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Abstract

We calculate the double spin asymmetry ALL for the π0 production in semi-inclusive deep inelastic lepton–proton scattering with a spectator
model of power-law and a model based on the factorization ansatz. We also calculate the double spin asymmetry for the integration over parts of
the kinematic range for the setups of the experiments of COMPASS, HERMES, and JLab. We find that the results are characteristically dependent
on the model used. Therefore, we suggest that the measurements of the double spin asymmetry provides a method of experimentally probing the
transverse momentum dependent distributions.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years the role of the transverse momentum of
the parton has been more important in the field of the hadron
physics since, for example, it provides time-odd distribution
and fragmentation functions, and makes the single-spin asym-
metries in hadronic processes possible [1,2]. The transverse
momentum of the parton inside the proton is also related to the
orbital angular momentum carried by the parton, which is an
important subject since it is considered as a part of the spin
contents of the proton. It is important to probe experimentally
how the distribution and fragmentation functions are dependent
on the transverse momenta of partons.

Semi-inclusive deep inelastic lepton–nucleon scattering
(SIDIS) can be used to extract information on distribution
and fragmentation functions. For example, we can explore the
transversity distribution of proton from the SIDIS lp↑ → lπX

in which the initial proton is transversely polarized. In a lot
of researches on the transverse momentum dependent distribu-
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tion (fragmentation) functions, the ansatz which factorizes the
longitudinal momentum fraction x(z) and the transverse mo-
mentum k⊥(p⊥) is adopted. For example, Ref. [3] investigated
the double spin asymmetry ALL by using such factorized dis-
tribution and fragmentation functions. We study the differences
of the distribution and fragmentation functions of the factorized
model and those of the spectator model.

Jakob et al. [4] presented a spectator model of power-law,
which is based on the scalar and axial-vector diquark mod-
els of the nucleon. In this model, a Lorentz invariant form
factor of power-law at the vertex of nucleon, quark and di-
quark is adopted. There are other types of spectator models in
which other form factors at the vertex are adopted. However, in
this Letter we consider only the spectator model of power-law
presented in Ref. [4] and call this model the spectator model
throughout this Letter. The important character of the specta-
tor model is that the longitudinal momentum fraction x and the
transverse momentum k⊥ of the parton are intimately correlated
with each other, since the spectator model is based on Lorentz
invariant Feynman diagram. The transverse momentum distrib-
utions of the up and down quarks inside the proton are different,
since for the proton the up quark is composed of a linear com-
bination of the scalar and axial-vector diquark components and
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the down quark is only composed of the axial-vector diquark
component. Power-law wave functions were also used in [5,6]
for the study of generalized distribution functions.

We use the well-known scaling variables [3]: x = Q2/2P ·q ,
y = P · q/P · l, and z = P · Ph/P · q , where l and l′ are mo-
menta of the initial and final lepton respectively, q = l − l′ is
the exchanged virtual photon momentum, P is the initial nu-
cleon momentum, and Ph is the final hadron momentum. The
two-dimensional vectors k⊥ and p⊥ are the intrinsic transverse
momentum of the parton with respect to the initial nucleon
direction and that of the final hadron h with respect to the frag-
menting quark direction, respectively. We work in a frame with
the z-axis along the virtual photon momentum direction and
the final hadron h has transverse momentum PhT with respect
to the z-axis. For more details see Ref. [7].

We calculate the dependence of the double spin asymmetry
ALL [3] for the π0 production in semi-inclusive deep inelastic
lepton-proton scattering on the variables x, y, z and PhT with
the spectator model, and find that the results are characteristi-
cally different from those calculated with the model based on
the factorization ansatz. For example, the PhT -behavior of ALL

is not sensitive to z-value in the case of the spectator model,
whereas it is very sensitive to z-value in the case of the model
based on the factorization ansatz. We also calculate ALL of π0

production for the integration over the range of (x, y, z) for the
setups of the experiments of COMPASS, HERMES, and JLab.
The PhT -behaviors of these results of ALL are also different for
the two models. Therefore, it should be possible to use such dif-
ferences in order to discriminate experimentally the spectator
model and the model based on the factorization ansatz. Then,
we suggest that we can discriminate experimentally these two
models by measuring ALL(x, y, z,PhT ) to obtain the informa-
tion on which model is closer to the physical reality.

In Section 2 we present the results of ALL obtained by cal-
culating with the spectator model of Jakob et al. In Section 3
we calculate ALL by using the model based on the factoriza-
tion ansatz, and compare the results with those of Section 2.
Section 4 is conclusion.

2. Spectator model

2.1. Distribution and fragmentation functions

Jakob et al. [4] presented a spectator model, which is based
on the scalar and axial-vector diquark models of the nucleon.
The important character of the spectator model is that the lon-
gitudinal momentum fraction x and the transverse momentum
k⊥ of the parton are intimately correlated with each other, since
the spectator model is based on Lorentz invariant Feynman di-
agram. In this model the unpolarized and polarized distribution
functions f1 and g1 are given by

f1R(x,k⊥) = NR(1 − x)3 (xM + m)2 + k2⊥
(k2⊥ + λ2

R)2α
,

(1)g1R(x,k⊥) = NRaR(1 − x)3 (xM + m)2 − k2⊥
(k2⊥ + λ2

R)2α
,

where λ2
R(x) = (1 − x)Λ2 + xM2

R − x(1 − x)M2 and as = 1,
aa = − 1

3 for aR , with M = 0.94 GeV, m = 0.3 GeV, and
Ms = 0.6 GeV, Ma = 0.8 GeV for MR . We take α = 2 in this
Letter. In this subsection we take Λ = 0.5 GeV. However, in
the next subsection we also consider 0.4 and 0.6 GeV for the Λ

value. Here the subscripts s and a refer to the scalar and axial-
vector diquarks The normalization constant NR is fixed by the
normalization condition of f1R(x,k⊥).

From the SU(4) wave function of the proton, we have (also
for g

q

1 ) [4]

(2)f u
1 = 3

2
f1s + 1

2
f1a, f d

1 = f1a.

That is, transverse momentum distributions of the up and down
quarks inside the proton are different, since for the proton the
up quark is composed of a linear combination of the scalar
and axial-vector diquark components and the down quark is
only composed of the axial-vector diquark component. Then,
Eqs. (1) and (2) give

f u
1 (x,k⊥)

(1 − x)3
= 3

2
Ns

(xM + m)2 + k2⊥
(k2⊥ + λ2

s )
2α

+ 1

2
Na

(xM + m)2 + k2⊥
(k2⊥ + λ2

a)
2α

,

gu
1 (x,k⊥)

(1 − x)3
= 3

2
Ns

(xM + m)2 − k2⊥
(k2⊥ + λ2

s )
2α

− 1

6
Na

(xM + m)2 − k2⊥
(k2⊥ + λ2

a)
2α

,

f d
1 (x,k⊥)

(1 − x)3
= Na

(xM + m)2 + k2⊥
(k2⊥ + λ2

a)
2α

,

(3)
gd

1 (x,k⊥)

(1 − x)3
= −1

3
Na

(xM + m)2 − k2⊥
(k2⊥ + λ2

a)
2α

.

The distribution functions given in (3) are plotted in Figs. 1
and 2. Fig. 3 presents the widths of the distribution functions in
k⊥ as functions of x.

We use for both u and d quarks the fragmentation function
given in Ref. [8], which is plotted in Fig. 4:

(4)D1(z,p⊥) = 1

z

g2

16π3

(
p⊥
z

)2 + m2

((
p⊥
z

)2 + m2 + 1−z

z2 m2
π )2

,

where mπ is pion mass and m = 0.3 GeV.

2.2. Double spin asymmetry

The double spin asymmetry is given by [3]

(5)ALL(x, y, z,PhT ) = �σLL

σ0
,

where

�σLL = π

xy2

[
y(2 − y)

]
Σqe2

q

×
∫

d2k⊥g
q

1 (x,k⊥)Dh
q (z,PhT − zk⊥),

(6)

σ0 = π

xy2

[
1 + (1 − y)2]Σqe2

q

×
∫

d2k⊥f
q

1 (x,k⊥)Dh
q (z,PhT − zk⊥).
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(a) (b)

Fig. 1. The distribution functions of u quark f u
1 (x,k⊥) (left) and gu

1 (x,k⊥) (right) given in (3).

(a) (b)

Fig. 2. The distribution functions of d quark f d
1 (x,k⊥) (left) and gd

1 (x,k⊥) (right) given in (3).

(a) (b)

Fig. 3. The width in k⊥ , which is defined as the value of k⊥ which satisfies f1(g1)(x,k⊥) = 1
2 f1(g1)(x,0⊥) for u quark (lower line) and d quark (upper line).
Fig. 4. The fragmentation function D1(z,p⊥) given in (4).

We study ALL(x, y, z,PhT ) with the model of Ref. [4] by
using f

q

1 (x,k⊥) and g
q

1 (x,k⊥) given in (3), and Dh
q (z,p⊥)

given in (4) for both u and d quarks. We note that in this Let-
ter we consider only the contributions from the valence quarks
u and d , and ignore the contributions from sea quarks. There-
fore, the results are reliable in the range where x is not very
small. We calculate the dependence of the double spin asym-
metry ALL(x, y, z,PhT ) of π0 production on the variables x,
y, z and PhT with the spectator model. We consider three val-
ues 0.4, 0.5, 0.6 GeV for Λ existing in (3) through λR , in order
to see the sensitivity of the results to the parameter value of Λ.
The results of the calculation are presented in Fig. 5.

We also calculate ALL of π0 production for the integration
over the range of (x, y, z) for the setups of the experiments
of COMPASS, HERMES, and JLab. The following ranges are
covered by the setup of each experiment,

(A) COMPASS: 0.003 < x < 1.0, 0.1 < y < 0.9, and 0.2 <

z < 1.0;
(B) HERMES: 0.02 < x < 0.4, 0.25 < y < 0.85, and 0.2 <

z < 0.7;
(C) JLab: 0.15 < x < 0.48, 0.45 < y < 0.85, and 0.4 < z <

0.7.

The results are presented in Fig. 6 for three values of Λ: 0.4,
0.5, 0.6 GeV.
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Fig. 5. For the spectator model, ALL of π0 production as a function of PhT and x (a) with fixed y = 0.5 and z = 0.5, that of PhT and z (b) with fixed x = 0.5 and
y = 0.5, and that of x and z (c) with fixed PhT = 0.8 and y = 0.5. Λ = 0.4 GeV (a1), (b1), (c1), Λ = 0.5 GeV (a2), (b2), (c2), and Λ = 0.6 GeV (a3), (b3), (c3).

(a) (b) (c)

Fig. 6. For the spectator model, ALL of π0 production for the integration over the ranges of (x, y, z) for the setups of the experiments of COMPASS (solid),
HERMES (dotted), and JLab (dash-dotted line). (a) For Λ = 0.4 GeV; (b) for Λ = 0.5 GeV; (c) for Λ = 0.6 GeV.
3. Comparison with model based on factorization

3.1. Distribution and fragmentation functions

For the transverse momentum dependent distribution (frag-
mentation) functions, the ansatz which factorizes x(z) and
k⊥(p⊥) is often adopted. For example, Ref. [3] used the fac-
torized functions given by

f
q

1 (x,k⊥) = f
q

1 (x)
1

πμ2
0

exp

(
−k2⊥

μ2
0

)
,

g
q

1 (x,k⊥) = g
q

1 (x)
1

πμ2
2

exp

(
−k2⊥

μ2
2

)
,
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Fig. 7. For the model based on the factorization Ansatz, ALL of π0 production as a function of PhT and x (a) with fixed y = 0.5 and z = 0.5, that of PhT and z (b)
with fixed x = 0.5 and y = 0.5, and that of x and z (c) with fixed PhT = 0.8 and y = 0.5. (a1), (b1), (c1) for μ2

2 = 0.10 GeV2; (a2), (b2), (c2) for μ2
2 = 0.17 GeV2;

(a3), (b3), (c3) for μ2
2 = 0.25 GeV2.
(7)Dh
q (z,p⊥) = Dh

q (z)
1

πμ2
D

exp

(
− p2⊥

μ2
D

)
.

If we draw graphs for the width in k⊥ corresponding to Fig. 3
in the case of (7), we would get graphs of constants. If we use
x dependent μ2(x) which are sometimes used, the widths in
k⊥ of distribution and fragmentation functions would not be
constant and the results in this section would be modified. Such
models, which are not factorized ones, are not considered in this
Letter. Here, we only compare a factorized model given by (7)
with constant μ2 and a spectator model of power-law presented
by Jakob et al. together with the fragmentation function give
in (4).

For the integrated parton distribution functions appearing
in (7), we use the following functions [9,10],

xf u
1 (x) = xuv

(
x,μ2

NLO

) = 0.632x0.43(1 − x)3.09(1 + 18.2x),

xf d(x) = xdv

(
x,μ2 ) = 0.624(1 − x)1.0xuv

(
x,μ2 )

,
1 NLO NLO
gu
1 (x) = δu

(
x,μ2) = 1.019x0.52(1 − x)0.12uv

(
x,μ2

NLO

)
,

(8)gd
1 (x) = δd

(
x,μ2) = −0.669x0.43dv

(
x,μ2

NLO

)
.

For the integrated fragmentation function appearing in (7), we
use the following function [11],

(9)Dh
q (z) = Dπ+

ud̄

(
z,μ2

0

) = Nπ
u z−0.829(1 − z)0.949.

3.2. Double spin asymmetry

When one uses the factorized distribution and fragmentation
functions given in (7) for the calculation of �σLL and σ0 in (6),
one has

�σLL = y(2 − y)

xy2

1

μ2
D + z2μ2

2

× exp

(
− P2

hT
2 2 2

)
Σqe2

qg
q

1 (x)Dh
q (z),
μD + z μ2
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(a) (b) (c)

Fig. 8. For the model based on the factorization Ansatz, ALL of π0 production for the integration over the ranges of (x, y, z) for the setups of the experiments of
COMPASS (solid), HERMES (dotted), and JLab (dash-dotted line). (a) For μ2

2 = 0.10 GeV2; (b) for μ2
2 = 0.17 GeV2; (c) for μ2

2 = 0.25 GeV2.
(10)

σ0 = 1 + (1 − y)2

xy2

1

μ2
D + z2μ2

0

× exp

(
− P2

hT

μ2
D + z2μ2

0

)
Σqe2

qf
q

1 (x)Dh
q (z).

Then, using �σLL and σ0 in (10), one can calculate the double
spin asymmetry ALL(x, y, z,PhT ) from (5). Following Ref. [3]
we use μ2

0 = 0.25 GeV2, μ2
D = 0.20 GeV2, and three different

values: μ2
2 = 0.10, 0.17, 0.25 GeV2. The results are presented

in Fig. 7. We find that the graphs in Fig. 7 are characteristi-
cally different from the graphs in Fig. 5 which were obtained
by using the spectator model. For example, the PhT -behavior
of ALL is not sensitive to z-value in the case of the spectator
model, whereas it is very sensitive to z-value in the case of the
model based on the factorization ansatz.

We also calculate ALL of π0 production for the integration
over the range of (x, y, z) for the setups of the experiments of
COMPASS, HERMES, and JLab. The results are presented in
Fig. 8, which agree with the graphs in Fig. 1 of Ref. [3]. The
PhT -behaviors of the integrated ALL presented in Figs. 6 and 8
are also different for the two models. Therefore, it should be
possible to use such differences for discriminating experimen-
tally the spectator model and the model based on the factoriza-
tion ansatz. Then, we suggest that we can discriminate experi-
mentally these two models by measuring ALL(x, y, z,PhT ) to
obtain the information on which model is closer to the physical
reality.

4. Conclusion

Recently it is realized that it is important to know the trans-
verse momentum dependence of the distributions of partons
inside the nucleon. At first it should be useful to know how
realistic the factorization ansatz is. In this context, it should be
useful to be able to discriminate the spectator model and the
model based on the factorization ansatz. In this Letter we found
that the double spin asymmetries ALL(x, y, z,PhT ) obtained
by using the spectator model of power-law presented by Jakob
et al. and the model based on the factorization ansatz are char-
acteristically different from each other. Therefore, we suggest
that the measurement of ALL(x, y, z,PhT ) can be used as an
experimental discrimination of the two models.

We note that Ref. [6] studied a related subject in the gen-
eralized parton distributions (GPDs). It showed that the GPDs
derived from the spectator model of power-law and those from
the model based on factorizing the t -dependence of GPDs give
different properties of the form factors and the reaction ampli-
tudes.

Acknowledgements

We wish to thank Harut Avakian and Stan Brodsky for il-
luminating discussions. This work was supported in part by the
International Cooperation Program of the KICOS (Korea Foun-
dation for International Cooperation of Science & Technology),
and in part by the 2007 research fund from Kangnung National
University.

References

[1] P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461 (1996) 197;
P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 484 (1997) 538, Erratum.

[2] S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530 (2002) 99.
[3] M. Anselmino, A. Efremov, A. Kotzinian, B. Parsamyan, Phys. Rev. D 74

(2006) 074015.
[4] R. Jakob, P.J. Mulders, J. Rodrigues, Nucl. Phys. A 626 (1997) 937.
[5] A. Mukherjee, I.V. Musatov, H.C. Pauli, A.V. Radyushkin, Phys. Rev.

D 67 (2003) 073014.
[6] D.S. Hwang, D. Müller, Phys. Lett. B 660 (2008) 350.
[7] A. Kotzinian, Nucl. Phys. B 441 (1995) 234.
[8] D. Amrath, A. Bacchetta, A. Metz, Phys. Rev. D 71 (2005) 114018.
[9] M. Glück, E. Reya, A. Vogt, Eur. Phys. J. C 5 (1998) 461.

[10] M. Glück, E. Reya, M. Stratmann, W. Vogelsang, Phys. Rev. D 63 (2001)
094005.

[11] S. Kretzer, Phys. Rev. D 62 (2000) 054001.


	A method of experimentally probing transverse momentum dependent distributions
	Introduction
	Spectator model
	Distribution and fragmentation functions
	Double spin asymmetry

	Comparison with model based on factorization
	Distribution and fragmentation functions
	Double spin asymmetry

	Conclusion
	Acknowledgements
	References


