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Abstract

As a measure of performance, safety indicators are already used for many types of operations, such as in the offshore oil and gas

industry. The indicators are used by operators to enhance the safety and performance of the individual plants or vessels and total

productivity of the system.

This paper reviews existing safety analyses of the offshore wind industry, the onshore wind industry and offshore oil and gas indus-

tries. An offshore wind farm is divided into subsystems and operational phases. Safety indicators are developed for the phases and

subsystems by reviewing existing safety indicators from related industries and adapting them to the offshore wind industry. The

indicators for the individual subsystems and phases are then combined to provide safety indicators for the whole wind farm over

the lifetime. Finally, the indicators are matched against incident data from the offshore wind industry and an outlook for further

research and indicator validation is given.
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1. Introduction

Safety indicators as a measure of performance are already in place for many types of operations. Øien et al. present

the theoretical background of safety indicators in [1] and their application in [2]. Safety indicators are widely used in

the offshore oil and gas industry as presented e.g. by Skogdalen et al. [3] and Utne et al. [4]. Safety indicators are

used to enhance the safety and performance of the individual plants and total productivity of the system. This can be

achieved through proactive work preventing losses that becomes possible thanks to the indicators as stated by Pasman

et al. in [5]. The indicators are also used in political discussions to have a common framework when discussing

worker safety with unions. According to [6], indicators should be “complete, consistent, effective, traceable, minimal,

continually improving and unbiased”. When looking at safety indicators the question is not about the probability of an

accident, but whether it can happen at all. Until now, indicators are used in the offshore oil and gas industry, however
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no such indicators exist for the offshore wind industry (OWI). According to Hopkins [7], safety indicators are only

worth developing if they can drive improvement. A large amount of the energy costs is caused by downtime and

maintenance as described by Feng et al. [8] and Scheu et al. [9]. When enhancing the performance of an OWF, it is

important not to compromise safety of the maintenance personnel. Therefore safety indicators can in fact help drive

the improvement of the performance of an offshore wind farm and are hence worth developing.

In this paper, we define a safety indicator as a measurable representation of a risk influencing factor [1], where the

risk influencing factor is defined as an aspect of a system or an activity that affects the risk level of this system or

activity, as defined by Øien [10]. The aim of this paper is to identify safety indicators for the offshore wind industry

and establish a common framework for the installation and operational phase of an offshore wind park. This is done

by taking a holistic approach and considering an offshore wind farm (OWF) from the beginning of installation until

the decommissioning. The wind farm is divided into subsystems, according to the phase (installation, operation),

technical subsystems (substations, vessels, turbines and turbine subsystems) and operations (transport of material

and workers, turbine access, execution of maintenance actions). Existing analysis of the individual subsystems is

reviewed, taking into account analysis from other offshore industries and onshore wind energy. Based on this review,

safety indicators are developed for all the subsystems. The indicators are combined to provide safety indicators for

the whole wind farm. The indicators are validated with incident data and presented in the conclusions of the paper.

The paper is structured as follows. Section 2 gives an overview over the methodology used. The OWF with all the

subsystems is presented in Section 3. Section 4 reviews the existing analysis and presents the safety indicators for the

different subsystems. The indicators are related to reported incident data in section 5. Finally in section 6, the paper

concludes with a presentation of the developed safety indicators and gives ideas for further research.

2. Methodology

In this paper, an OWF is analysed by dividing it into different phases and subsystems. This is done by reviewing

existing literature on OWFs and adapting the subsystems. Subsystems of offshore wind turbines are presented e.g. by

Arabian-Hoseynabadi et al. [11] and Faulstich et al. [12].

This paper further presents a review of existing analysis in the field of health and safety in relation with the OWI.

Since few publications exists specifically on the OWI, analysis from related fields namely the offshore oil and gas

industry and onshore wind industry are reviewed to cover additional perspectives on the topic.

The SINTEF report on health and safety by Tveiten et al. [13], investigates among others hazards and accident scenar-

ios for OWFs. The report on Worker Health and Safety by the Transportation Research Board [14] also investigates

hazards of working on an OWF. Two reports by the G9 Offshore wind health and safety association [15,16] give an

overview of incidents and accidents on OWF and provide a breakdown of the accidents according to incident areas

and work processes.

Aneziris et al. [17] investigate hazards for onshore wind farms, reviewing also the database of the Caithness Wind-

farm Information Forum [18]. This database is regularly updated, the authors used the first 1142 reported accidents,

accessing the database in 2012. Arabian-Hoseynabadi et al. [11] present annual failure rates and risk priority numbers

(RPN) for the individual subsystems. Faulstich et al. [12] also give annual failure rates and consider downtime per

failure for the subsystems discussed in their paper. We present the failure rates from both papers and give a compari-

son and discussion of the values.

For the analysis of offshore structures in the offshore oil and gas industry, we chose a paper by Skogdalen et al. [3] fo-

cusing on safety indicators for deep water drilling blowouts and a paper by Utne et al. [4] on shutdown preparedness.

To cover the external factors that influence the performance and safety of an OWF, we review the work of Dai et al.

[19] on the risk of collision between vessels and offshore wind turbines. Dai et al. also identify risk reducing measures

which we present and discuss as well.

3. Description of the wind farm and its subsystems

When considering an OWF, the main stakeholder involved is the WF operator. The operator of a wind farm

(WF) is interested in maximizing the performance of the WF in order to maximize the profits. Both downtime and
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Table 1. Turbine subsystems in the two papers and their equivalences

Faulstich et al. Arabian-Hoseynabadi et al.

generator generator

gearbox gearbox

mechanical break mechanical break

yaw system yaw system

hydraulic system hydraulics

rotor hub rotor and blade assembly

rotor blades

electronic control electrical control

electrical system grid and electrical system

drive train main shaft

support and housing tower, foundation and nacelle

sensors

pitch control system

maintenance are expensive, so improving the performance is vital to maximizing profits. The main performance

requirement for the OWF is power production. The production of power depends on the availability and operation of

the WF subsystems like the turbine itself, substations and power cables. To monitor the performance, key performance

indicators like the energy-based availability can be used. We do not investigate the monitoring of performance in

this work. Rather we want to focus on safety indicators that enable the operator and other stakeholders (worker

unions, maintenance providers) to monitor the system and worker safety, while maximizing profits with the help of

key performance indicators. The analysis of the main stakeholder and subsystems corresponds to the first steps in a

system engineering process [20] and our analysis could be further extended using this approach. Since we want to see

the OWF through all the phases of operation, we begin with identifying the operational phases we want to investigate.

Aneziris et al. describe three different operational phases in their paper [17]. These are “installation”, “commission”

and “maintenance/operations”. In the SINTEF report [13], Tveiten et al. chose “installation and commissioning”,

“operations”, and “maintenance” as their operational phases. To compare input from both papers, we combine the

categories “installation” and “commissioning” into one phase and choose “maintenance and operations” as second

phase.

The next part of our analysis will be the individual turbines as parts of the whole OWF. In their paper, Arabian-

Hoseynabadi et al. [11] focus on one individual turbine and identify eleven turbine subsystems, listed in Table 1. The

authors further investigate these subsystems and divide them until they reach a total of 107 parts in a wind turbine.

However, the individual parts are not reported and can hence not be used here. Still, considering the eleven subsystems

is already enough, when combined with the two different operational phases and additional subsystems outside the

turbine. Faulstich et al. [12] identify twelve turbine subsystems as presented in Table 1. They do not divide the system

into more parts and look at failure rates for these turbine subsystems. Combining the two turbine subsystems “rotor

hub” and “rotor blades” discussed by Faulstich et al. makes it possible to compare the failure rates to those presented

by Arabian-Hoseynabadi et al.

For the analysis of the support structure of the wind turbine, we only consider general reviews of the oil and gas

industry and do not consider OWF specific structures apart from the tower mentioned above. Since offshore structures

in the oil and gas industry are usually larger and have different properties than turbine structures, these analyses will

not match the OWI exactly and review of different OWI specific support structures, such as monopiles, jackets and

floaters should be considered for further work. Subsystems of the OWF outside the turbine include vessels, access

systems, substations, cables and organizational structures. In this paper, we focus on the collisions between vessels

and wind turbines, as considered by Dai et al. [19].

4. Safety indicators

In this section we present the safety indicators as described in existing literature. First we discuss hazards during

the life time of an OWF, separately for each operational phase. These hazards can be translated into safety indicators
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by e.g. monitoring the number of incidents due to the hazards. Next, possible failures for a single turbine and its

subsystems and indicators from related industries are reviewed. The failures in a turbine can be related to safety

indicators, since a higher failure probability will lead to more frequent repair, which in turn enhances the likelihood

of other risk factors. Finally, indicators for the risk of collision with a vessel are presented.

4.1. Hazards according to phases

The hazards according to operational phases, identified by Tveiten et al. [13] and Aneziris et al. [17] are presented

for the installation and commissioning phase in Table 2. In both phases Tveiten et al. focus mainly on properties

of the system, such as slippery surfaces, dangerous substances and failures in the organizational structure. Aneziris

et al. however, focus their hazards on the work tasks that are carried out, like mechanical or electrical work. This

difference in approach makes it difficult to compare the results. However, some hazards are being identified in both

publications and named differently. Both lists recognize the danger due to the height of the turbine. This can be

measured by a safety indicator measuring the number of incidents due to the identified hazards. These are “falling

structure/load/object”, “kinetic energy” and “potential energy” in Tveiten et al. and “contact with falling, hanging or

moving objects” by Aneziris et al. The hazards concerned with marine and helicopter operations can be referenced

to the hazards concerned with moving vehicles by Aneziris et al. Safety indicators can measure again the number of

occurring incidents due to these hazards. External factors such as weather, are only considered by Tveiten et al. and

not included in the analysis by Aneziris et al. In general the analysis by Aneziris et al. is narrower than the analysis

by Tveiten et al. However, having many different indicators about dangerous working environment or distinguishing

between different classes of dangerous substances as in the analysis by Tveiten at al. is not practical to monitor. A

solution to this would be to group the hazards by dangerous substances together and not report the details. This leads

to one safety indicator presenting the number of incidents due to contact with (hazardous) substances. The same could

be done for external factors, like wind speed and direction, wave height and persistence or possibility of earthquakes.

It is possible to define certain thresholds for these factors, as done by Scheu et al. [9] for wave height and wind speeds,

and then only report violations of the thresholds as part of the safety analysis.

4.2. Failures in a single turbine

Reviewing the analysis of Faulstich et al. [12] and Arabian-Hoseynabadi et al. [11], we analyze a single turbine

as part of an OWF. As described, the authors consider different subsystems for a turbine. They evaluate different data

on the annual failure rates of turbines and conclude that the subsystems with the highest failure rates are “electrical

systems”, “electronic control” and “rotor and blade assembly”. While both papers agree on the three subsystems with

the highest failure rates, analysis differs for the subsystems with lower failure rates. Since high failure rates result

in more frequent maintenance and repair actions, high failure rates increase the risk of accidents for the maintenance

personnel. In a safety analysis, the stakeholder aims to monitor and consequently improve the workers safety. Since

an improvement in the failure rates will lead to fewer repair actions and therefore increase the workers’ safety, we

suggest monitoring the failure rates as part of a safety analysis. An improvement in the turbine is most likely in the

subsystems with the highest failure rates, so for a first safety analysis considering those three subsystems will be

sufficient. In further development of the safety indicators, new analyses and comparison between the existing data

should be considered to specify failure rates for all turbine subsystems and further validate the already existing failure

rates.

4.3. Safety indicators from oil and gas industry

Skogdalen et al. [3] develop safety indicators for offshore oil and gas drilling. The indicators are summarized in

Figure 3 in their paper. The indicators for operational aspects, schedule and costs can be used for the OWI just as they

are for the oil and gas industries. The drilling phase in oil and gas industry can be compared with the installation phase

of the WF. When looking at the “well incidents” the indicators can no longer be used and have to be adapted to the

specific incidents that can occur in the OWI as presented in the G9 reports [15,16]. The indicators for the “operator

well response” can again be used for the OWI, by simply changing “well incident” to “turbine incident” and “well

response action” to “incident response action”. The indicators concerned with the technical condition of the safety
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critical equipment need to be adjusted to the wind farm as well. Utne et al. [4] develop twelve indicators for shutdown

preparedness in oil and gas industry. Shutdown preparedness means to schedule maintenance tasks ahead of time to

fulfill them during unexpected or planned shutdown of the system. This relates to the OWI such that the maintenance

has to be planned ahead and performed during weather windows that allow access to the OWF. Utne et al. consider

five qualitative indicators. The number of work orders (WO) with a low man hour estimate is an indicator for poorly

planned WOs. The same holds for the number of WOs missing location codes or short descriptions. The indicator

measuring if the needed material and spare parts are in stock also judges how well a WO is prepared. Assessing

the work scope is necessary to decide whether a maintenance job needs a shutdown to be performed. This indicator

will not be useful in the OWI, since weather windows are used instead of shutdowns and maintenance is not possible

without accessing the turbine. The indicators concerned with volume as presented in Table 1 in their paper can again

be used in the OWI. The two indicators on utilization can also be used in the OWI. They can help to see how well the

weather windows are used to perform maintenance tasks and how this impacts the future turnaround.

4.4. Collisions between vessels and turbines

Dai et al. investigate the risk of collisions between vessels and offshore wind turbines [19]. They consider four

different vessel types and seven different collision scenarios in their analysis. The overall conclusion of the paper is

that collisions may cause structural damage to the turbines. Therefore it is important to include the risk of collisions

in any safety analysis and we take a closer look on the risk mitigating aspects presented by Dai et al. They can be

monitored and the violation of rules, crossing of thresholds or lack of monitoring can be used as safety indicators. Dai

et al. group their risk mitigating aspects into six groups. Considerations about the energy that can be absorbed during

a collision without damaging the structure are usually made during the design phase. Depending on the location of

the turbine these energies can be very low (only maintenance vessels are expected to interact) or very high (risk of

being hit by oil tankers). The presence or absence of a specific boat landing structure can also be monitored as a safety

indicator. If a structure is present, the damage to the turbine while landing a maintenance vessel is lower. “Vessel

capability” and “crew competence” are important for mitigating risk and ensuring safe operations according to Dai et

al. The capability of the crew can be measured by hours of experience or training hours. Reliability of the navigation,

propulsion and control system should be high. The safety indicators should reflect the risk of a possible failure. As

already stated above, the environmental conditions like sea state and wind speed need to be monitored and threshold

levels established. The number of their violations can give an additional safety indicator. In the organizational

part of the system, procedures and maintenance strategies are developed as well as contingency plans. Follow up

analysis is conducted based on the incidents reported. For monitoring this, multiple indicators can be monitored.

Procedures can be used to set the course of the vessel not directly against the turbine structure but slightly off, to

avoid collision or to establish safety zones around OWFs to prevent external vessels from crashing. The violation of

these procedures can be measured, either in absolute numbers of vessels entering the safety zone or in terms of the

number of turbine accesses per passing vessel. Even though all these indicators have the goal to prevent collisions,

Dai et al. suggest that emergency procedures should be established in order to ensure safety. The existence or the

lack of such emergency procedures and evacuation facilities should also be monitored by safety indicators. Since the

concept of safety indicators depends heavily on the reporting of incidents and accidents it is necessary to establish a

suitable reporting system for the OWF. The compliance with the system can again be measured by indicators, when

reporting the lack of incidents is requested. Dai et al. focus on turbines with monopile structures, additional analysis

of collisions between vessels and other structure types like jackets or floating turbines should be considered in future

work.

5. Indicators and incident data

This section reviews the incident data reports from the G9 Offshore wind health and safety association [15,16] and

matches them to the indicators and hazards discussed before. In 2013 a total of 616 incidents was reported. This

number rose in 2014 to 994 reported incidents. However, the lost time injuries frequency, comprised of the percentage

of fatalities and lost work days in the total number of reported incidents, decreased by 34%. Therefore the authors

suggest that the reporting system has improved leading to a higher number of reported incidents. This higher number



 H
elene Seyr and M

ichael M
uskulus  /  E

nergy P
rocedia   94  ( 2016 )  72 – 81 

77

Table 2. Hazards during installation and commissioning

Type of hazard Tveiten et al. Aneziris et al.

Uncontrolled movement of object Falling structure/load/object Contact with falling objects from crane or load

Kinetic energy Contact with falling objects from other

Potential energy Contact with hanging or swinging objects

Contact with flying object machine or tool

Contact with moving parts of a machine

Transportation Marine operations (ship collision, man overboard) Struck by moving vehicle

Helicopter operations In or on moving vehicle with loss of control

Miscellaneous Vibration (during testing)

Electrical dangers Short circuit Contact with electricity - tool

Overcharge Contact with electricity - electrical work

Electrostatic phenomena (shock, spark) Contact with electricity

Exposure to dangerous work environment Fire and/or explosion Fire - working near flammables or combustibles

Radiation

Noise

Indirect effects on worker health Physiological effects due to heavy lifting, repeated movements, uncomfortable positions

Psychological effects

Uncontrolled movement of person Work at height Fall from height - fixed ladder

Slippery surfaces Fall from height - other situation

Base/ground failure Fall on same level

Exposure to dangerous material Flammable materials Fire - working near flammables or combustibles

Poisonous materials

Harmful material

Oxidizing/corrosive material

Battery acid

Organizational malfunctions Insufficient/missing safety equipment Trapped between

Incorrect use of machinery/tools Contact with hand held tool by self

Lack of relevant expertise

Several actors/companies involved in same operation

Time pressure

External factors Wind

Waves and currents

Lightening

Earthquake

Sabotage

Terrorism
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however does not automatically imply a decrease in worker safety. Following the same structure as for the indicators,

we first analyze the general incidents before looking at the turbine specific incidents.

In 2013, 26% of recorded incidents were due to lifting operations including 9 incidents that lead to lost work days.

In 2014 this number decreased to 14% of the total incidents, including three lost work day incidents. Lifting operations

were not considered as an individual hazard in any of the reviewed analyses. The closest presented hazards were those

concerned with “work at height” and “falling structure/load/object” in Tveiten et al. [13] and “contact with falling

objects from crane or load/from other” and “contact with hanging or swinging objects” by Aneziris et al. [17]. In

both incident data reports, incidents that occurred while working at height are listed. For 2013 a total of 45 incidents

have been reported and for 2014 the number of reported incidents is 77. Working at heights contributes hence to just

over 7% of the reported incidents in both years. Monitoring this risk with an individual indicator thus seems practical.

Incidents due to dropping objects are listed separately in the 2014 incident data report, with a total of 93 incidents

due to dropped objects, of which none cause lost work days. However, the largest part of those dropped object

incidents occurred during lifting operations or working at heights. This supports the intuition, that during lifting parts

or working at heights is the time when dropping occurs most frequently. Having indicators in place for those cases, as

suggested by the literature, is considered to be reasonable by us. Distinguishing between different sources of falling

objects as suggested by Aneziris et al., however, seems to be unnecessary. A distinction between work processes

during which the dropping occurs, as done in the 2014 incident data report seems more desirable. Marine operations,

with 131 reported incidents in 2013 and 237 in 2014 are accounting for more than 20% of all reported incidents in

both years. This includes maritime operations, transfer by vessels, vessel mobilization and vessel operations. Out of

these 106 and 167 incidents occurred on vessels, causing 7 lost work days in 2013 and 12 in 2014. In other words

10% of the lost work days in 2013 were caused on vessels during marine operations. This percentage rose in 2014 to

over 25%. Monitoring the health and safety of workers on vessels during marine operations therefore seems to be an

integral part of any safety analysis.

For the incidents related to specific turbine subsystems, the nacelle region accounts for 40 reported incident in

2013 and 83 in 2014. These are 6% of the reported incidents in 2013 and 8% in 2014. The nacelle region hosts most

of the subsystems of a wind turbine other than the rotor. Therefore work on any of the subsystems could lead to an

incident in the nacelle region. In 2013 four work days were lost in the nacelle region, one of them caused by manual

handling, one by operating plant and machinery and two work days by “other” work. In 2014, four work days were

lost, of which three were lost due to manual handling and one due to operating plant and machinery in the nacelle.

This analysis does not give information on the subsystem that was involved in the incident. Knowing during which

activity the incident occurred, gives information on how to prevent it. In other words, knowing the activity that causes

incidents give an operator the chance to train workers for these situations to prevent incidents from happening. In the

hub and blade area 24 incidents were reported in 2013 and 20 in 2014. These account for 4% and 2% of the reports.

In both years, one work day was lost in the hub and blade area. Even though these number are not high, we suggest to

survey the hub and blade assembly as an individual subsystem, due to its unique function within the turbine and the

resultant unique work tasks.

The incident data report from 2013 mentions a total of 15 incidents with chemicals and hazardous substances,

comprising under 3% of all incidents. In 2014 this number went down to 10 incidents (1%). This supports the pre-

viously mentioned idea to monitor several hazard categories mentioned by Tveiten et al. with one common safety

indicator. These are “flammable materials”, “poisonous materials”, “harmful material”, “oxidizing material”, “cor-

rosive material”, “carcinogenic material”, “material harmful to genes” and “battery acid”. A suggested name for the

new indicator is “contact with hazardous substances”.

Categories for organizational problems or collisions are not included in the G9 incident data reports. Hence the

indicators for these cannot be validated. System safety theory advises to include human error in the analysis. Therefore

the authors suggest to keep the indicators for organizational failures in place. No collisions happened during the

incident data recording interval and therefore no such incidents are recorded. Since a collision of a ship and a turbine

has extensive consequences, monitoring the risk and possibility of such a collision seems sensible.

Two incident areas are mentioned in the data reports, where no indicators were considered in our previous analysis.

The transition piece area accounts for 32 and 53 reported yearly incidents in 2013 and 2014 respectively. These are

just over 5% of incidents, accounting for 2 lost work days in both years. Since this is the area where maintenance

personal accesses the turbine and vessels could collide with the structure, detailed monitoring of the type of work
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Table 3. List of Proposed Safety Indicators

Category Subcategory Indicator (Description) Measure

Organizational For organizational safety indicators, please see Utne et al. [4], Table 1, indicators Q1, Q2, Q3, Q4, U1, U2, U3, U4, U5, V1, V2 and Skogdalen et al. [3], Figure
3, indicators for “schedule and costs”, “operational aspects” and “Operator well response”. For the indicators concerned with the well response, note that
“Time from first indication of well incident to first response” is substituted by “Time from first indication of subsystem failure to first response” and “Evaluation
of well response action” is replaced by “Evaluation of repair action/failure response action”.

Technical failure All turbine subsystems Annual failure rates for turbine subsystems (The mean number of failures per year for each turbine subsystem gives
a probability of failure).

Probability

Work Environment

and Training

Lifting The number of incidents during lifting operations (This indicator is measured as a percentage of the total num-
ber of lifting operations performed. Incidents caused by falling objects are monitored separately and are therefore
excluded.)

Percentage

Work at heights The number of incidents during work at heights. (The indicator is measured as a percentage of the total number
of work actions performed at heights. Incidents due to falling objects are excluded and monitored by a separate
indicator.)

Percentage

Falling objects The number of incidents due to the falling of an object during any operation in the WF (measured as a percentage of
the total work actions performed).

Percentage

Hub and Blade Number of incidents occurring in the Hub and Blade area of the rotor of a turbine during work actions. (The number
is given as a percentage of the total work actions in the hub and blade area and give the percentage of work at the
rotor that results in incidents.)

Percentage

Nacelle electrical Number of incidents caused by electrical work in the nacelle (measured as a percentage of all electrical work actions
undertaken).

Percentage

Nacelle mechanical Number of incidents caused by mechanical work in the nacelle (measured as a percentage of all mechanical work
actions undertaken).

Percentage

Contact with Substances Number of incidents where a worker was exposed to a hazardous substance (measured as a percentage of total number
of work actions performed in a place with possible exposure).

Percentage

Substation Number of incidents occurring in the substation (measured as percentage of the total number of work actions per-
formed in the substation).

Percentage

Transport and Traffic Helicopter incidents Number of incidents happening during transportation with a helicopter. (This includes material and worker trans-
portation to and from the wind farm. Given as a percentage of total transportation actions with helicopters.)

Percentage

Vessel incidents Number of incidents happening during transportation with a vessel. (This includes worker and material transportation
both to and from the wind farm and is given as a percentage of total (vessel) transportation actions.)

Percentage

Transition piece incidents Number of incidents during turbine access in the transition piece area (given as a percentage of total turbines accesses
in the TP area).

Percentage

Collisions internal Number of vessel accesses complying with the safety procedure. (Measures the risk of vessels, part of the WF,
colliding with the turbine structure or substation by measuring the number of vessel accesses complying with a
procedure, like setting the vessel course not directly at the turbine, as percentage of the total accesses to the WF.)

Percentage

Collisions external Number of safety zone violations. (The number of wind farm accesses per violation of the safety zone measures the
risk of an external vessel colliding with the turbine structure or substation.)

Percentage

Boat landing structure Presence of a boat landing structure. (A landing structure improves the energy absorbed by the structure.) Binary

External Factors Wind Number of vessel/helicopter operation in violation of wind speed thresholds (as a percentage of total number of
operations).

Percentage

Wave Number of vessel operations in violation of wave height restrictions (as a percentage of total number of vessel
operations).

Percentage

Seismic risk Peak ground acceleration factor. (This is a factor of standard gravity g providing information about the risk of
earthquakes. It can be obtained from seismic hazard maps.)

Factor
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carried out when an incident happens is suggested. Substations, both onshore and offshore, including high voltage

areas and cable work caused 18 and 25 incidents, respectively. This is approximately 3% of the total reported incidents

each year. In 2013 substation work and cable areas accounted for one lost work day. In 2014 no work day was lost

in the substation area. The number of incidents is not exceptionally high in the substation area. However, due to the

unique function and properties of it, having an indicator in place for the substations is recommended. Further, due to

its unique properties, monitoring of this indicator is relatively easy.

6. Conclusion and Further Research

In this paper, we presented a review of existing literature on system and worker safety specific to the field of offshore

and onshore wind industry including some related analyses from the offshore oil and gas industries. The analysis

includes both the installation and operational phase of the OWF as well as individual turbines, turbine subsystems

and the interaction with vessels. Finally, the incident data reported by G9 [15,16] was connected to the hazards

described in other publications like Tveiten et al. [13] and Aneziris at al. [17]. Most of the indicators were found to

be relevant, when compared to reported incident data. However, grouping together different indicators concerned with

hazardous substances can facilitate the recording process and will most likely enhance the utility of the indicators.

Additional indicators for the access to the turbine and substations are recommended as well as indicators monitoring

the organizational structure and reporting system. The full list of the proposed safety indicators for the wind farm can

be found in Table 3. The table includes the categories and names of indicators, a short description and a suggestion for

measuring. For future research, additional review of other structures than monopiles is highly recommended. In a next

step, face validation by industrial partners namely WF operators should be considered. Finally, the safety indicators

have to be used in operations, data needs to be collected and the indicators need to be revised based on the collected

data. A continuous loop of adjusting the indicators based on available incident data will help improve the indicators

and can eventually lead to an improvement of the worker health and safety in an offshore wind farm.
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