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a b s t r a c t 

Support vector machine is a classification model which has been widely used in many nonlinear and high 

dimensional pattern recognition problems. However, it is inefficient or impracticable to implement sup- 

port vector machine in dealing with large scale training set due to its computational difficulties as well 

as the model complexity. In this paper, we study the support vector recognition problem mainly in the 

context of the reduction methods to reconstruct training set for support vector machine. We focus on the 

fact of uneven distribution of instances in the vector space to propose an efficient self-adaption instance 

selection algorithm from the viewpoint of geometry-based method. Also, we conduct an experimental 

study involving eleven different sizes of datasets from UCI repository for measuring the performance of 

the proposed algorithm as well as six competitive instance selection algorithms in terms of accuracy, re- 

duction capabilities, and runtime. The extensive experimental results show that the proposed algorithm 

outperforms most of competitive algorithms due to its high efficiency and efficacy. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

With the exponential growth of online information, finding

ways of organizing data efficiently and effectively has become an

important issue. Hence, in recent years, machine learning methods

provide some solutions and have achieved excellent performance

in a wide variety of fields [1] such as data mining, handwritten

recognition, information retrieval, face detection, social network,

diseases recognition and so on. 

Support Vector Machine (SVM) [2] is an effective machine

learning method with a solid theoretical foundation. It achieves a

high prediction accuracy by learning the optimal hyperplane from

training set, which greatly simplifies the classification and regres-

sion problems. Generally, SVM has many excellent features, such

as high robustness and generalization ability with a small number

of samples. That is, SVM determines the final optimal hyperplane

by the minority support vectors with taking into consideration the

model complexity and learning ability. 

However, training SVM on large datasets is a very slow process

and has become a bottleneck, since the quadratic programming

(QP) problem that implies high training time complexity O ( n 3 )
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nd space complexity O ( n 2 ) needs to be solved [1,3,4] . Therefore,

peeding up the training of SVM is a notable and significant is-

ue. Hence, many methods have been developed to reduce the high

omputational complexity of SVM training on large scale datasets,

nd the survey in literature [5] can be referred to for detailed in-

roduction. The well-known techniques [5] are sequential minimal

ptimization (SMO) [6] , chunking [2] , decomposition [7] , and sam-

ling [8] . 

The first type of above mentioned approaches speed up the

raining process by dividing the original QP problem into small

ieces to reduce the size of the whole QP problem, such as the

ethods proposed by Dong [1] and J. Platt [9] . Although this type

f methods solve the memory requirement issue in huge amounts

f data, it still costs long processing time since the time con-

umption is closely related to the number of instances. The sec-

nd kind of approaches make use of low-rank approximation, such

s greedy approximation [10] , matrix decomposition [7] and so on.

he performance of these techniques has been extensively exam-

ned; however theoretically these techniques do not necessarily

ave high efficiency. Also, this kind of methods are relatively ex-

ensive in term of computation resource consumption. The third

roup of approaches consist in scaling down the training set by

electing support vector candidates, thereby using a small sub-

et to train SVM [11] . In fact, SVM only relies on a fraction of
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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amples, i.e. support vectors, thus we can efficiently remove the

on-support vectors without affecting the classification accuracy.

ence, instance selection methods are proved to be ones of the

ost direct and effective ways for SVM to solve large scale classi-

cation problems and have been an attractive topic for many re-

earchers. 

Although many instance selection methods have been devel-

ped to successfully accelerate the training process of SVM on

arge scale datasets, most of them appear to have some drawbacks.

or example, Reduced SVM (RSVM) [8] and Random Sampling Al-

orithm (RSA) [12] use a random algorithm which leads to uncer-

ain results, while KMSVM [13,14] using clustering technology per-

orms poorly when the classes are overlapped. In this paper, we

ropose a new efficient instance selection algorithm to reconstruct

raining set, which solves many serious difficulties, such as lack of

emory and long processing time suffered by the existing instance

election algorithms in face of millions of records in their com-

on applications. The proposed algorithm, named as Shell Extrac-

ion (SE), extracts the useless instances from training set, thereby

reserving the maximum of support vectors. That is, the proposed

lgorithm does not directly select the support vectors which are

ifficult to be identified, but extracts the instances which are not

ikely to be support vectors. Meanwhile, we can adjust the strength

o reconstruct different size of subsets. It should be pointed out

hat there are many remarkable properties in the proposed algo-

ithm, which are summarized as follows. 

1. It obtains the higher classification accuracy than most of the

competitive algorithms. 

2. It has a linear time complexity. 

3. It can easily deal with multi-class problem. 

4. The reduction intensity can be easily adjusted by its inputting

parameter. 

The rest of the paper is organized as follows. Section 2 intro-

uces a brief overview of instance selection methods for scaling

own training set. Section 3 describes three geometry-based meth-

ds in detail. Section 4 explains the theory of the proposed algo-

ithm and analyzes its complexity. The conducted experiments and

esults are presented and discussed in Section 5 . Finally, conclusion

nd further work are given in Section 6 . 

. Instance selection: a brief review 

The essence of support vector machine is to find the optimal

lassification hyperplane. The optimal hyperplane balances a term

f forcing these partition between class A and B to maximize the

argin of separation. Considering a set of linear separable sam-

les ( x i , y i ) , i = 1 , 2 , · · · N, where x i ∈ R D is the features, and y i ∈
 +1 , −1 } is the corresponding label. The classification hyperplane 

quation in D-dimensional space is ω · x + b = 0 . According to the

equirements of optimal hyperplane, the problem is transformed

nto the QP problem as follows: 

in �( ω ) = 

1 

2 

|| ω || 2 (1) 

.t. y i [ ( ω · x i ) + b ] ≥ 1 , i = 1 , 2 , 3 , · · · , N . 

If the training data is not linear separable, the formula above

ust be modified to allow the classification violation samples as

elow: 

in �( ω , ξ ) = 

1 

2 

|| ω || 2 + C ·
( 

N ∑ 

i =1 

ξi 

) 

(2) 

.t. y i [ ( ω · x i ) + b ] ≥ 1 −ξi , i = 1 , 2 , 3 , · · · , N 
i ≥ 0 , i = 1 , 2 , · · · , N . 

By introducing Lagrange multipliers, the dual formula of this

roblem can be rewritten as follows: 

ax W ( α) = 

N ∑ 

i =1 

αi −
1 

2 

N ∑ 

i, j=1 

αi α j y i y j 
(

x i · x j 

)
(3) 

.t. 0 ≤ αi ≤ C, i = 1 , 2 , · · · , N 

N 
 

i =1 

y i αi = 0 . 

Solving the problem above, we obtain the classifier as follows:

f ( x ) = sign 

( 

N ∑ 

i =1 

αi y i ( x · x i ) + b 

) 

, (4) 

here αi is the solution of QP problem. In fact, the samples with

i > 0 define the optimal separating hyperplane, and the sam-

les corresponding to the equality αi = 0 are non-support vectors

hich do not affect the results of training SVM. Unfortunately, in

he training set, the number of support vectors is far less than the

umber of non-support vectors which occupy large storage space

nd consume a large amount of computing resources without any

elp for classification. Therefore, in order to improve the training

peed of SVM and reduce unnecessary waste of resources, Instance

election (IS) is a kind of feasible method, which has attracted the

ttention of many researchers. 

Instance selection [15] , also known as Prototype Selection (PS)

16] or reduction techniques [17] , aims to select a subset of

amples from the original training set, and it has the capacity

o choose relevant samples and remove noisy and/or redundant,

ithout generating new artificial data which is frequently yielded

y Prototype Generation (PG) or abstraction methods [18] . A wide

ariety of IS methods based on different models for different appli-

ations have been proposed [17,19,20] . They can be broadly divided

nto three groups: condensation, edition, and hybrid methods. The

ain difference of them is dependent on the type of search carried

ut by the IS methods, whether they seek to retain border points,

entral points, or both of them. Condensation methods aim to re-

ain border points which are closer to decision boundaries. The in-

uition behind these methods is that internal points do not affect

lassification as much as border points, since the hyperplanes be-

ween classes are mainly decided by border points. Thus, internal

oints can be removed with relatively little effect on classification.

dition methods, which are considered the opposite of condensa-

ion techniques, obtain smoother boundaries with border points

emoved which should be seen as noise. That is, such algorithms

o not remove internal points that do not necessarily contribute

o the decision boundaries. The effect of edition methods is to im-

rove the generalization accuracy in testing data. Hybrid methods

ry to compute a smallest subset S , which allows the removal of

nternal and border points based on criteria followed by the two

revious strategies, in order to maintain or even increase the gen-

ralization accuracy in testing data. It should be pointed out that

he reduction capability of condensation strategies is comparatively

igher than edition methods, since there are fewer border points

han internal ones in most of datasets. 

Instance selection has been broadly applied in classification

21] , regression [22] and time series prediction [23] . Usually, dif-

erent problems should be dealt with different IS strategies. For

nstance, condensation methods are probably suitable for reduc-

ion for training SVM, while edition strategies are more suitable
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for the scene of using k-Nearest Neighbors (kNN) classifier. As we

know, kNN suffers from several drawbacks such as high storage re-

quirement, low efficiency in classification response, and low noise

tolerance. Thereby, the objective of reduction for kNN rule is to

compute a small consistent subset. The concept of consistency is

formally defined as below [21,24] : given a non empty set X , a sub-

set S of X (i.e. S ⊆ X ) is consistent with respect to X if the nearest

neighbor rule using S as training set can correctly classify all in-

stances in X . Thus, according to the definition of consistency, if we

want to reconstruct a subset S to be used as the training set of kNN

rule, edition and hybrid strategies maybe a good choice. However,

the objective of this paper is to discuss the reduction methods for

training SVM, thus we will mainly focus on condensation strate-

gies. 

Under the condensation taxonomy framework, there are still

many issues, such as the order of search and the technologies of

employ, can be involved in the further definition of the taxonomy.

When searching for a subset S of instances from original training

set X , there are several directions in which the search can proceed

[19] : incremental, decremental and batch. The incremental search

process starts with an empty subset S , and iteratively adds each

instance in X to the subset S if this instance satisfies the prede-

fined criteria. The Condensed Nearest Neighbor (CNN) [24] pro-

posed by Hart is considered to be the oldest formal proposal un-

der this scheme. After CNN proposed, Ullmann’s CNN [25] ap-

peared to be more successful than Hart’s CNN. Later, Tomek’s CNN

[26] was presented to consider only points close to boundary and

remove the disadvantages of CNN. After that, a two-stage algo-

rithm named as Mutual Neighborhood Value (MNV) [27] was intro-

duced, which uses the concept of mutual neighborhood for select-

ing samples. Recently, modified CNN [28] , generalized CNN [29] ,

fast CNN [30] and Prototype Selection based on Clustering (PSC)

[31] have been proposed one by one. One advantage of these in-

cremental schemes is that they are suitable for dealing with data

streams or online learning. However, the disadvantage is that they

are prone to errors unless more information is available, since little

information can be obtained in the beginning. Furthermore, these

algorithms mostly depend on the order of presentation of samples.

The decremental search begins with the original training set X ,

and then searches for instances to remove from S. Also, the order

of presentation is important for this kind of methods. The Minimal

Consistent Set (MCS) [32] selects the samples in the order of sig-

nificance of their contribution for enabling the consistency prop-

erty. It should be pointed out that MCS leads to an unique solu-

tion irrespective of the initial order of presentation of instances.

The Selective Nearest Neighbor (SNN) [33] algorithm is a represen-

tative of decremental methods, which produces a Selective Subset

(SS) that can be seen as a condition stronger than that of consis-

tency in order to find an alternate method for approximating near-

est neighbor decision surfaces. Generally, a subset S of X is a se-

lective subset, if it satisfies the following criteria [33] that (i) sub-

set S is consistent, (ii) the distance between any sample and its

nearest selective neighbor is less than the distance from the sam-

ple to any sample of the other class, and (iii) subset S should be

the smallest one that satisfies the criteria (i) and (ii). Based on the

concept of SS, the Modified Selective Subset (MSS) [34] primarily

tries to find a better approximation to decision boundaries asso-

ciated with the SS. Unlike the incremental strategies, decremental

schemes need all the training instances to be available for exami-

nation each time. Thus, one disadvantage of decremental schemes

is their higher computational cost than incremental ones. 

Another way to search condensation subset is in batch mode.

That is, each sample should be checked before selecting any of

them. Then, all the samples that satisfy the consistent criteria are

retained together. Many algorithms fall into this category. For ex-

ample, Patterns by Ordered Projections (POP) [35] is to calculate
hich set of patterns could be covered by a “pure” region and then

liminate those inside that are not establishing the boundaries. The

mproved kNN [36] aims at “sparsifing” dense homogeneous clus-

ers of patterns of any single class. This implementation involves

teratively eliminating patterns which exhibit high attractive ca-

acities. The template reduction kNN [37] is based on defining the

hain list which is a sequence of nearest neighbors from alternat-

ng class. Then, the authors set a cutoff for the retained patterns

ased on the fact that patterns further down the chain are close to

he classification boundary. Moreover, Shin et al. [38] proposed a

eighborhood Property-based Pattern Selection (NPPS) algorithm,

hich is divided into two steps. First, the label Entropy of each

oint is calculated according to the kNN points; then they remove

he label Entropy less than the threshold value of the point. If the

oint is closer to the separation boundary, the more heterogeneous

oints in its neighbor points, the greater the label Entropy. There-

ore, this algorithm will retain more points at the boundary and

elete points away from separation boundary. However, there are

ifferent view on the role of boundary points for edition methods.

he NNSVM [39] considered that the intermixed points in other

lasses have no effect on the decision plane of SVM and, addition-

lly, lead to overfitting. Thus, it searches the nearest neighbor of

ach point in the training set. If the point and its nearest neigh-

or belong to the same class, the point is marked as “1”. If they

elong to different classes, the point is marked as “-1”. Then, all

oints marked as “-1” will be removed. 

In fact, most of the algorithms described above are based on

earest neighbor techniques, which usually take a lot of time

o calculate the nearest neighbor of each point. Thus, they suf-

er from involving a higher time complexity. Apart from above

eighborhood-based IS methods, we have observed that the al-

orithms proposed are usually employing different techniques

hich can be sampling-based, clustering-based, decision tree-

ased, evolutionary-based and geometry-based methods. 

In order to reduce the training set, Balcazar et al. [12] pro-

osed a random sampling algorithm to produce a subset from the

hole training set. Based on the idea of this approach, some other

ethods have been presented including Ferragut’s SSVM [40] , Lee’s

SVM [8] and so on. Although their experiments show that these

ethods are faster than the original SVM, the performance of these

andomly sampling algorithms is uncertain since some support

ectors may not be included in the randomly selected subset. Thus,

n [41] , the authors executed a guided random selection of sam-

les, which increases the probability of border points being sam-

led. 

Besides the randomized sampling algorithms, methods that

onsider more about data characteristics are proposed to select the

ffective training subset. For example, Lyhyaoui et al. [42] put for-

ard an instance selection technique via clustering to construct

upport vector subset. This approach performs clustering algorithm

n training set, and finds the nearest cluster center from the op-

osite class to get instances near the decision boundary. Similarly,

hen et al. [43] given a Multi-Class Instance Selection (MCIS) al-

orithm based on clustering to select instances from multi-class.

owever, this method is based on an impractical assumption of

o possible class overlap. Also, M.B.Almeida et al. [13] presented

 procedure called KMSVM which is based on k-means clustering

o accelerate the training of SVM. Specifically, they make use of k-

eans to create clusters of samples in the training set, and then

luster formed only by instances that belong to the same class la-

el can be disregard and only cluster center are used. Conversely,

luster with more than one class label are preserved and added

o the reconstructed subset. The key idea behind this method is

o preserve instances near the separation boundaries and disre-

ard instances far away from them. However, a problem accom-

anying the use of k-means algorithm is the choice of the num-
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Fig. 1. Sketch of LFSVM method based on two adjacent spheres. 

Fig. 2. Sketch of PSCC method based on two adjacent spheres. 
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er of desired output clusters. Furthermore, different initial points

f k-means will lead to a completely different partition. Thereby,

he result of clustering-based technique is unstable. More related

tudies of clustering-based methods can be referred to Koggalage’s

ast SVM [44] , Tsai’s outliers detection and removal methodology

45] , and Li’s minimum enclosing ball approach [46] . 

Different from clustering-based methods which use distance or

ensity measure, literature [41] used a decision tree to form par-

itions that are treated as clusters. In this case, a purity function

uch as Gini index or Entropy gain will be used to create a tree,

hus we do not need to predefine the number of clusters. Also,

iterature [47] proposed a method that uses a decision tree to de-

ompose a given data space and train SVMs on the decomposed

ubsets. Doing so, the decision tree is used to replace the clus-

ering, which simplifies the clustering procedures and avoids the

igh complexity computation of clustering. However, it performs

oorly when dealing with non-convex training set. Furthermore, it

ecomes difficult to create a classifier for a large number of fea-

ures [48] . 

With the different ideas of partition, J.R Cano et al. [49] intro-

uced a strategy that uses evolutionary algorithm in instance se-

ection. Also, S. Garcia et al. [50] adopted evolutionary-based algo-

ithm named as EGIS-CHC in imbalanced classification. Moreover,

awulok et al. [3] gave a novel idea called Dynamically Adaptive

enetic Algorithm (DAGA) which dynamically determines the de-

ired training set size without any prior information. 

In addition, the more efficient approaches which analyze the

ata geometry to determine an appropriate subset of instance se-

ection are proposed. For example, Linear Fuzzy Support Vector

achine (LFSVM) [51] afforded a method based on the idea of class

entroid. The algorithm can fast pick out some training samples

hich are impossible support vectors. Similarly, Pre-Selection sam-

le based on Class Centroid (PSCC) [52] and Vector Projection Sup-

ort Vector Machine (VPSVM) [53] are also geometry-based algo-

ithms making use of the centroid of class for cutting down train-

ng set. However, in order to deal with the multi-class problem,

hese methods must transform it into a large number of binary

lassification problems, which no doubt decreases the efficiency of

he algorithm. 

In order to tackle large scale dataset, the stratification strat-

gy (i.e. divide and conquer strategy) [19] are often employed to

plit the training set into disjoint subsets with equal class distri-

ution. For example, Garf et al. [54] proposed the Cascade SVM, in

hich the training set is divided into a number of subsets, then

hese subsets are optimized by multiple SVMs. Also, Wang et al.

55] provided a two-stage approach by first cleaning data based

n a bundle of weak SVM classifiers, and then appending two in-

ormative pattern extraction algorithms. As we all know, IS helps

ata mining algorithms to process large scale dataset which makes

he application of classical algorithms difficult. However, some of

S methods also suffer from high time and space complexity, which

ake them not suitable for “Big Data” scenario. Hence, the use of

tratification strategy also allows us to run any IS method over the

isjoint subsets of the entire training set, thereby easing the prob-

em of dealing with very large training set by reducing the number

f instances that IS must handle simultaneously. However, stratifi-

ation strategy can not reduce the high computational cost of these

S methods. 

. Geometry-based methods 

We give further details of the representative geometry-based

ethods used in the experiments. These approaches analyze the

ata geometry to determine an appropriate training subset. Actu-

lly, the proposed method also belongs to this group of methods. 
The Linear Fuzzy Support Vector Machine (LFSVM) proposed by

ao et al. [51] is a typical geometric instance selection algorithm.

he key idea is that the class distribution is assumed to be spheri-

al, and the decision plane is distributed between the two spheres.

herefore, they suggest that the vectors distributed in the adjacent

wo hemispheres are the support vectors, as shown in Fig. 1 . And

ther vector points, which are non-support vectors, can be deleted.

he specific steps of the algorithm are as follows. 

1. The centroid of the class is defined as follows: 

c A = 

∑ N A 
i =1 

x i 

N A 

, (5) 

where x i , i ∈ [1 , N A ] are the points in class A, N A is the number

of points in class A . 

2. For each class, all points that satisfy the condition ( c A −c B ) ·
( x i −c B ) ≥ 0 are kept, here x i is the point in class B , c B is the

centroid of class B , and c A the centroid of class A . 

3. SVM is trained with the retained points. 

On the basis of LFSVM, Luo et al. [52] proposed an adjustable

eduction strategy named as Pre-Selection sample based on Class

entroid (PSCC). The main difference between this strategy and

FSVM is to introduce the cosine property of sample, as shown in

ig. 2 . The cosine value of sample x i in class A is calculated as be-

ow: 

os θ = 

−−→ 

c A c B · −−→ 

c A x i ∣∣∣∣−−→ 

c A c B 
∣∣∣∣ ×

∣∣∣∣−−→ 

c A x i 

∣∣∣∣ . (6) 

hen, the sample will be removed from the original set if its co-

ine value is more than the threshold (denoted by ε) given by

ser. Thus, the reduction intensity can be adjusted according to the

eeds of user in PSCC. Therefore, PSCC can be seen as an upgraded
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version of LFSVM. The concrete steps of this algorithm are as fol-

lows. 

1. The centroid of each class is calculated with Formula (5) . 

2. The cosine value of each sample is calculated using Formula (6) .

3. The sample whose cosine value is less than the given threshold

is selected to train SVM. 

Similar to cosine measure, the Vector Projection Support Vector

Machine (VPSVM) method proposed in literature [53] selects sam-

ple on the basis of its projection measure. The projection of sample

x i is calculated as follows: 

p i = 

−−−→ 

c A c B · −−−→ 

c A x i ∣∣∣∣−−−−→ 

c A c B 
∣∣∣∣ . (7)

And the distribution radius of class A is defined as below: 

r A = max | | x i −c A | | . (8)

Then, the details of the algorithm are presented as follows. 

1. The centroid of each class is calculated by Formula (5) . 

2. The projection of each sample is obtained by Formula (7) . 

3. The distribution radius of each class is calculated by Formula

(8) . 

4. The point will be retained to train SVM if the following condi-

tions are met. If r A + r B < 

∣∣∣∣−−−→ 

c A c B 
∣∣∣∣, and the projection p i of x i in

class A meets the condition r A −δ ≤ p i ≤ r A ; if r A + r B ≥
∣∣∣∣−−−→ 

c A c B 
∣∣∣∣,

and the projection p i of x i in class A satisfies the condition∣∣∣∣−−−→ 

c A c B 
∣∣∣∣−r B −δ ≤ p i ≤ r A + δ. Note that δ= μ∗

∣∣∣∣−−−→ 

c A c B 
∣∣∣∣+ 

F 
N ( μ

indicates the ability of boundary area covering support vectors,

F is noise factor, and N is number of samples), where μ and F

are given by user. 

4. Shell extraction 

In this section, the principle of the proposed algorithm is in-

troduced. Subsequently, the detailed algorithm steps are presented

and followed by the pseudo codes. Finally, the complexity of the

presented algorithm is analyzed. 

Given training set X = 

{
x n : n = 1 , · · · , N ; x n ∈ R D 

}
, and the cor-

responding label set Y = { y n : n = 1 , · · · , N ; y n ∈ { 1 , · · · , M } } , where

M, N and D are respectively the number of classes, of samples

and of features, and each sample has only one category label.

Suppose a collection of samples with the same class label being

 m 

= { x n | y n = m } , m ∈ { 1 , · · · , M } , and c m 

is centroid vector of C m 

.

The target of the proposed algorithm is to remove the non-support

vectors (i.e. the samples corresponding to the equality αn = 0 in

SVM) from the training set. 

As pointed out by Chen [43] that positive instances far away

from centers of positive class and negative instances close to these

centers are near the boundary. That is, the support vectors are

mostly distributed in the boundary area, which are far away from

the centroid point of each class. However, it is inadvisable to con-

sider an instance to be support vector on the basis of the absolute

distance between the instance and its centroid, since the instance

close to its centroid is also likely to be support vector if the cen-

troid is not located in the geometric center of this class due to the

uneven distribution of instances in the vector space. Thus, the sup-

port vector can not be extracted directly according to the distance

between this vector and its centroid. In contrast, a large number

of non-support vectors, which are mostly close to the centroid of

each class, are easily identified. Thus, the proposed algorithm is

to identify non-support vectors based on the characteristics of the

actual point distribution in the vector space. In the following, the

proposed algorithm is firstly exposited in the vector space of non

uniformly distributed instances, then it will be discussed in the

uniformly distributed circumstance. 
Supposing that the distribution of class C m 

is not uniform,

hich leads to the centroid not in the geometric center of this

lass, as shown in Fig. 3 a. Also, we can mainly find out that the

hape of support vectors in bold symbol is irregular. Thus, it is

ifficult to extract the support vectors directly according to the

istance to the centroid. Alternatively, we can obtain the support

ectors indirectly by deleting the non-support vectors, if the ex-

raction of non-support vectors is easier and more efficient. Actu-

lly, we can easily obtain and delete the vectors in the round area,

hose center is chosen as the centroid point of this class as shown

n Fig. 3 a. This round area is referred as Reduction Sphere (RS) in

igh-dimensional vector space. Obviously, a large number of non-

upport vectors will be retained if the radius (i.e. R ) of RS is too

mall, while the support vectors near the centroid will be removed

f the radius of RS is simply increased as illustrated in Fig. 3 a. 

Recall that the distribution of vectors in each class is not uni-

orm as mentioned above, which means the new centroid point

f this class will move to another location after the vectors in RS

ave been deleted. That is, the new centroid c 
′ 

m 

does not overlap

ith the old centroid c m 

(kindly see below for proof), as shown

n Fig. 3 b. In fact, the new centroid will first move to the sparse

rea of vector distribution, and then come back to the dense area.

hus, as the moving of new centroid, the new RS can be iteratively

reated by using the new centroid as the center of this RS, and

he vectors in it can be deleted. In this case, it need not initial-

ze a large radius of RS in which some of the support vectors may

e contained. Generally, different radii should be used in different

ategories. For category C m 

, the radius can be calculated as below:

 m 

= 

λ

| C m 

| 
∑ 

x n ∈ C m 
dis ( c m 

, x n ) , (9)

here λ is the parameter given by user to control the radius, | C m 

|

s the number of instances in category C m 

, and dis ( ·, ·) is the mea-

ure of distance. However, it is accompanied with a problem that

he algorithm usually stops before the required number of vectors

as been removed if we use a fixed small radius. In order to deal

ith this problem, we iteratively increase the radius of RS in our

lgorithm as illustrated in Fig. 3 c, until the number of retained vec-

ors falls to the threshold denoted by T m 

= (1 − ξ ) ∗| C m 

| , where ξ is

he deleting percent given by user. Thus, the radius can be updated

s follows: 

 m 

(i ) = 

λ + �(i ) 

| C m 

| 
∑ 

x n ∈ C m 
dis ( c m 

, x n ) , (10)

here �(i ) = δ ∗ i is a function of iteration number i , and δ is a

actor given by user. Any other monotonically increase function is

lso acceptable. Finally, the mainly steps of Shell Extraction (SE)

lgorithm are summarized as follows: 

1. Calculate the centroid c m 

. 

2. Calculate the dis ( c m 

, x n ) metric. 

3. Delete the point x n if dis ( c m 

, x n ) < R m 

(i ) , where R m 

( i ) is com-

puted by Formula (10) . 

4. Repeat step 2 to 3, until all points in this RS are deleted. 

5. Repeat step 1 to 4, until the number of retained points falls to

T m 

. 

With the centroid moving in each iteration, vectors in RS are

onstantly removed from the training set. Finally, the vectors dis-

ributed at the margin of each class are remained. Thus, the

hape of the remained vectors is similar to a “Shell” in the high-

imensional space as illustrated in Fig. 3 d. For multi-class training

et X , the pseudo codes of SE algorithm is shown in Algorithm 1 ,

here the parameter ξ determines the strength of reduction. Thus,

arious size of training subsets can be produced by adjusting the
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Fig. 3. Schematic of Shell Extraction algorithm. 

Algorithm 1 Shell Extraction algorithm. 

Require: X: the whole training set; λ: the parameter of initial RS 

radius; δ: the parameter of RS increase; ξ : the deleting percent 

of training set. 

Ensure: X S : the reconstructed training set. 

1: for m = 1 ; m ≤ M do 

2: T m 

← (1 − ξ ) ∗| C m 

| ; 
3: end for 

4: Repeat i + + ; 

5: for m = 1 ; m ≤ M do 

6: c m 

← 

1 
| C m | 

∑ 

x n ∈ C m x n ; 

7: R m 

(i ) ← 

λ+ δ∗i 
| C m | 

∑ 

x n ∈ C m dis ( c m 

, x n ) ; 

8: for n = 1 ; n ≤ N && y n = m do 

9: if | C m 

| > T m 

&& dis ( c m 

, x n ) < R m 

(i ) then 

10: Delete x n from C m 

; 

11: Num ++ ; 

12: end if 

13: end for 

14: end for 

15: Until N − Num ≤ ∑ M 

m =1 T m 

; 

16: Return X S = X ; 
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arameter ξ . Also, λ and δ control the strength of the RS’s move-

ent. Thus, the parameters, i.e. λ and δ, have important impact on

he performance of SE algorithm. Explicitly, the experiments con-

ucted in Section 5 show that the optimal value of λ falls into the

egion of [0.8,1] and δ should be set to be a small value. Generally,

 large value of λ (or δ) may lead to some of support vectors being

ontained in RS, while a small value means a slight movement of

S and a large number of iterations. 

SE algorithm in each iteration can be divided into two steps:

nding the centroid whose time complexity is O ( ND ) and calculat-

ng the distance between the points and the centroid that also has

 time complexity equals to O ( ND ). Therefore, Shell Extraction al-

orithm has a linear time complexity. As it is mentioned above, SE

s based on the inference that new centroid will not overlap with

he old one if the distribution of instances is uneven. Now we take

he k th dimension of instance as an example, and the proof is as

ollows: 

1. Suppose c mk = 

∑ N m 
n =1 

x nk 
N m 

∈ [0 , 1] , where c mk is the k th dimension of

the centroid c m 

and N m 

= | C m 

| . 
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Table 1 

Summary of the information and the parameters for SVM in each dataset . 

Datasets Siz. Fea. Cls. s t c g n 

Dermatology 358 34 6 1 0 2 7 10 −4 0 .1 

Glass 214 9 6 0 1 2 7 10 0 0 .2 

Heart 270 13 2 0 1 2 −2 10 −1 0 .1 

Ionosphere 351 34 2 0 0 2 5 10 −2 0 .2 

Isolet 7797 617 26 0 1 2 −2 10 −2 0 .1 

Letter 20 0 0 0 16 26 0 1 2 1 10 −2 0 .1 

Segment 2310 19 7 0 1 2 −1 10 −2 0 .1 

USPS 9298 256 10 0 2 2 7 10 −2 0 .1 

Waveform 50 0 0 21 2 0 1 2 −2 10 −2 0 .1 

Newsgroup 13128 29949 20 0 2 2 7 10 −1 0 .1 

Reuters 9462 8455 58 0 2 2 7 10 −1 0 .1 
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2. Suppose c 
′ 
mk 

= 

∑ 

N m −N d 
n =1 

x nk 
N m −N d 

∈ [0 , 1] , where c 
′ 
mk 

is the k th dimension

of the new centroid c 
′ 
m 

and N d is number of the deleted non-

support vectors. 

3. Assume c mk = c 
′ 
mk 

, then 

∑ N m 
n =1 

x nk 
N m 

= 
∑ 

N m −N d 
n =1 

x nk 
N m −N d 


⇒ 

∑ 

N d 
n =1 

x nk 
N d 

= 
∑ N m 

n =1 
x nk 

N m 
= c mk 


⇒ 

∑ N d 
n =1 

x nk = N d ∗c mk . 

Actually, the probability, i.e. P 

(∑ N d 
n =1 

x nk = N d ∗c mk 

)
, of this con-

clusion is close to zero, when the distribution of instances is un-

even. Therefore, this is in contradiction with the hypothesis. Fur-

thermore, considering all features of instance, the probability of

c 
′ 

m 

= c m 

is 
D 
k =1 

[ 
P 

(∑ N d 
n =1 

x nk = N d ∗c mk 

)] 
≈ 0 , which will not hap-

pen. 

Recall that we made a hypothesis that the instances are un-

evenly distributed in the vector space. Conversely, if the distribu-

tion of instances is uniform, the origin centroid will be located in

the geometric center of each class. In this case, the new centroid of

each class will be fixed in the center position after the vectors in

RS have been deleted. As the radius of RS grows iteratively, the non

support vectors close to the center will continue to be removed.

Therefore, SE algorithm can also work well in the vector space of

uniform distribution. 

5. Experiments 

In order to justify the rationality of SE, we compare it with six

representative IS methods, i.e. NNSVM, CNN, KMSVM, LFSVM, PSCC

and VPSVM, based on a number of standard benchmark collec-

tions which come from UCI repository. Moreover, the parameters

of SE are also analyzed in a two-dimensional artificial dataset. In

our experiments, the items to be investigated are (i) the ability of

keeping classification accuracy; (ii) the reduction ratio (the ratio is

defined as the number of removed instances divided by the total

number of instances) of each method; and (iii) the effect of param-

eters on SE. The experiments are performed on a PC with Intel(R)

Pentium(R) CPU G2030 at 3.0 GHz 8 GB RAM, Windows 7, 64 bit

Operating System. Note that the datasets 1 and source codes 2 asso-

ciated with this paper are available on our Website. 

5.1. Datasets 

The experiments are carried out on eleven datasets includ-

ing nine low dimensional and two high dimensional datasets. The

low dimensional datasets are concisely introduced as follows. Glass

comes from USA Forensic Science Service which has six types of

glasses and is defined by terms of their oxide content. Heart dis-

ease dataset contains 4 classes, i.e. Cleveland, Hungary, Switzer-

land and VA Long Beach. The original database contains 76 at-

tributes, but all published experiments refer to using a subset of

13 attributes. Ionosphere is the classification of radar returned from

ionosphere. This radar data was collected by a system in Goose

Bay, Labrador. The instances are described by 2 attributes per pulse

number, corresponding to the complex values resulting from elec-

tromagnetic signal. Dermatology is used to determine the type of

Erythematous-Squamous disease, which contains six classes and 34

attributes. Segment is an image segmentation database, of which

the instances were drawn randomly from a database of seven out-

door images. The images were segmented to create a classification

for every pixel. Waveform is CART book’s waveform domain, which

contains three classes and 21 attributes. Isolet is used to predict

the letter-name spoken. USPS appears in the book “the elements of
1 ftp://nepsnet.com:25601/ . 
2 https://github.com/liuchuan-uestc/ISmethod . 

e

tatistical learning” by Friedman [56] . Letter is a database of char-

cter image features, which is used to identify the letter. 

The high dimensional text collections are 20Newsgroups and

euters-21578. 20Newsgroups contains 19,997 messages from 20

inds of news, including 4% reprint. Reuters-21578 is a group of

987 reuters news. We combine the training and testing sets of

he version of Apte’s split 90 categories which contains 11,406

exts. For text collections, we delete the samples that have mul-

iple labels and then remove the categories whose samples are

ess than ten, since we focus on single-label classification task.

hen, a stop word list is used to remove common words, and the

orters stemming algorithm is adopted to compute the root of each

ord. Finally, Term Frequency-Inverse Document Frequency (TF-

DF) [57] weighting technology is used to transform the text into

igh dimensional vectors. The details, including size (Siz.), number

f features (Fea.) and number of classes (Cls.), of each dataset are

isted in Table 1 after the above pre-processing steps. 

.2. Setting of experiments 

The investigated algorithms can be mainly divided into two

ategories. One group of algorithms can obtain different reduc-

ion ratio by adjusting their parameters, such as PSCC (adjust-

ng ε), VPSVM (adjusting μ and F ) and SE (adjusting ξ ). And the

ther group of algorithms can not adjust the ratio, such as LFSVM,

MSVM, NNSVM and CNN. Therefore, we conduct the following

wo groups of experiments by first comparing SE with VPSVM and

SCC in different reduction ratios; and then we do the comparison

ith LFSVM, KMSVM, NNSVM and CNN in approximate reduction

atios. Doing so, it is worth noting that the so-called approximate

eduction ratios refer to the difference between two ratios being in

he range of 2% in general, since the ratio is controlled by adjust-

ng the parameters and we can not guarantee to obtain the same

atio in the experiments. For SE, λ is set to 0.8 in low dimensional

atasets, and 1.0 in high dimensional datasets. Also, δ is chosen

s 0.01. For KMSVM, the number of clusters is set to 20 in Der-

atology, Glass and Heart , while the number is set to 200 in the

emaining datasets. 

For low dimensional datasets, we use SVM as the classification

odel; with respect to high dimensional datasets, we employ SVM

nd CBC (Centroid Based Classifier) [57] . LIBSVM 

3 is used as the

ool of SVM in all experiments. In order to achieve the best perfor-

ance, we respectively debug the parameters, i.e. type (-s), type

f kernel (-t), loss function (-c), gamma function (-g) and v-svc pa-

ameter (-n), of LIBSVM , where -s traverses 0, 1; -t traverses 0, 1,

; -c traverses 2 −7 , 2 −6 , . . . , 2 7 ; -g traverses 10 −1 , 10 −2 , . . . , 10 −5 ; -

 traverses 0 . 1 , 0 . 2 , . . . , 0 . 5 . A total of 2250 experiments are carried

ut to obtain the best parameters of classification performance for

ach dataset, as also shown in Table 1 . 
3 http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/ . 

http://nepsnet.com:25601/
http://github.com/liuchuan-uestc/ISmethod
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 2 

The comparison results of LFSVM and SE in each dataset. 

Datasets Ratio LFSVM LFSVM SE SE 

m _ F 1 μ_ F 1 m _ F 1 μ_ F 1 

Dermatology 49 .79% 0 .875 0 .893 0 .941 0 .948 

Glass 59 .58% 0 .541 0 .561 0 .403 0 .508 

Heart 50 .37% 0 .544 0 .541 0 .758 0 .742 

Ionosphere 58 .39% 0 .607 0 .624 0 .831 0 .852 

Isolet 54 .30% 0 .950 0 .949 0 .968 0 .958 

Letter 52 .95% 0 .783 0 .777 0 .903 0 .894 

Segment 54 .95% 0 .783 0 .780 0 .920 0 .922 

USPS 55 .47% 0 .974 0 .977 0 .978 0 .980 

Waveform 49 .72% 0 .799 0 .770 0 .793 0 .784 

Newsgroup -SVM 40 .74% 0 .863 0 .872 0 .934 0 .933 

Newsgroup -CBC 40 .74% 0 .851 0 .849 0 .916 0 .916 

Reuters -SVM 38 .23% 0 .455 0 .723 0 .438 0 .725 

Reuters -CBC 38 .23% 0 .489 0 .653 0 .514 0 .671 
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We choose MacroF 1 ( m _ F 1 ) and MicroF 1 ( μ_ F 1 ) as the evaluation

ndices of classification. Supposing the number of samples classi-

ed correctly into class C m 

is a , the number of samples classified

ncorrectly into C m 

is b , and the number of samples in C m 

classified

nto other classes is c . The precision ( p m 

) and recall ( r m 

), which are

sed to evaluate the classification performance of class C m 

, are de-

ned as a/ ( a + b ) and a/ ( a + c ) , respectively. Usually, there is an

nverse relationship between precision and recall. Hence, m _ F 1 and

_ F 1 are used to measure the average performance for the whole 

ategories, where F 1 is a weighted combination of precision and

ecall, and it is defined as: 

 1 ( r, p ) = 

2 pr 

p + r 
. 

hereby, m _ F 1 is computed by averaging F 1 of all categories, while

_ F 1 is calculated by averaging the precision and recall of all in- 

tances. Since m _ F 1 gives the weight to all categories equally, it will

ainly be influenced by the performance of rare categories. In con-

rast, μ_ F 1 treats all instances equally, it will be dominated by the

erformance of common categories. Moreover, with respect to dis-

ance metric, the cosine distance is employed in the real datasets,

hile Euclidean distance is used in the artificial dataset. 

There are two main methods for evaluating the performance

f IS algorithms, i.e. hold-out and k-fold cross-validation methods.

he hold-out method is unreliable since the selection of testing set

as a direct impact on the whole performance. Hence, the five-

old cross-validation method is employed to avoid the influence of

andomly selected testing set. That is, a given dataset is randomly

plitted into five subsets. Each time one testing subset is selected

o estimate the predictive performance of SVM, and the remaining

ubsets are used to train SVM after the IS algorithm has been ap-

lied on them. Then, averaging the results of multiple splitting is

ommonly used to decrease the variance of the estimation. 

.3. Experimental results and analyses 

In the first group of experiments, SE is compared with VPSVM

nd PSCC in different ratios based on the low dimensional datasets

s shown in Figs. 4 and 5 , where Fig. 4 is the comparison in μ_ F 1 ,

nd Fig. 5 is in m _ F 1 . The abscissa is the ratio, and the ordinate is

_ F 1 or m _ F 1 . In the following, we focus on the analysis of μ_ F 1 ,

ince the trends of μ_ F 1 and m _ F 1 are basically consistent. 

It can be easily seen that SE has an outstanding perfor-

ance in Heart ( Fig. 4 b), Ionosphere ( Fig. 4 c), Dermatology ( Fig. 4 d),

egment ( Fig. 4 e), Isolet ( Fig. 4 g), USPS ( Fig. 4 h) and Letter ( Fig. 4 i)

atasets. For example, though the performance of SE is lower than

SCC when the ratio is 10% in Heart ( Fig. 4 b), SE quickly exceeds the

ther two algorithms when the ratio is greater than 20%. Moreover,

E maintains an upward trend and finally reaches the maximum

alue of 0.80 in the ratio of 70%. However, the curves of the other

wo algorithms keep declining and finally reach their lowest values

n the ratio of 80%. At this time, μ_ F 1 of SE is about 30 percent

igher than the other two algorithms. 

The performance of SE is lower than the other two algorithms

n Ionosphere ( Fig. 4 c) when the ratio is less than 30%. However, the

ther two algorithms have the most serious deterioration when the

atio is more than 30%, while SE only has a small attenuation at

his time. Explicitly, μ_ F 1 of SE maintains at 0.82 in the ratio of

0%, while the other two algorithms are less than 0.40 at this time.

hat is, μ_ F 1 of SE is at least 0.4 higher than the other two algo-

ithms in the ratio of 80%. 

Similarly, SE always has the superiority performance in Derma-

ology ( Fig. 4 d), Segment ( Fig. 4 e), Isolet ( Fig. 4 g), USPS ( Fig. 4 h) and

etter ( Fig. 4 i) datasets. For instance, in Letter ( Fig. 4 i), μ_ F 1 of SE,

SCC and VPSVM are about 0.95 in the ratio of 10%; but μ_ F 1 
f SE still maintains at 0.79 in the ratio of 80%, while PSCC and
PSVM are about 0.5 and 0.42, respectively. In addition, it should

e pointed out that SE shows a poor performance on two datasets,

.e. Glass ( Fig. 4 a) and Waveform ( Fig. 4 f). 

As shown in Fig. 6 , SE is compared with PSCC and VPSVM in

wo high dimensional datasets. The results using SVM in News-

roup are shown in Fig. 6 a and b. In the beginning, SE has the

imilar performance with the other two algorithms. However, it is

asy to find out the advantages of SE as the ratio’s increasing. For

nstance, μ_ F 1 of SE maintains at 0.93 in the ratio of 20%, which is

bout 5 percent higher than the other two algorithms. When the

atio reaches 80%, μ_ F 1 of SE still maintains at 0.90, while μ_ F 1 
f PSCC is 0.51 and μ_ F 1 of VPSVM is 0.45. Therefore, PSCC and

PSVM appear to significantly decline when the ratio is more than

0%, which does not happen on SE. 

The results with CBC in NewsGroup are shown in Fig. 6 c and d.

he performance of SE remains unchanged with the rise of ratio.

owever, PSCC and VPSVM are declining from the beginning. Thus,

he performance gap between SE and the other two algorithms is

radually increasing. At last, μ_ F 1 of SE is about 25 and 40 percent

igher than PSCC and VPSVM in the ratio of 80%, respectively. 

The results using SVM in Reuters are shown in Fig. 6 e and f,

here μ_ F 1 of SE is similar to PSCC, and is better than VPSVM. The

esults with CBC in Reuters are shown in Fig. 6 g and h. From the

eginning, μ_ F 1 of SE is slightly less than the other two algorithms.

ith the increasing ratio, the performance of all algorithms first

ncreases and then decreases. Obviously, μ_ F 1 of PSCC and VPSVM

pproximate to zero in the ratio of 80%. 

In summary, SE outperforms PSCC and VPSVM in 11 out of 13

atasets (text datasets with different classifier can be seen as dif-

erent datasets). The reason is that PSCC and VPSVM can not accu-

ately separate support vectors from the whole training instances.

hus, a lot of non-support vectors are still remained in the reduced

ubset, while a part of support vectors are incorrectly deleted. On

he contrary, SE can effectively extract non-support vectors, which

aximizes the retention of support vectors in the reconstructed

ubset. In addition, we can find out that non-support vector not

nly increases the computation cost of learning but also degrades

he performance of classification, since the performance of SE in

he ratio of 80% is higher than that in the original training set as

hown in Heart . 

In the second group of experiments, SE is compared with

FSVM, NNSVM, CNN and KMSVM in each dataset. Since LFSVM,

NSVM, CNN and KMSVM can not adjust the ratio, we respectively

djust the parameter of SE in order to obtain the approximate ratio

f the compared algorithm. The results of these algorithms com-

ared with SE are shown in Table 2–5 , where the optimal m _ F 1 
nd μ_ F are highlighted in bold for each dataset. 
1 
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Fig. 4. The μ_ F 1 comparison of PSCC, VPSVM and SE in nine low dimensional datasets. 

Table 3 

The comparison results of KMSVM and SE in each dataset. 

Datasets Ratio KMSVM KMSVM SE SE 

m _ F 1 μ_ F 1 m _ F 1 μ_ F 1 

Dermatology 35 .65% 0 .952 0 .962 0 .962 0 .967 

Glass 25 .57% 0 .661 0 .641 0 .561 0 .642 

Heart 34 .15% 0 .629 0 .630 0 .725 0 .721 

Ionosphere 29 .76% 0 .871 0 .886 0 .868 0 .884 

Isolet 0 .12% 0 .968 0 .967 0 .978 0 .963 

Letter 3 .46% 0 .952 0 .951 0 .963 0 .962 

Segment 27 .93% 0 .829 0 .846 0 .971 0 .978 

USPS 0 .11% 0 .977 0 .979 0 .982 0 .982 

Waveform 21 .84% 0 .860 0 .860 0 .809 0 .812 

Newsgroup -SVM 6 .54% 0 .933 0 .932 0 .935 0 .934 

Newsgroup -CBC 6 .54% 0 .901 0 .900 0 .908 0 .907 

Reuters -SVM 24 .82% 0 .450 0 .731 0 .458 0 .730 

Reuters -CBC 24 .82% 0 .508 0 .651 0 .532 0 .672 

 

 

 

 

 

 

 

Table 4 

The comparison results of CNN and SE in each dataset. 

Datasets Ratio CNN CNN SE SE 

m _ F 1 μ_ F 1 m _ F 1 μ_ F 1 

Dermatology 82 .52% 0 .928 0 .937 0 .892 0 .887 

Glass 53 .36% 0 .613 0 .626 0 .462 0 .523 

Heart 44 .93% 0 .592 0 .592 0 .731 0 .733 

Ionosphere 79 .10% 0 .666 0 .670 0 .793 0 .812 

Isolet 72 .62% 0 .964 0 .964 0 .952 0 .951 

Letter 83 .38% 0 .898 0 .897 0 .792 0 .779 

Segment 81 .38% 0 .948 0 .948 0 .805 0 .784 

USPS 88 .22% 0 .960 0 .963 0 .910 0 .912 

Waveform 59 .26% 0 .852 0 .850 0 .849 0 .849 

Newsgroup -SVM 58 .04% 0 .925 0 .924 0 .934 0 .934 

Newsgroup -CBC 58 .04% 0 .912 0 .911 0 .924 0 .923 

Reuters -SVM 47 .42% 0 .439 0 .729 0 .415 0 .721 

Reuters -CBC 47 .42% 0 .521 0 .680 0 .494 0 .670 

r  

f  

s  

t

 

s  

h  

m  
The results of LFSVM compared with SE are shown in Table 2 .

SE outperforms LFSVM in μ_ F 1 in 12 datasets except Glass . SE

beats LFSVM in m _ F 1 in 10 datasets. Moreover, the disadvantage of

LFSVM is that almost half of the samples were removed for each

dataset, which results in a substantial decline in accuracy. 

SE outperforms KMSVM in μ_ F 1 in 9 datasets, and in m _ F 1 in

10 datasets, as shown in Table 3 . For example, μ_ F 1 of KMSVM

are 9.1 and 13.2 percent lower than SE in Heart and Segment ,
espectively. Moreover, in term of reduction ratio, KMSVM per-

orms well in some of the datasets, but it seems not suitable for

ome datasets such as Isolate, Letter, USPS , and Newsgroup , since

he ratios are too small in these datasets. 

Similarly, the results of CNN and NNSVM compared with SE are

hown in Tables 4 and 5 , respectively. It is easy to see that CNN

as a high reduction ratio as more than half of the samples are re-

oved in most of the datasets. In contrary, NNSVM can not show
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Fig. 5. The m _ F 1 comparison of PSCC, VPSVM and SE in nine low dimensional datasets. 

Table 5 

The comparison results of NNSVM and SE in each dataset. 

Datasets Ratio NNSVM NNSVM SE SE 

m _ F 1 μ_ F 1 m _ F 1 μ_ F 1 

Dermatology 4 .30% 0 .954 0 .964 0 .968 0 .972 

Glass 28 .50% 0 .598 0 .649 0 .611 0 .640 

Heart 32 .01% 0 .768 0 .770 0 .760 0 .762 

Ionosphere 11 .58% 0 .882 0 .891 0 .885 0 .892 

Isolet 10 .38% 0 .953 0 .952 0 .966 0 .965 

Letter 4 .25% 0 .950 0 .950 0 .958 0 .958 

Segment 6 .27% 0 .960 0 .960 0 .956 0 .954 

USPS 3 .09% 0 .973 0 .976 0 .982 0 .982 

Waveform 22 .92% 0 .864 0 .864 0 .861 0 .861 

Newsgroup -SVM 20 .44% 0 .918 0 .916 0 .935 0 .935 

Newsgroup -CBC 20 .44% 0 .889 0 .888 0 .914 0 .914 

Reuters -SVM 36 .90% 0 .389 0 .708 0 .434 0 .730 

Reuters -CBC 36 .90% 0 .365 0 .641 0 .519 0 .673 
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he normal reduction ability as the ratio is less than 10% in Iso-

et, Letter, Segment and USPS . This observation is consistent with

he previous analyses that the reduction capability of condensation

trategies is comparatively higher than edition methods. In term of

ccuracy, CNN is better than SE, but NNSVM is worse than SE. 

In order to perform a comprehensive comparison of all algo-

ithms in each dataset, we adopt the same data analysis tech-

ique as used in [58] . Fig. 7 depicts each pair (ratio, accuracy) of
lgorithms in two-dimension coordinate, where the normalised Eu-

lidean distance between each point and the ideal point (1,1) can

e employed to assess the comprehensive performance of each al-

orithm. In this case, the “best” one is deemed as the one near-

st to (1,1). With respect to the adjustable approaches, i.e. PSCC,

PSVM and SE, the points for this comparison are the best points

nearest to ideal point) chosen from the results in the first group

f experiments. Regarding the approaches that can not adjust the

atio, the points come from the second group of experiments. We

an easily see that SE remains the leader with six datasets (i.e.,

eart, Ionosphere, Isolet, USPS, Newsgroup and Reuters ), while CNN

akes the crown for three datasets (i.e., Dermatology, Letter, Seg-

ent ). Moreover, PSCC and VPSVM are the best ones in Glass and

aveform , respectively. 

Specifically, the time consumption of each algorithm is shown

n Table 6 . Considering that the computation consumption of SE is

roportional to the reduction ratio. Thus, the parameter ξ is set

o 0.5 in SE. Apparently, SE has a remarkable superiority in the

arge scale datasets, such as Isolet, USPS, Newsgroup and Reuters .

or instance, SE takes only 5822 ms in Isolet , while the second

anked algorithm (i.e. LFSVM) consumes 34196 ms. Similarly, in

ewsgroup , the time consumption of SE (consuming 22996 ms) is

/80 times of VPSVM (consuming 1833814 ms) which is the close

unner-up, and is 1/161 times of CNN (consuming 3709599 ms)

hich is the slowest algorithm. Indeed, the time consumed by CNN

s far beyond the time of training SVM with the original dataset.
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Fig. 6. The F 1 comparison of PSCC, VPSVM and SE in NewsGroup and Reuters . 

Table 6 

The time (ms) consumption in each dataset. 

Datasets SE VPSVM PSCC LFSVM NNSVM KMSVM CNN 

Dermatology 25 32 48 72 284 6895 109 

Glass 31 15 16 31 98 140 94 

Heart 32 16 16 47 109 187 124 

Ionosphere 31 31 31 93 437 937 124 

Isolet 5822 37,143 34,897 34,196 3,564,787 1,935,437 3,370,709 

Letter 1007 921 858 1030 329,863 54,423 173,309 

Segment 406 78 78 156 5320 5478 2403 

USPS 2529 6459 5257 6271 1,892,628 636,411 619,904 

Waveform 405 78 94 219 22,309 15,128 15,682 

Newsgroup 22,996 1,833,814 1,875,194 1,910,789 2,665,037 2,867,117 3,709,599 

Reuters 3672 361,498 369,112 361,395 205,982 246,979 144,133 

 

 

 

 

 

 

 

 

 

 

t  

t  

t  

i  

p  

t  

p  

N  

f  

i

Also, NNSVM has a similar disadvantage as CNN in face of large

size datasets, since the time complexity is O ( N 

2 ) for seeking the

nearest neighbor of each instance. 

In summary, we can draw the following conclusions from above

experiments. In term of keeping accuracy, SE can achieve the goal

of reducing the training set without degrading the classification ac-

curacy significantly. Explicitly, SE can reduce 80% of the instances

without degrading the classification accuracy in some datasets

such as Heart, Isolet, USPS , and Newsgroup , and with a slight de-

grading in Ionosphere, Dermatology, Segment, Letter and Reuters . The

performance of SE is better than PSCC and KMSVM, and far better
han VPSVM, LFSVM and NNSVM. Moreover, CNN also prove itself

o be the best one. In term of speed, SE has a great advantage in

ime consumption in face of large scale datasets. The second rank-

ng are VPSVM, PSCC, and LFSVM due to their linear time com-

lexity. Furthermore, CNN is proved to be the slowest one since its

ime complexity is approximately O ( N 

3 ). In term of comprehensive

erformance, SE is the winner, and CNN is a very close runner-up.

NSVM is likely to be the worst one since it is always far away

rom the ideal point. Thus, SE offers faster and more effective train-

ng set optimization than most competitive algorithms. 
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Fig. 7. The comprehensive comparison of all methods in each dataset. 

5

 

s  

t  

s  

i  

i  

s  

I  

i

 

i  

w  

N  

f  

i  

w  

S

i  

i  

a  

a  

λ
i  

c  

0  

f  

W  

r  

i  

s  

s  

t  

b  

s  

t

 

F  

0  

v  

s  

i  

F  
.4. Parameter analyses in shell extraction 

In this section, we are devoted to illustrating the selected sub-

ets resulting from SE. To do this, we produce a two-dimensional ar-

ificial dataset, which contains three classes composed of 1500 in-

tances, based on Extreme value distribution. The complete dataset

s illustrated in Fig. 8 a. Fig. 8 b–d show the selected subsets in the

teration process of SE, which could help to visualize and under-

tand the way of working and the results obtained in this study.

t should be appreciated that all margin points are remained but

nterior points are removed. 

In order to deep understand how the parameters (i.e. λ and δ)

mpact on the performance (including accuracy and speed) of SE,

e present a detailed analysis based on the artificial dataset and

ewsgroup . Fig. 9 illustrates the selected subsets by SE with dif-

erent λ in the artificial dataset, where the two values specified

n parentheses for each subgraph are respectively m _ F 1 and μ_ F 1 ,

hich are calculated in testing the whole instances based on the

VM model trained by each selected subsets. In the beginning, as λ
s equal to 0.5, all border points are perfectly preserved as shown

n Fig. 9 a. However, with the increase of parameter λ, SE performs

 more aggressive removal of instances in the decision boundaries
s observed from Fig. 9 a–d. Considering the polarization case that

reaches 1.5, most of the border points are removed as illustrated 

n Fig. 9 d. Fig. 10 reveals the accuracy and iterations with the in-

rease of parameter λ and δ on Newsgroup , where λ varies from

.4 to 3.0 with step 0.01 as shown in Fig. 10 a and b, and δ varies

rom 0.002 to 0.08 with step 0.002 as shown in Fig. 10 c and d.

ith the increase of λ, the iterations gradually decline. The accu-

acy, however, maintains an upward trend and reaches the max-

mum value of 0.91 when λ is equal to 1.0, and then declines

everely. The reason is that with the increase of λ, the moving

trength of RS gradually increases. Thereby, the non-support vec-

ors far away from the original centroid point are more likely to

e removed. However, if λ exceeds the threshold, e.g. λ > 1.0, as

hown in Fig. 10 b, the most of support vectors will be deleted in

he first iteration. Thereby, the accuracy decreases rapidly. 

Finally, the selected subsets by different methods are shown in

ig. 11 . Regarding SE, the selected subsets with different ratios (i.e.,

.3, 0.5 and 0.8) are respectively shown in Figs. 11 a, b and 9 b. Ob-

iously, the optimal classification hyperplanes in the selected sub-

ets of SE always keep fixed as in the original dataset. However,

t is not true with respect to PSCC in Fig. 11 d–i and VPSVM in

ig. 11 j–l. In fact, in order to deal with the multi-class problem,
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(a) Original (b) 1th iteration

(c) 33th iteration (d) The last iteration

Fig. 8. The selected subsets in the iteration process of SE with λ = 0 . 5 , δ = 0 . 01 

and ξ = 0 . 8 . 
Fig. 9. The selected subsets by SE with different λ, when δ = 0 . 01 and ξ = 0 . 8 . 

Fig. 10. The trend of iterations and F 1 with the increase of parameter λ and δ in Newsgroup . 
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Fig. 11. The selected subsets with different IS methods. 
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PSCC and VPSVM must transform it into a large number of binary

classification problems with one class as the positive and the rest

as the negative. In this case, the identification of positive border

points needs the help of negative points. However, it will be diffi-

cult for PSCC and VPSVM to find out the border points if the nega-

tive classes are distributed around the positive class. Furthermore,

we can also find out that CNN and KMSVM retain a small part of

support vectors, while NNSVM only removes few instances over-

lapped with each other. 

6. Conclusion and further study 

This paper presents a new algorithm for support vector recog-

nition to reduce training set without significantly degrading the

classification accuracy of SVM. The idea of SE algorithm is an inge-

nious way to make use of the characteristic that the centroid point

would be shifting after the uneven distributed vectors are removed

off, which is totally different from the existing IS methods. More-

over, SE can be easily used in multi-class problem since it reduces

a single class without the help of other classes. A large number

of experiments on eleven real datasets show that SE has the ad-

vantages of flexible setting, stable performance and high efficiency.

Currently, the need of fast methods for instance selection has be-

gun to draw intensive attention among researchers. SE selects in-

stances without requiring the whole dataset to be fitted into the

memory. The advantages of SE, such as high speed and low mem-

ory consumption, indicate that it is suitable for big data processing

in all fields of machine learning. 

Although SE is effective, there are still some places to be im-

proved in the future. One way is to expand SE to make it suitable

for more datasets. As the precondition of SE, each class distribution

should be spherical in the feature space. Thus, if the class distri-

bution is non-convex, SE will remove some of support vectors by

mistake. Another way is to build or create a new center of RS by

selecting the medoids or cumuli geometric centroid (CGC) [57] of

each class. Moreover, a future research line is trying to combine

SE with CBC to improve the performance of classification. Recall

that the centroid point of each class is not located in the geometric

center of this class in the original training set. Thus, the samples

that are far away from their centroid can easily be assigned incor-

rectly to its adjacent classes. This is the reason that CBC model has

the poor performance in the original training set. However, SE can

make the centroid of each class close to its geometrical center by

deleting samples near the centroid constantly. Thereby, the perfor-

mance of CBC should be improved in the reduced training set. 
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