depend on the choice of a roojof

Theorem 4.The following sets form a vector space basié)ngf)".

(i) If c ¢{0,c(n) |neN}: {y" |r € C\ {0}, m,I € No}.
(i) fc=c(n),neN: {t/ff” |A € C\ {0}, m,l € No} UB,, where2,, denotes any basis
of then?-dimensional subspadg_q of O, (S?)°.
(iii) If c=0:{EXF!|k,1 € No}U{x;¢"F', x, ¢"E'|» € C\ {0}, I,m € No} wherex;*
is the character or0, (S3) = 0, (S§ , ) defined by (ei) = 8io + 8, 412

Proof. Consider the Hopf subalgeb@qz(SO(S)) C 0,4(SL(2)) generated by the matrix
coefficients {”.5' li,j = —1,0,1} and letJ denote the intersection of the two-sided

ideal (u%) C 04(SL(2)) with 0,2(S0(3)). There is an isomorphism of Hopf algebras
0,2(S03))/J — Uy (b_)°P:

2.2 -1 2.2 2 1.1
usus = K-, u1u2»—>(1—q)F, ugug— K

such that the functionals:, fi,g € 0,2(SQ(3))° given by (9)-(12) correspond to
E, x;2,2y € Uy(ny) x (Uo)°® = (U, (b-)°P)°.
Let O, (S?)(e—1) denote the localization o, (S?) C O,(SL(2)) with respect to the

left and right Ore sete” ; |n € No}. Observe that in this localization by (1) and (5) the
generatoe; can be expressed in termsaf; andA. Therefore fore £ 0, the sequence

04(SZ) = 0,2(SAB)) — 0,2(SQB))/J — Uy (b-)°P
induces an isomorphisif, (Sf)(e,l) — Uy (b-)°P:

e_1+— 8_1K71, eg > 8_1(q3 — qil)F + o,

el —8_1(q—q_1)2KF2—80(q—q_l)KF+81K. (22)
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Thus, by Lemma 3(ii) and Proposition 2, one obtains
Co= 0,(S?)(e—1)° = (U, (62)°P)° = Uy (ny) x (Uo)®,

and the basis elemepi y™ E' € U, (n}) x (Up)°® corresponds t61/2)" ", This proves
(i) and one obtains (ii) taking into account that fo&= c¢(n) the representation,, from
Lemma 3(iii) is irreducible.

In the case = 0, consider now an embedding different from the standard one:

04(S8) = 0,2(SAB)),  ejr> 7t + 7.

Similarly to the case # 0, this induces an isomorphism,(Sg)(e_l) — U, (b-)°P given
by (22) withe; = 8;0 + 8; —1. Thus, by Lemma 3,

Co- = (Uy(62)P)° = Uy (ny) x (Uo)°,

and the basis elemept,y™E' € Uy (ny) x (Ug)° corresponds tcal/Z)mX;ng’. The
subcoalgebraCo; is dealt analogously replacing the two-sided id«em%) by (u%),
replacing U, (b-)°P by U,(b4)°°P, and using the embedding + 70 + =!. The
componentCqo has been shown to coincide with the coalgebipdslz) /(K — 1)U, (slp)
in [4, Lemma 5.2, Corollary 3.8]. The element&“F! |k, € No} form a basis of

Uy(sl0) /(K —DU4(slp). O
4. Local finiteness for theK.-action on O, (S2)°
Recall thatt/ ¢ O,(SL(2))° denotes the Hopf algebra generated by the set of
functionals{f,, E, F, g|» € C\ {0}} and thatK, = C[X,], whereX. is given by (15).
For the rest of this paper assume that 0 € J>. For B = O, (Sf.) recall thatB3° is a right
U-module. Define
F(B°,K.)={f € B°| dim(fK,) < oc}.
If f € B°isthe restriction of an elemernft €U/ to B andk € K. then
fhk=ko)S k-1 f'k—2)|l8 =S ko) f'k-1)B

askK. is a lefti/-comodule and |z = k(1)e. ThusF(U)|g C F(B°, K.), where for any
Hopf algebra4,

F(A)={aecAldim@dA)a < oo}, (adb)a=bw)aS(b).
Lemma 5. The vector spaceF (B°, K.) is a right F(U)-module left 3°-comodule.

Any element of(B°, K.) is contained in a finite-dimensional righk.-submodule left
B°-subcomodule.
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Proof. For f € F(UU),u € F(B°, K.) considerV =uK, andW = (adl{) f. Then, for any
ke K,

(u- k= (uk(o)) . (S_l(k(,l))fk(,z)) eV -W.

ThereforeF (B°, K.) is a right F (U/)-module.

Now, for any subspac¥ c F(B°, K.), let V denote the lefi3°-comodule generated
by V. The vector spacé is finite-dimensional. For any € V, k € K., applying the
coaction to the second factorbf_1) ® uk) € 4 ® V, one obtains

k(—2) @ uayk—1) @ uko) eURB @V
and therefore
@) ®uek=uwmk—yS(k-2) ®ueko e B°®V.
ThusF(BB°, K,) is a leftB°-comoduleand € V > VK,. O
Define a(C \ {0})-graduation on the vector spaté by degg” f,LE’) =U.
Lemma 6.Any left3°-subcomoduldv c B° is a (C\{0})-graded vector space.
Proof. Consider an arbitrary elemente W c B°. By Theorem 4(i) one can assume
thatu = ZM fua* for somea* which are linear combinations of basis vectgrsE!

m, | € Ng. By the explicit form (10), (12) of the coproduct gfand E and by Theorem 4(i),
one can write

Au:ZfM(g)fﬂa“—i—Zuf Qu,
" i
where{u;, f,} is a set of linear independent elementd3in As W is a left 3°-comodule,
Sfuat € W forall p.
Let F,,(B°, K.) denote the subspace of elements of degrée F (5°, K.).
Lemma 7. F(B°, K.) C F :=Linc{yY |l € No, A € C\ {0}}.

Proof. Consider an arbitrary elemente F, (B8°, K.). By Theorem 4(i), one can assume
thatu = )" g'a; for someq; € F such that de@;) = u anda,, # 0. Contrary to the
assertion of the lemma, suppose that 1. Applying the coaction te, one obtains

Au= fp.gm_l ® (mgam + am-1) + ZM; by M;,

1

where{ f,,g" 1, u;} is alinearly independent set of elementd36f Thus, asF(B°, K.) is
a left B°-comodulemga,, + a,—1 € F(B°, K.). Thus it suffices to show that = 1 leads
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to a contradiction. By similar arguments it is sufficient to consider the gase f,, + ao,
fu € F(B°, K).

One checks by direct computation tijatli/) E is a three-dimensional vector space and
thereforeE € F(U4). By Lemma 5 this impliesf, E™ € F(B°, K.) for all m € Ng. Thus
gfu € F(B°, Ke).

Recall that3 can be obtained as right.-invariants of O,(SL(2)) and therefore
Fu=(cY%(q—qg ) YK 1-1) —¢gK1E)u in B° for all u € Y. In regard of this
property a direct calculation using (13) and (15) leads to

!
efuE'Xe=q(q% — uh)efgu Bt = dqut f BT Y ai EF (23)
i=0
wherea; € Linc{gfy, fiv |v € C\ {0}}. Further,

fp.ElXc = ‘I(qz - I’L4)fqp.El+1 +05(q21 - Mz)fquEl +Ol(lfL2 - 1)fp.El

—I+1g _ gl-1g -1
+12 q_;4 fuE' ™ (24)

where, as in (15) =0 if ¢ = oo ande = —(c¥/2(g — ¢~ 1))~ else. By (23),

k-1
gfu(X)k = qk(l_[(qu _ (qiu)4))gquﬂEk
i=0
k=1 A k=1 L,
_42((1/“) qk<l_[(q2: _ (qllL) ))quMEk+---,
j=0 i=0
i#]

where- - - denotes terms containing only smaller power&of hereforeg f,, € F(B°, K.)
implies u* = g=2*=1 for somek € N. Then for/ >0

k+1—1
gfu (Xo)EH! :_4(qklu)4qk+l< l—[ (¢% - (qiu)‘l))quMEkH_’_“.’

i=0
itk—1

again up to expressions containing only smaller poweits.oks

qZ(k+1) _ (qk+lu)4 _ q2(k+l)(1 _ q2(1+1)) £0 foralll >0,

the coefficient ofquME"” does not vanish. This is a contradiction to the assumption
gf,lLEF(BOaKC)- U
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To shorten notation, leg! denote the basis eleme” of F. Define three maps
¢, 9.k F— Fby

/
qq_[q]_ll/f L+ ag(q? )L)l/fézk_i_qZ( 2, )¢1+1

o(v;) = 2~ qu 711/f T3,

p(v) = -

k(yl) = 27yl (25)

In view of (24), this means

ViXe=q"'o(V3) + 20 (Vi) + (12T (wy). (26)
Note that
K —k1 2 -2
<po¢—¢0<p=7q_q_1, Kop=q“pok,  Kop=q “pox,

i.e., the operatorg, ¢, and« yield a representatiop : U, (sl2) — End(f), p(E) =
p(F)=¢,p(K)=x«.

Lemma 8. For any finite-dimensional subspadé c F, the following statements are
equivalent.

(i) AvcB°®@VandVK.CV.
(i) VisaleftU,(slz)-module viap.

Proof. (i) = (ii). Asin Lemma 6, one obtains thatis (C\{0})-graded. Then the assertion
follows from (26). To verify (ii)= (i), note that

I

l —r r

Ay =" M hyiey s, = me (v))
r=0

whereb, € C depend on andx butnotonl. O

Lemma 5 implies thaf'(5°, K ) is ap-invariant subspace df. Recall that an element
¥ € V \ {0} is called a highest weight vector ofl (sl>)-moduleV with highest weight
Lif Ky =y andEy =0.

Proposition 9. There exists a decomposition3f (sl2)-modules,

FB°, Ko)= P W,

reJe
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such that
J¢={q7" [1e2No} forc ¢ {oo, (¢ —q ") |ren/2},
J® = {£q7"|1 e 2No},
J@ - _ la7!.—q " |l e2No, ke2r +2No}, reN/2,

where the component¥, - are (I4+1)-dimensional irreduciblel, (slz)-modules of
highest weighttg'.

Proof. Lemma 5, and Lemma 8, (> (ii), imply that theU, (sl)-moduleF (B°, K.) can
be written as a direct sum

F(B°, K.) = @ Vi

reJe

of finite-dimensional irreduciblé/, (slz)-modules. Here/¢ C C \ {0} denotes the subset
of nonzero complex numbefkssuch thatp operates nilpotently Olﬂr)? = f - Indeed, by
(25) the sew/f | A € J¢} is a basis of all highest weight vectors B{5°, K.) with respect
to the U, (sl2)-module structure. It remains to show thétt is of the form given in the
proposition.

Note thate!*1(y9) = 0 and ¢/ (¥0) # 0, I € No, imply A = £¢~'. In this case
oY) e Lin(c{w;fz]A |k=0,...,1} and the mapping

¢:Linc{ya, [k=0.....1} = Linc{v}a, [k=0.....1}

is given by the matrix

—(x¢' =D —g71¢11] 0 0
q1—g?) —(xq'—g¢Ha —-g47'¢'(2]
q 0 7@?—q?) —(£q' —qHa 0
: - - . —47q' )
0 a 0 9@V -¢*) —(¢' - ¢

with respect to the basef: (1 = ¢ andu = 222, respectively)j = g — ¢ . Recall
that 8 = ¢ andy = 1. Usingq (1 — ¢%) = —4q**1[k], the map$ can be written with
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respect to the basels} := (—§) g~ (R I—k+D/2yk a5

(@' FDa [1]y 0 - 0
a7'NB (@' FDa [2ly :
g 0 g> -1 @*'Fa 0 . (@7
[y
0 0 "B (' FDa

In the case of minus signs in the diagonals, this matrix is, up to the overall factor, precisely
the matrixM; describing the transpose of the left actionqfon the(l + 1)-dimensional
irreducibleU, (slz)-moduleV; [9, Section 4]. Note that any nonzero element of Kgiis

a lowest weight vector of thd + 1)-dimensional irreduciblé&/, (sl)-module of highest
weightq!, and thereforg —! € J¢ if and only if kerM;  {0}. By [9, Proposition 4.2], the
matrix M; is known to havé + 1, not necessarily distinct, eigenvalues

o 1
p,=E(qr—q—’)%i(qz’—q—”)& reli={-1/2,1-1/2,...,1/2}
where
4 -1
R2—a? 4+ ,37/4_1 N
g—q97)

In particular,M; has eigenvalue 0 if and only ifis even or

r - 2
. (9" +q"
O=ppr=—(q"—¢q )2(a2+ﬁyq 1(ﬁ) )

The second case is equivalentde- c(n) for somen € I;. As this case is excluded by
assumptiony ! € J€ if and only if / is even.

Let Cw denote the one-dimensional representatiotipfsl2) uniquely determined by
E-w=0,F-w=0,K-w=—w. By means of a base change, the matrix (27) corresponding
to —¢~! can be transformed into the matrix of the transpose of theXefaction on
the finite-dimensional, (sl2)-moduleCw ® V;. The eigenvalues of this action can be
computed by means of [9, Proposition 4.6]. In particular, Xpeaction has a nontrivial
kernel if and only if

r_—r\2
0= (o +20)(p—y +20) = (" + qr)2<a2 - ﬁyql(%) )
for somer € I;. This equation is equivalent to

1

c=—5, r#0, or c=o00, r=0.
(q"—q7")?
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Notice that(g” — ¢ ")2 — c(n) "t = (¢"t"4+¢q ="M (g""+q~ ™) £0 for all r,n €
Np/2 and therefore these cases are not excluded.
5. Differential calculus over O, (S?)

For the convenience of the reader, the notion of differential calculus from [13] is
recalled. Afirst-order differential calculugFODC) over an algebr# is a B-bimodule
I' together with &C-linear map

d:B—>1T

such that” = Linc{adbc|a, b, c € B} and d satisfies the Leibniz rule

d(ab)=adb+dab.

Let, in addition,A denote a Hopf algebra amtlz : B — B® .4 aright.A-comodule algebra
structure orB. If I" possesses the structure of a rightomodule

Ar:I'-T®A
such that
Ar(adbe) = (ABa)((d ® id)ABb)(ABC),

thenr is called ¢ight) covariant AFODC d:B — I" overB is calledinnerif there exists
an elementy € I' such that @ = wx — xw for all x € B. For further details on first-order
differential calculi, consult [8].

Let U denote a Hopf algebra with bijective antipode ahdc U a left coideal
subalgebra, i.ed;: L — U ® L. Consider a tensor categagyof finite-dimensional left
U-modules. As in [9, Section 2], this means tltats a class of finite-dimensional left
U-modules containing the trividl -module vias and satisfying

X, YeC = X@V,XQVY X*eC. (28)
Let A:= Ug denote the dual Hopf algebra generated by the matrix coefficients of all
U-modules inC. Assume that4d separates the elements Gf and that the antipode of
A is bijective. Define a right coideal subalgelfta A by
B:={beA| (u,babp =ew)b foralluelL}. (29)
AssumeL to beC-semisimple, i.e., the restriction of adymodule inC to the subalgebra

L c U is isomorphic to the direct sum of irreduciblemodules. By [9, Theorem 2.2(2)]
this implies that4 is a faithfully flat 3-module.
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In this situation, right covariant first-order differential calculi o&rcan be classified
via certain left ideals o8 [3]. More explicitly, the subspace

L= {Zal*s(bi)

1

> ity =0 c ¥ (30)

is a left ideal which determines the differential calculus uniquely. Equivalestlys
{aeBt|dae FB*}; To construct the FODQ" corresponding taC, consider the3-bi-
module structure ofi” := (B*/L£) ® A given by

c(E@a)d:Wa@c(l)ad, c,deB,beBT, ac A, (32)

and the differential d8 — I, db = bzg) ® bey. ThenlI” = {db1b2| by, by € B}. To the left

ideal £, one associates the vector space
T°={feB°| f(x)=0forallx € £}
and the so-callequantum tangent space
T=T"={feT?| f(1)=0}.
The dimension of a first-order differential calculus is defined by
dimI" =dim¢ I'/T'BT =dime B1 /L.
In the following, all FODC are assumed to be finite-dimensional.

Proposition 10 [4, Corollary 1.2]. There is a canonical one-to-one correspondence
betweenn-dimensional covariant FODC oveB and (n + 1)-dimensional subspaces
T¢ C B° such that

eeTé, AT*CB°®T¢, T°LCTE. (32)

A covariant FODCI" over 5 is calledirreducibleif it does not possess any nontrivial
quotient (by a right covarianB-bimodule). Note that this property is equivalent to the
property that. does not possess any rightinvariant left B°-subcomoduld” such that
C-eCTGTE.

For a family of right covariant FODQI3, d;);i=1,...x, define d=p; d; : B — P; I;.
ThenI” = BdB C €p, I'; is a covariant FODC with differential d which is called them
of the calculil, ..., I'x [5]. The left ideal corresponding t6' is given byLr =, Lr:
and therefore the relatiofi- = Tr, + - - - + T, of quantum tangent spaces holds. A sum
of covariant differential calculi is called direct sumif I" = €9, I is a direct sum of
bimodules. This condition is equivalentTy = @; Tr;.

As an immediate consequence of Proposition 10, Lemma 8, and Proposition 9, one
obtains the following classification result for differential calculi o@(S?).
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Theorem 11.Assume0 # ¢ € Jo. For A € J¢, let I, denote the uniquely determined
covariant FODC overO, (Sf) such thatT?A =V, + Ce. Thenr} is irreducible and any

finite-dimensional covariant FODT' over O, (S?) is isomorphic to a direct sum
r=prn

for some finite subset C J°.

To compare a FODQ" over B with its classical counterpart it is often instructive to
know whetherl” is generated by certain differentials as a rightmodule. For the class
of quantum spaces considered here, this question can be completely answered as follows.
For any covariant FODQ" with corresponding left ideal and quantum tangent spate
consider the projection

P A—->T QA yQar y1®Syp2)e),
onto the subspacél” ®5 A)inv C I' ® A of right coinvariant elements. The relation
db ® a =d(b1)) ® S(b2))bz)a implies that the right4d-modulel” ® A is generated by

the element®, (db ® 1), b € B. For anya =}, al*e(b,») € L where)"; da; b; =0, one
obtains

P.(da®1) =P <Z da; ® b,») =0.

ThereforeP, induces a well-defined surjection

BY/L— (I ®5 Ajinv, b P(db®1). (33)
Lemma 12.The pairing

(I' @3 Ainyx T —C, (da®b, X) X(a)eb),

is non-degenerate. Further,e £ if and only ifb € B* and P, (db ® 1) = 0.
Proof. To verify the first statement note that by construction the elem&nidd ® 1),
b € B, separatel’. On the other hand, (33) implies the relation ¢itti" ®5 A)inv) <
dime BT /L =dim¢ T; thusT separate$!” @5 A)inv and (33) is an isomorphism.O
Lemma 13.Let W C B be a right 4-subcomodule thedW generatesl” as a right
B-module if and only if the elements 8f separate the quantum tangent spake. If

dimW =dimI" and the elements dV separate7 then I" is a free right 3-module
generated by the differentials of an arbitrary basis/of
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Proof. Let I’ C I denote the righB-module generated byWd. Note thatl™ is a right
A-comodule. Then agl is a faithfully flat left B-module,

=l < TI'®A=I'®A = ' 5ADin=~U ®5Ainv.

Now, if W separatedr then (I’ ®p A)iny separated and therefore, by Lemma 12,
coincides with(I" ® 3 A)iny. Conversely, ifl" = I then(I'" @ A)iny Separated and
therefore the elements &f separatd’. This proves the first statement.

To prove the second statement, i&t denote the free righf-module generated by the
differentials of an arbitrary basis, ..., e, of W. Then, as above,

I=r « TI"@eA=Ir®zA
< P(de;®1),i=1,...,k, formabasisof" ®5 Ainy.

In view of Lemma 12, this property is equivalent to the nondegeneracy of the pairing
betweenW and7,. O

Combining the above lemma with Theorem 11, one can now classify all covariant
FODC overO,(S?) generated as right), (S?)-modules by the differentialseg, i =
—1,0, 1. The straightforward calculations of the pairing of the tangent spaces with the
generatorg;, i = —1,0, 1, are omitted.

Corollary 14. For ¢ € J2 \ {0, 00, (¢¥/2 — g~1/2)=2}, there exists exactly one covariant
FODC I,-2 over O,(S?) which is generated byde; |i = —1,0, 1} as a right O, (S2)-
module. The elementge; |i = —1,0,1} form a right O,,(Sf)-module basis of this
calculus.

For ¢ = oo there exist exactly three covariant FODCs o@J(Sf) which are generated
by{de; |i =—1,0, 1} as rightO, (Sf)-modules. One of thenh}_1, is one-dimensional, the
elementgde; |i = —1,0, 1} form a right O, (Sf)-module basis of each of the other two
calculi I, ;2.

For ¢ = (¢%/? — ¢g=Y/2)72, there exist exactly two covariant FODCs ov&j (S2) which
are generated byde; |i = —1,0,1} as right (’)q(Sf)-moduIes. One of them,“,qfl, is
two-dimensional, the elemeritd; |i = —1, 0, 1} form a rightO, (Sf)-module basis of the
other calculusl“q_z.

For generic value o, the above corollary reproduces the results obtained in [1] by
means of computer calculations.

The odd-dimensional covariant FODIG ., [ € 2N, for arbitraryc andI"_, 1, I € 2N,
for ¢ = 0o, can be explicitly constructed by a method by U. Hermisson. To match the above
conventions, the relevant lemma from [2,3] is cited in terms of right comodule algebras.

Let A denote a coquasitriangular Hopf algebra with univerdalrm r andB a right.A-
comodule algebra. Let be a comodule algebra endomorphisnifofLet furtherw c B
denote a finite-dimensional right-subcomodule and 16/’ = Hom(W, C) be the dual
right .A-comodule defined byAf)(w) = (f ® S~HAw for w € W, f € W. More
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explicitly, if {b1,..., by} is a basis ofW and{yl,..., ¥} c W is the dual basis then
Abj =3 ;b; @] impliesAy’ =3, y/ @ STHW)).

Lemma 15. The free rightB-moduleW’ ® B can be endowed with a righd-covariant
B-bimodule structure by

a(f @b)c:= fio) ®v(ap)bcr(aqy, fa)), a,b,ceB, feW,

and will be denoted by , w. Moreover, ifow = Z,N=1 y! ® b; € I,.w denotes the
canonical invariant element thed:B8 — I, w, db := wb — bw, defines a covariant
FODC (dB - B, d) overB.

Lemma 16. The quantum tangent space of the differential calculudescribed in
Lemmal5is the linear span of the functionajg € B°,i =1, ..., N, defined by

Xi(@) =r(v@), S~Hbi)) — ebi)e(a).

Proof. Fora € B one obtains

—P(da®l) = P <Z(aykbk — ykbka) ® 1)
k

P, <Z y' ® [vao)bir (. STH(Y)) — bi“])

ik

= v/ @57y} [e(va@be)r (aq. STH(Y)) — ebi)e(a)]

ij.k
= > v/ @5 (¥)[r(v@). S7Hb)) — e(bi)e(@)]-
i.j

The last equality follows fromb; =), by ® I//ik andAv(a) = v(a)) ® a(y. Therefore,
by Lemma 12,

ael <<= aeBTandP.(da®1) =0
<« aeBtandy(@=0vi=1...,N. O
Let V(n), n > 1, denote th&2n+1)-dimensionall, (sl2)-submodule 00, (Sf) with

highest-weight vectab; = ¢/ . Forv =id, the quantum tangent spateof the differential
calculusI” from Lemma 15 satisfies

r(v(), S7H(e})) = x1() +e(ef)e(-) e T* =T @ Ce.
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The standard universaiform of O, (SL(2)) is defined by

q i_fl:=]:=k=l,
ot ) = g2 1 _lfzzjyékzl,
(u/’ul) 4 g—qt ifj=k<i=I,

0 else.

In particular (a, uf) =0 foralla € O,(SL(2)) and thereforg : B — C,

(@) :=e(en) " (a, SH(e})) = een) "1(S(a), &) =1 (S(a), (})?") =t (a, (ud)”"),
is a character which satisfies

—2}1[8(61_).

x(e)=gq
Since j = 1”372” € V,-2 and dimV,-2, @ Ce = 21 4 2 > dimT*, one obtainsT* =
V,~2 @ Ce. Hence the differential calculu¢™ coincides with I, —2,. Similarly, the

differential calculusILq_l, [ € 2N, ovequ(Sgo) can be realized using the comodule
algebra endomorphism: e; — —e;.
Note that

(I'y-2 ®B Ainv = (1,10, v () 8 Ainv, (34)

where, as above} (n) denotes the(2n+1)-dimensional representation df,(sl2).
Indeed, by the above remarks,= I', 2. can be considered as a rightsubmodule of
I71d,vn) @nd, asA is a flat B-module, this implies, -2 ®3 A C It 1d,v(n) ®5 A. As
dim(I7 1d,v (n) ®8 Ainv = 2n + 1 by construction and di(rquzl ®B Ainv =2n + 1 by
Lemma 12, the identification (34) follows. Now (34) impliEs-2. ®3.A = I 1d,v () ®BA
and, by faithful flathess of4, this in turn givequ_z,, = It ,d,v(n). Thus one has the
following proposition.

Proposition 17.For anyQ # ¢ € Jo, the FODCI -2, n €N, is isomorphic toly 1d, v (n)-
For ¢ = o0, the FODCILq_zn is isomorphic tol; ,, v, Wherev(e;) = —e;. In particular,
I, -2 are free left and righB3-modules and inner first-order differential calculi.

Remark 18. Covariant FODCs ove©, (S(Z)) are qualitatively different from those over
0,(S2), 0# ¢ ¢ Jo. Let Ty denote the(kl + k + [)-dimensional FODC ove©, (S2)
with quantum tangent spad@; = Linc{E'F/ |0<i <k, 0<j <, (i, j) # (0,0)}. By
Proposition 10 and [4, Lemma 5.3], any covariant FODC @g{‘Sg) can be written as a
(not necessarily direct) sum of calcul; for certaink, . In particular, the only irreducible
calculi arel g and o1, constructed in [7].
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