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SUMMARY

Vocal communicators such as humans and song-
birds readily recognize individual vocalizations,
even in distracting auditory environments. This
perceptual ability is likely subserved by auditory
neurons whose spiking responses to individual
vocalizations are minimally affected by background
sounds. However, auditory neurons that produce
background-invariant responses to vocalizations
in auditory scenes have not been found. Here, we
describe a population of neurons in the zebra
finch auditory cortex that represent vocalizations
with a sparse code and that maintain their vocaliza-
tion-like firing patterns in levels of background
sound that permit behavioral recognition. These
same neurons decrease or stop spiking in levels of
background sound that preclude behavioral recog-
nition. In contrast, upstream neurons represent
vocalizations with dense and background-corrup-
ted responses. We provide experimental evidence
suggesting that sparse coding is mediated by feed-
forward suppression. Finally, we show through simu-
lations that feedforward inhibition can transform a
dense representation of vocalizations into a sparse
and background-invariant representation.

INTRODUCTION

In natural environments, important sensory stimuli are accompa-

nied by competing and often irrelevant sensory events. Although

simultaneous sensory signals can obscure one another, animals

are adept at extracting important signals from noisy environ-

ments using a variety of sensory modalities (Born et al., 2000;

Jinks and Laing, 1999; Raposo et al., 2012; Wilson and Mainen,

2006). As a striking yet common example of this perceptual

ability, humans and other vocally communicating animals can

recognize and track individual vocalizations in backgrounds of

conspecific chatter (Cherry, 1953; Gerhardt and Klump, 1988;

Hulse et al., 1997).

The ability to extract an individual vocalization from an audi-

tory scene is thought to depend critically on the auditory cortex
(Näätänen et al., 2001). In the human auditory cortex, population

brain activity selectively reflects attended vocalizations within a

multispeaker environment (Mesgarani and Chang, 2012), and

in humans and birds, population activity is stronger for vocaliza-

tions presented in levels of background sound that permit their

behavioral discrimination compared to levels of background

sound that do not (Binder et al., 2004; Boumans et al., 2008).

Individual auditory cortical neurons appear well suited to encode

vocalizations presented in a distracting background, in part

because the acoustic features to which individual cortical neu-

rons respond are more prevalent in vocalizations than in other

sound classes (deCharms et al., 1998; Woolley et al., 2005).

Futhermore, in response to vocalizations, auditory cortical

neurons often produce sparse and selective trains of action

potentials (Gentner and Margoliash, 2003; Hromádka et al.,

2008) that are theoretically well suited to extract and encode

individual vocalizations in complex auditory scenes (Asari

et al., 2006; Smith and Lewicki, 2006). However, electrophysi-

ology studies have found that single neuron responses to individ-

ual vocalizations are strongly influenced by background sound

(Bar-Yosef et al., 2002; Keller and Hahnloser, 2009; Narayan

et al., 2007). Discovering single cortical neurons that produce

background-invariant spike trains and neural mechanisms for

achieving these responses would bridge critical gaps among

human and animal psychophysics, population neural activity,

and single-neuron coding.

Here, we identify a population of auditory neurons that encode

individual vocalizations in levels of background sound that

permit their behavioral recognition, and we propose and test a

simple cortical circuit that transforms a background-sensitive

neural representation into a background-invariant representa-

tion using the zebra finch (Taeniopygia guttata) as a model sys-

tem. Zebra finches are highly social songbirds that, like humans,

communicate using complex, learned vocalizations, often in the

presence of conspecific chatter.

RESULTS

Behavioral Recognition of Songs in Auditory Scenes
We first measured the abilities of zebra finches to behavior-

ally recognize individual vocalizations (songs) presented in a

complex background, a chorus of multiple zebra finch songs.

We trained eight zebra finches to recognize a set of previously

unfamiliar songs using a Go/NoGo task (Gess et al., 2011; Fig-

ure 1A), and we tested their recognition abilities when songs
Neuron 79, 141–152, July 10, 2013 ª2013 Elsevier Inc. 141

mailto:sw2277@columbia.edu
http://dx.doi.org/10.1016/j.neuron.2013.04.038
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neuron.2013.04.038&domain=pdf


B

In
te

ns
ity

 (d
B

)

48

S
N

R
 (d

B
)

53

58

63

68

73

78

15

10

5

0

-5

-10

-15

63

In
te

ns
ity

 (d
B

)

Time (s)0 2.5

A

P
er

ce
nt

 c
or

re
ct

SNR (dB)
150-15

50

100
C

Figure 1. Behavioral Recognition of Songs

in Auditory Scenes

(A) Birds were trained to recognize target songs

in auditory scenes using a Go-NoGo task, in

which birds initiated trials and responded to

stimuli by breaking an infrared beam. Birds were

rewarded with food for correct Go responses

and punished with lights-out for incorrect NoGo

responses.

(B) Spectrograms showing frequency (ordinate:

0.25–8 kHz) over time (abscissa) of a song pre-

sented at varying volumes and auditory scenes

consisting of the song and a background chorus

of conspecific songs presented at varying SNRs.

Chorus is shown at bottom. Green triangles and

red rectangle on right schematize the volume of

the song (green) and chorus (red) component

comprising each sound. To minimize the facili-

tative effect that onset and offset cues have on

behavioral and neural discrimination of vocaliza-

tions, each sound began and ended with the

same 250 ms snippet of zebra finch chorus.

(C) Birds’ performance levels as a function of

auditory scene SNR, and to songs alone (dots on

right) and chorus alone (dots on left). Each colored

line shows the data for one bird.

See also Figure S1.
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were presented in auditory scenes composed of one target song

and the chorus (Figure 1B). We randomly varied the signal-to-

noise ratio (SNR) of auditory scenes across trials by changing

the volume of the song (48–78 dB SPL, in steps of 5 dB) while

keeping the chorus volume constant (63 dB; Figure 1B). Birds

performed well on high-SNR auditory scenes immediately after

transfer from songs to auditory scenes (Figure S1 available

online), indicating that they recognized the training songs

embedded in the scene. At high SNRs, birds performed as well

as when the background was absent and their performance

decreased sharply around 0 dB SNR (Figure 1C), in close agree-

ment with the abilities of human subjects to recognize speech in

noise (Bishop and Miller, 2009).

Transformation from Dense to Sparse Coding of Song
Wenext recorded the activity of single neurons atmultiple stages

of the auditory pathwaywhile birds heard the songs that they had

learned during behavioral training, the chorus alone, and the

auditory scenes used in behavioral testing. From each bird, we

recorded single unit responses in the auditory midbrain (MLd,

homolog of mammalian inferior colliculus, n = 100), the primary

auditory cortex (Field L, thalamorecipient and immediately adja-

cent regions, n = 99), and a higher-level auditory cortical region

(NCM, n = 170; Figure 2A) that receives synaptic input from the

primary auditory cortex (Table S1). Most primary auditory cortex

(AC) neurons were recorded in the subregion L3, which provides

the majority of input to the higher-level cortical region NCM (Fig-

ure S2). All electrophysiology experiments were performed with

awake, restrained animals.

Action potential widths of higher-level AC neurons formed a

continuous distribution with two clear peaks (p = 0.0001, Harti-

gan’s dip test), suggesting two largely independent populations
142 Neuron 79, 141–152, July 10, 2013 ª2013 Elsevier Inc.
(Figure 2B). Higher-level AC neurons with narrow action poten-

tials (0.1–0.4 ms) were classified as narrow spiking (NS, n = 35;

0.254 ± 0.047 ms, mean ± SD), while neurons with broad action

potentials (>0.4 ms) were classified as broad spiking (BS, n =

135; 0.547 ± 0.102 ms, mean ± SD). BS and NS neurons were

also largely segregated based on song-driven firing rate, with

90% of BS neurons firing fewer than 3.5 spikes/s and 89% of

NS neurons firing greater than 3.5 spikes/s. In contrast to this

bimodal distribution, widths of midbrain and primary AC action

potentials formed unimodal distributions with peaks in the NS

range and tails extending into the BS range that included only

a small fraction of neurons (7%, midbrain; 11%, primary AC).

None of the BS-like midbrain neurons had driven firing rates

less than 3.5 spikes/s, and only 2% of primary AC neurons fired

fewer than 3.5 spikes/s. These analyses suggest that the higher-

level AC contains a largely distinct population of neurons with

very broad action potentials and low firing rates.

Although individual neurons in each brain area responded to

song playback with increased firing rates relative to sponta-

neous firing (mean z-scores of 4.17, 4.40, 3.31, and 1.36 in

midbrain, primary AC, higher-level AC NS, and BS populations,

respectively), individual BS neurons in the higher-level AC fired

fewer spikes, produced more precise spike trains, and were

highly selective for individual songs. Song-driven firing rates

of BS neurons were significantly lower than those of neurons

in the midbrain, primary AC, or NS neurons in the higher-level

AC (2.4 ± 2.7, 39.8 ± 25.4, 32.4 ± 20.1, and 19.0 ± 11.7 Hz,

respectively; Figure 2D). Despite the low firing rates of BS

neurons, the spikes that individual BS neurons produced were

highly reliable across multiple presentations of the same

stimulus. To quantify the precision of individual neurons, we

computed the shuffled-autocorrelogram (SAC) from the spiking
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responses to individual songs. The value of the SAC at 0 ms lag

is termed the correlation index, and it describes the propensity

for a neuron to spike with submillisecond precision across mul-

tiple presentations of the same song, with a value of 1 indicating

chance and larger values indicating greater degrees of trial-to-

trial precision. BS neurons in the higher-level AC had signifi-

cantly higher correlation index values (10.3 ± 13.0) than did

midbrain, primary AC, or higher-level AC NS neurons (correla-

tion indexes of 2.8 ± 3.1; 2.5 ± 1.9; and 2.1 ± 0.7, respectively;

Figure 2E). Also in contrast to other populations, BS neurons

were typically driven by a subset of songs (6.9 ± 5.2 out

of 15), while midbrain, primary AC, and higher-level AC NS neu-

rons responded to nearly every song (14.4 ± 2.5; 14.7 ± 1.9; and

14.96 ± 0.21 out of 15, respectively). We quantified response

selectivity as 1 � (n/15), where n was the number of songs to

which an individual neuron reliably responded. BS neurons in

the higher-level AC were significantly more selective than

were neurons in other populations (Figure 2F). Broad and

narrow populations of neurons in the midbrain and primary AC

did not differ in the neural coding of song (Figure S4). Further-

more, we found no systematic relationship between response

properties of primary AC neurons and anatomical location along

the dorsal-ventral or anterior-posterior axes, each of which cor-

relates with the location of subregions (Figure S5). Together,

these results show that the neural coding of song changes mini-

mally between the midbrain and primary AC, but a stark trans-

formation in song coding occurs between the primary AC and

BS neurons in the higher-level AC.

As a population, BS neurons represented songs with a sparse

and distributed population code, in contrast to neurons in up-

stream areas. The BS neurons driven by a particular song each

produced discrete spiking events at different times in the song

(Figure 3A), resulting in a sparse neural representation that was

distributed across the population. We quantified population

sparseness by measuring the fraction of neurons in each popu-

lation that were active during a sliding window of 63 ms, which is

the average duration of a zebra finch song note (the basic acous-

tic unit of song; see spectrogram in Figure 3A). While more than

70% of neurons in upstream auditory areas fired during an

average 63 ms window, fewer than 5% of BS neurons were

active during the same epoch (Figure 3B).

Despite the markedly different population coding of song

in the BS population compared to the NS and upstream pop-

ulations (Figure S3), the temporal pattern produced by the

BS population was similar to the temporal patterns produced

by the dense coding populations (Figure 3C). Each population

fired throughout the duration of a song, followed the temp-

oral envelope of the song, and was most strongly driven by

syllable onsets. These findings show that the neural represen-

tation of individual songs transforms from a dense and redun-

dant code in the midbrain and primary AC to a sparse and

distributed code in a subpopulation of neurons in the higher-

level AC.

Sparse Coding Neurons Extract Songs from Scenes
We next examined the coding of individual songs in auditory

scenes. Figure 4A shows responses of representative neurons

to a song presented at multiple sound levels, chorus, and audi-
tory scenes presented at multiple SNRs. BS neurons in the

higher-level AC responded reliably to songs in levels of chorus

that permitted behavioral recognition, but largely stopped firing

in levels of chorus that precluded behavioral recognition (see

Figure 1C). In response to auditory scenes at SNRs below

5 dB, BS neurons fired fewer spikes than to the songs presented

alone, indicating that the background chorus suppressed BS

neurons’ responses to songs (Figure 4B). In contrast, midbrain,

primary AC, and higher-level AC NS neurons fired more in

response to auditory scenes than to songs presented alone,

consistent with the higher acoustic energy of auditory scenes

compared to the song or chorus comprising them.

Higher-level AC BS neurons produced highly song-like spike

trains in response to auditory scenes at SNRs that permitted

behavioral recognition (Figure 5A). In contrast, neurons in up-

stream auditory areas and higher-level AC NS neurons pro-

duced spike trains that were significantly corrupted by

the background chorus, including at SNRs that permitted reli-

able behavioral recognition. We quantified the degree to which

each neuron produced background-invariant spike trains by

computing the correlation between responses to auditory

scenes and responses to the song component (Rsong) and

chorus component (Rchor) when presented alone. From these

correlations we calculated an extraction index, (Rsong � Rchor)/

(Rsong + Rchor), which was positive when a neuron produced

song-like responses and was negative when the neuron pro-

duced chorus-like responses.

The extraction indexes of BS neurons were significantly

greater than the extraction indexes of upstream neurons and

NS neurons, particularly at SNRs that permitted reliable behav-

ioral recognition (Figure 5B). On average, BS neurons produced

song-like spike trains at SNRs greater than 0 dB, whereas

midbrain, primary AC, and higher-order AC NS neurons pro-

duced song-like spike trains only at SNRs greater than 5 dB.

The extraction index curves of BS neurons decreased precipi-

tously between +5 and �5 dB SNR, in close agreement with

psychometric functions (see Figure 1C), whereas the extraction

index curves of midbrain, primary AC, and higher-level AC NS

neurons decreased linearly. To quantify the rate at which the

neural and behavioral detection of songs in auditory scenes

changed as a function of SNR, we fit each extraction index curve

and each psychometric curve with a logistic function, fromwhich

we measured the slope of the logistic fit. We found that extrac-

tion index curves of BS neurons and psychometric functions of

behaving birds had similarly step-like shapes, and that they

were both significantly more steep than the extraction index

curves of midbrain and primary AC neurons (Figure 5). Interest-

ingly, neurons in each brain area were equally good at extracting

trained and unfamiliar songs (data not shown), indicating that

training and behavioral relevance were not critical for the neural

extraction of songs from auditory scenes. Furthermore, segre-

gating neurons in the midbrain and primary AC into broad and

narrow populations revealed no significant differences in the

extraction of songs from auditory scenes (Figure S4). These find-

ings show that BS neurons represent individual songs in auditory

scenes at SNRs that match birds’ perceptual abilities to recog-

nize songs in auditory scenes, in contrast to NS and upstream

neurons.
Neuron 79, 141–152, July 10, 2013 ª2013 Elsevier Inc. 143
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Figure 2. Neural Transformations in the Coding of Vocalizations

(A) Schematic of the ascending auditory pathway. Neuronswere recorded in the auditorymidbrain (MLd, yellow), the primary auditory cortex (Field L, orange), and

a higher-level region of the auditory cortex (NCM, red and blue). Other auditory areas are in gray.

(B) Distributions of action potential widths in the three brain areas. Red and blue bars at top denote NS and BS ranges, respectively. Inset at right shows action

potential widths of representative BS (blue) and NS (red) neurons in the higher-level AC.

(legend continued on next page)
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Figure 3. Population Coding of Vocaliza-

tions

(A) Neurogram of BS neurons in the higher-level

AC in response to the song shown above. Each

row shows the average firing rate over time for an

individual neuron. Neurons were organized by the

time of their first significant spiking event. Neurons

75 through 135 do not respond to this song. Gray

scale is 0 (white) to 67 (black) spikes/s. Letters

above the spectrogram indicate three distinct

notes.

(B) Population sparseness measured as the frac-

tion of all neurons active during each 63 ms epoch

of song. Values near zero indicate a high degree of

sparseness. NS neurons were not included in

statistics because of the small sample size. Bar

graph shows mean ± SD; asterisk indicates p <

0.05, Kruskal-Wallis.

(C) Population PSTHs showing the responses of all

recorded neurons from each auditory area and

each cell type in the higher-level AC to a song.

Correlation coefficients between pairs of popula-

tion PSTHs are shown at right.

See also Figures S3–S5.
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Feedforward Suppression Sparsifies Neural Responses
The BS population represented individual songs with a sparse

population code, in contrast to the representation of songs in

upstream populations, and we next aimed to understand how

a sparse sensory representation arises in the BS population.

One neural mechanism for producing sparse sensory responses

is with neurons that are only sensitive to very specific stimulus

features. To determine whether BS neurons were sensitive to

particular acoustic features, we computed a percentage similar-

ity score (Sound Analysis Pro, Tchernichovski et al., 2000) for

every pair of notes to which an individual BS neuron responded.

Percentage similarity score describes the acoustic similarity of a

pair of notes based onmeasures of pitch, amplitude modulation,

frequency modulation, Weiner entropy, and goodness of pitch.

Like neurons in other auditory populations, pairs of notes to

which a BS neuron responded were spectrotemporally more

similar to one another (percentage similarity score, 69.2 ± 28.3)

thanwere notes selected at random (percentage similarity score,

45.8 ± 27.2, mean ± SD; p < 0.0001; Figures S6A and 6B). How-

ever, unlike other recorded neurons, BS neurons often failed to

respond to every iteration of a note that was repeated multiple

times in a song (Figure S6C; see Figure 7A), and notes that

were spectrotemporally similar to a response-evoking note often

failed to evoke a response (see Figure S6B). These observations

indicate that although individual BS neurons were sensitive to

particular acoustic features, acoustic features alone may be

inadequate for predicting their responses.
(C) Four example neurons from the midbrain (yellow) and primary AC (orange), an

three songs. Spectrograms of the three songs are on top.

(D) Firing rates in response to songs.

(E) Degree of millisecond precision in the spiking responses to repeated present

autocorrelogram.

(F) Degree of selectivity for individual songs, measured as 1 � (n/15), where

corresponds to (D)–(F). All bar graphs show mean ± SD. Asterisks indicate p < 0

See also Figure S2 and Table S1.
To quantitatively assess the acoustic features to which BS

neurons were tuned, we next computed spectrotemporal recep-

tive fields (STRFs). STRFs provide an estimate of the acoustic

features to which a neuron is sensitive, and the complexity of a

receptive field can indicate a neuron’s selectivity for complex

or rarely occurring acoustic features. Such highly selective

feature detectors could lead to sparse firing patterns and could

potentially differentiate between subtle variations of a repeated

note, as we observed in the BS population. For each neuron,

we computed a STRF based on the spiking responses to all

but one of 15 songs, and we validated each STRF by using it

to predict the response to the song not used during STRF esti-

mation. The STRFs of midbrain, primary AC, and higher-level

AC NS neurons showed clear tuning for particular acoustic fea-

tures (Figure S6D) and could be used to accurately predict neural

responses to novel stimuli (Figure S6E). In contrast, the acoustic

features to which BS neurons in the higher-level AC were sensi-

tive were poorly characterized by STRFs, and STRFs of BS neu-

rons were poor predictors of neural responses to novel stimuli.

These results suggest that the responses of BS neurons may

be modulated by more than the short time-scale acoustic fea-

tures that are typically coded by upstream populations.

To determine whether BS neurons were sensitive to long time-

scale acoustic information (tens to hundreds of milliseconds), we

presented individual notes independent of their acoustic context

in songs. We reasoned that if BS neurons are highly selective

feature detectors that were only sensitive to short time-scale
d from each cell type in the higher-level AC (red, NS; blue, BS) in response to

ations of the same song, measured as the correlation index from the shuffled

n is the number of vocalizations that drove a significant response. Legend

.05, Kruskal-Wallis.

Neuron 79, 141–152, July 10, 2013 ª2013 Elsevier Inc. 145



Time (s)0 2.5 0 2.5 0 2.5

A

S
on

g 
(d

B
)

48

S
ce

ne
 (S

N
R

)

53
58
63
68
73
78
15
10
5
0

-5
-10
-15
63

C
ho

ru
s

(d
B

)

0 2.5

B
40 25

6

Fi
rin

g 
ra

te
 (H

z) 60

40

20

0 0 0 0

30

20

10

20
15
10
5

4

2

0 15-15

Midbrain Primary AC NS BS

Song
Chorus
Spont.
Scene

Midbrain Primary AC NS BS

0 2.5

Stimuli

0 15-15 0 15-15 0 15-15

Figure 4. Neural Encoding of Songs in Auditory Scenes

(A) Examples of single neurons’ responses to the songs, auditory scenes, and chorus shown at the far right. Green spike trains are responses to songs, black to

auditory scenes, and red to the chorus. Green triangles and red rectangle on right schematize the volume of the song (green) and chorus (red) components
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(B) Average firing rates to songs at varying intensities (circles connected by solid line), auditory scenes at varying SNRs (bars), chorus (solid line), and silence

(dashed line). Asterisks indicate SNRs for which the auditory scene and song firing rates are significantly different (p < 0.05, Wilcoxon).

See also Figures S3 and S4.
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information, they should respond to the same subset of notes

when presented independently or in the context of a song. We

further predicted that BS neurons should retain their selectivity

for some iterations of a repeated note but not for others. Contrary

to these predictions, BS neurons responded to eight times more

notes when they were presented independently (in the absence

of acoustic context) than in the context of the song (p < 0.05, Wil-

coxon; Figures 6A and 6B). Futhermore, when notes were pre-

sented independently, BS neurons tended to respond to more

iterations of a repeated note than when they were presented in

the context of song (see Figure 6A). The finding that BS neurons

can respond to notes that do not drive a response during song

indicates that preceding noteswithin a song suppress a neuron’s

response to subsequent notes.

To measure the time course of contextual suppression during

the playback of song, we systematically increased or decreased

the interval between notes that evoked responses and the notes

immediately preceding them (Figure 6C). We found that acoustic

context influenced BS neuron responses to subsequent notes

with interactions lasting at least 100 ms (Figure 6D). The sup-

pression induced by preceding notes did not require that the

neuron respond to the preceding notes (e.g., Figure 6C), sug-

gesting that contextual suppression is synaptic rather than due

to intrinsic hyperpolarizing currents, which are typically activated

after spiking (Cordoba-Rodriguez et al., 1999). Removing the

acoustic context had no effect on the number of notes to which
146 Neuron 79, 141–152, July 10, 2013 ª2013 Elsevier Inc.
NS or primary AC neurons responded (data not shown). There-

fore, presenting notes in the context of song prevented BS neu-

rons, but not other neurons, from responding to notes that were

capable of driving spiking responses and this suppression was

not spiking dependent.

The context dependence of responses to songs suggests a

role for synaptic inhibition in contextual suppression. We next

explicitly tested the role of GABA in the contextual suppression

of song responses by presenting songs while locally blocking

inhibitory synaptic transmission within the higher-level AC using

the selective GABA-A receptor antagonist gabazine (Thompson

et al., 2013). We found that BS neurons responded to nine times

asmany notes with inhibition blocked than without (p < 0.05, Wil-

coxon; Figures 7A and 7B), in agreement with the increase in

responsive notes found by removing the acoustic context.

Furthermore, the additional notes to which neurons responded

under gabazine were spectrotemporally similar to the notes

that evoked a response under nongabazine conditions (percent-

age similarity score of nongabazine responsive versus gabazine

responsive notes, 64.2 ± 31.1; percentage similarity score of

randomly selected notes, 45.8 ± 27.2, mean ± SD; p < 0.0001).

Blocking inhibition had no effect on the number of notes to

which NS neurons responded (p > 0.05, Wilcoxon; Figure 7C)

and blocking inhibition in the primary AC had no effect on the

number of notes to which primary AC neurons responded (p >

0.05, Wilcoxon, data not shown).
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(A) Example PSTHs from an individual primary AC

neuron (left) and BS higher-level AC neuron (right)

to a song at highest and lowest intensity presented

(top), to chorus (bottom) and to auditory scenes

(middle). Scale bars show firing rate (Hz).

(B) Extraction index shows the degree to which the

response to auditory scenes was similar to the

song response (positive numbers, +1 being iden-

tical) or the chorus response (negative numbers,

�1 being identical). Solid lines show mean and

shaded areas show ±SEM. Asterisks indicate

SNRs where BS neurons are significantly different

than all other areas (p < 0.05, Kruskal-Wallis).

(C) Slope of logistic fits of extraction index curves

and psychometric functions.
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A Functional Circuit for Sparse and
Background-Invariant Neural Representations
Presenting notes independently or blocking inhibition in the

higher-level AC both increased the number of notes to which

BS neurons were responsive. Under both experimental condi-

tions, the additional notes to which a BS neuron responded

were spectrotemporally similar to notes to which the neuron

responded without experimental manipulation (data not shown),

suggesting that BS neurons received spectrotemporally tuned

input that was suppressed under normal song conditions.

Song manipulation experiments showed that preceding song

notes provided feedforward suppression and gabazine experi-

ments suggested that this suppression was mediated by synap-

tic inhibition. Taken together, these findings are suggestive of

a cortical architecture of feedforward inhibition, similar to that

described in the mammalian auditory cortex (Tan et al., 2004;

Wehr and Zador, 2003).

We next designed and simulated a putative circuit of feedfor-

ward inhibition that is based in part on the assumptions that NS

neurons are inhibitory whereas BS neurons are excitatory, and

that excitatory and inhibitory inputs to BS neurons are matched

in spectral tuning. Although these assumptions are supported by

anatomic, pharmacologic, and physiologic studies (Vates et al.,

1996; Atencio and Schreiner, 2008; Mooney and Prather, 2005;

see Discussion), they have not been explicitly tested. Rather

than to propose an exact wiring diagram, the purpose of the

model is to test the hypothesis that a simple circuit of feedfor-

ward inhibition can reproduce the sparse and background-

invariant song representations that we observed in BS neurons.

In the circuit shown in Figure 8A, both BS and NS higher-level

AC neurons receive direct excitatory input from the primary AC,
Neuron 79, 141–
and NS neurons provide delayed and

sustained inhibition onto BS neurons. In

response to a brief input from the primary

AC, a simulated BS neuron receives a

burst of excitation followed by delayed

and prolonged inhibition (Figure 8A,

inset). Based on this temporal filter, we

simulated the spiking activity of BS neu-

rons (n = 70), each of which received as
input the responses of an individual primary AC neuron (n = 70)

to songs, chorus, and auditory scenes. Primary AC activity was

simulated using receptive fields estimated from responses to

songs (Calabrese et al., 2011). Simulations of this circuit trans-

formed dense and continuous primary AC responses to song

into sparse responses that were selective for a subset of songs,

firing reliably in response to specific notes (Figure 8B). The firing

rate, selectivity, and sparseness of simulated BS neurons were

similar to those observed in experimentally recorded BS neurons

(Figure S7). In response to auditory scenes at SNRs above 0 dB,

simulated BS neurons produced precise spike trains similar

to those produced in response to the song presented alone,

and at low SNRs, most simulated BS neurons stopped firing

(Figure 8C). As in recorded responses, simulated BS neurons

extracted individual songs from auditory scenes better than

simulated primary AC neurons at high and intermediate SNRs

(Figure 8D). Using raw PSTHs from primary AC neurons as inputs

to the model rather than simulated PSTHs produced similar

results (data not shown). Together, these simulations show that

a cortical circuit of feedforward inhibition can accurately repro-

duce the emergence of sparse and background-invariant song

representations.

DISCUSSION

We report a population of auditory neurons that produce back-

ground-invariant responses to vocalizations at SNRs that match

behavioral recognition thresholds. Individual BS neurons in the

higher-level AC respond sparsely and selectively to a subset of

songs, in contrast to NS neurons and upstream populations.

BS neurons largely retain their song-specific firing patterns in
152, July 10, 2013 ª2013 Elsevier Inc. 147
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Figure 6. Sparsification due to Local Acoustic Context

(A) Spectrogram and responses of a BS neuron to a song (top). Below are the spectrograms of individual notes (delineated bywhite vertical bars) and responses to

notes, realigned to match the original spectrogram.

(B) Number of notes to which BS neurons responded when presented within the song and when the notes were presented independently (n = 7).

(C) PSTH responses of example neuron to songs with an extended or contracted silent gap (red bars) preceding a responsive note (green bars). The third

spectrogram from the top shows the natural song. Contextual suppression does not depend on the neuron responding to preceding acoustic elements.

(D) Change in firing rate as a function of the silent duration between a responsive note and preceding notes (n = 9).

See also Figure S6.
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levels of background sound that permit behavioral recognition

and stop firing at SNRs that preclude behavioral recognition.

These results suggest that the activity of BS neurons in the

higher-level AC may serve as a neural mechanism for the

perceptual extraction of target vocalizations from complex audi-

tory scenes that include the temporally overlapping vocalizations

of multiple individuals.

To measure behavioral recognition, we trained birds to report

the identity of an individual song presented simultaneously with a

distracting chorus using a Go/NoGo task. Although Go/NoGo

behaviors are typically described as discrimination tasks, a vari-

ety of strategies could be used to perform the task, all of which

require subjects to detect target sounds but not necessarily to

discriminate among them. In our physiologic experiments, neural

responses were recorded during passive listening and reflect the

abilities of neurons to detect, but not necessarily discriminate

among, songs within auditory scenes. Our physiology results

show that BS neurons in the higher-level AC provide a signal

that could be used for accurate detection of target vocalizations

in auditory scenes at SNRs that match behavioral thresholds,

regardless of the strategy birds used during behavioral testing.

It is still unclear how or where these neural signals are integrated

with decision-making and motor-planning circuits to produce

the appropriate behavioral response during the recognition task.
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By analyzing the action potential shape of individual cortical

neurons, we identified largely independent narrow and broad

spiking populations in the higher-level AC and found that these

populations could play distinct functional roles in the processing

of songs and auditory scenes. A small fraction of midbrain and

primary AC neurons have action potential widths that we call

broad (>0.4 ms), but action potential widths in these regions

did not form bimodal distributions, and BS and NS neurons in

these regions did not show significant differences in responses

to songs or auditory scenes. Categorizing intermingled neurons

based on action potential width has been critical for understand-

ing neural coding in the songbird vocal production system and in

the mammalian cortex (Dutar et al., 1998), in large part because

BS and NS neurons in these systems tend to form distinct excit-

atory and inhibitory populations. Whether NS and BS neurons in

the higher-level AC comprise distinct inhibitory and excitatory

populations remains to be tested.

In agreement with many previous reports, we find that the

neural representation of communication sounds transforms at

subsequent stages of auditory processing (e.g., Chechik et al.,

2006; Meliza and Margoliash, 2012). Our findings provide strong

evidence that the representation of songs and auditory scenes is

transformed dramatically between the primary and higher-level

AC. However, we cannot rule out the possibility that significant
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Inhibition

(A) Spectrogram (top) and responses of a BS

neuron to a song without (middle) and with

(bottom) local administration of gabazine.

(B) Number of notes that BS neurons respond

to before, during, and after gabazine application

(n = 14).

(C) Number of notes that NS neurons respond

to before, during, and after gabazine application

(n = 9). Asterisks indicate groups that are signifi-

cantly different (p < 0.05, Wilcoxon).
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transformations in the neural coding of songs and auditory

scenes occur within the primary AC, and that these transforma-

tions are inherited by the higher-level AC. Further studies are

necessary to fully describe the representation of auditory scenes

at multiple stages in the primary AC (see Meliza and Margoliash,

2012) and to look at monosynaptic transformations between

projection neurons in the primary AC and neurons in the

higher-level AC.

Our results differ in two important ways from recent findings in

another songbird species, the European Starling (Meliza and

Margoliash, 2012). First, we see a large increase in selectivity

between the primary AC and the higher-level AC, but only in

BS neurons. In contrast, in the auditory cortex of the European

Starling, there is a smaller (but significant) increase in selectivity

between the two stages of processing and only small differences

in selectivity between BS and NS populations. These differences

could be attributed to multiple factors including anesthetic state

(awake versus urethane anesthetized), method for computing

selectivity (song versus motif), or boundary criteria between

action potentials of NS and BS populations. We also found no ef-

fect of learning on song coding or auditory scene processing in

the higher-level AC, in contrast with previous reports that used

the European Starling (e.g., Gentner and Margoliash, 2003;

Meliza and Margoliash, 2012), which may suggest differences

in cortical plasticity between species with open-ended (Euro-

pean Starling) and close-ended (zebra finch) learning periods.

We propose and model a cortical circuit based on feed-

forward inhibition that recapitulates salient aspects of the
Neuron 79, 141–
neural coding transformations observed

between the primary and higher-level

AC. Although the results of the simulation

are in close agreement with our physio-

logic and pharmacologic findings, the

model makes assumptions regarding

the identity and connectivity of excitatory

and inhibitory neurons, and the relative

timing of excitatory and inhibitory inputs.

The model also assumes that excitatory

and inhibitory inputs to BS neurons are

perfectly cotuned in frequency, because

in the model excitation is directly sup-

plied and inhibition is indirectly supplied

by the same neuron in the primary AC.

Although we do not explicitly verify these
assumptions, they are supported by previous studies showing

that the higher-level AC receives direct synaptic input from

the primary AC and is richly interconnected by local interneu-

rons (Vates et al., 1996), and that neurons in the songbird

(Mooney and Prather, 2005) and mammalian (Atencio and

Schreiner, 2008) cortex can be segregated based on action

potential width into excitatory (broad) and inhibitory (narrow)

populations. Our data show that primary AC and NS neurons

in the higher-level AC have similar spike train patterns, firing

rates, selectivity, and STRFs, in support of NS neurons receiving

direct excitatory input from the primary AC. Spectrally cotuned

but temporally offset excitation and inhibition have been

demonstrated in the mammalian auditory cortex (Wehr and

Zador, 2003). Our proposed model captures our experimental

findings and makes testable hypotheses about how the audi-

tory cortex is organized to transform behaviorally relevant

information.

Across organisms and sensorymodalities, examples of sparse

coding (Crochet et al., 2011; DeWeese et al., 2003; Stopfer et al.,

2003; Weliky et al., 2003), contextual sparsification (Haider et al.,

2010; Vinje and Gallant, 2000), and feedforward inhibition

(Tiesinga et al., 2008; Vogels et al., 2011; Wehr and Zador,

2003) are common. The ubiquity of these neural phenomena

and the necessity of social animals to extract communication

signals from noisy backgrounds suggest that our results may

demonstrate a basic mechanism for generating sparse codes

from dense codes and for the neural extraction of important

sensory signals from complex environments.
152, July 10, 2013 ª2013 Elsevier Inc. 149
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Figure 8. Simulating a Functional Circuit for

Sparse and Background-Invariant Coding

(A) Functional circuit in which a primary AC neuron

provides excitation to both BS and NS neurons in

the higher-level AC. The NS neuron provides de-

layed and sustained inhibition onto the BS neuron.

The auto-synapse onto the NS neuron represents

any of a number of cellular or circuit mechanisms

that could produce sustained firing that outlasts

synaptic input to a neuron. Inset schematizes the

change in spiking probability of BS neuron in

response to a short burst of primary AC input.

(B) Simulations of this circuit with primary AC

responses to four different songs as input

(continuous traces). Black ticks show spiking of

a simulated BS neuron.

(C) Simulations of this circuit with primary AC re-

sponses to auditory scenes as input (left). Average

response of BS neuron to primary AC input is

shown on right. Scale bars show firing rate (Hz).

(D) Extraction index measured from the auditory

scene responses of simulated primary AC (n = 70,

orange) and higher-level AC BS neurons (n = 70,

blue). Solid lines show mean and shaded areas

show ±SEM. Asterisks indicate SNRs at which the

two populations are significantly different (p <

0.05, Wilcoxon).

See also Figure S7.
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EXPERIMENTAL PROCEDURES

Behavioral Training and Testing

Eight male zebra finches were trained to recognize the songs of other zebra

finches using a Go/NoGo operant conditioning paradigm (Gess et al., 2011).

All animals were handled according to Columbia University Animal Care and

Use guidelines. For each bird, two songs were selected from a group of 15

as Go stimuli and two songs were selected as NoGo stimuli. Sounds were pre-

sented through a free field speaker located directly above the bird. Each bird

was trained on a different set of four songs. Birds reached a performance level

of 80% correct after 1,500 to 10,000 trials, after which we tested their abilities

to recognize the Go and NoGo songs when they were part of auditory scenes.

Auditory scenes were interleaved with trials containing only the song or only

the chorus. Positive and negative outcomes for hits and false alarms were

the same during testing with auditory scenes as they were during training

with songs, and chorus-alone trials were reinforced randomly. Each bird per-

formed at least 3,300 trials during behavioral testing (100 per distinct stimulus),

and all testing trials were included for computing psychometric functions.

Behavior and physiology experiments were performed sequentially rather

than simultaneously because (1) the low yield of simultaneous physiology

and behavior would have limited the surveying of neurons in multiple auditory

areas and sampling of neurons throughout the volume of each area; (2) higher-

level AC BS neurons were sparse firing and difficult to isolate, further

decreasing the yield of simultaneous physiology and behavior experiments;

(3) higher-level AC BS neurons were responsive to only a subset of songs,

and not necessarily those that birds were trained to discriminate; and (4) in

the time during which BS neurons were isolated, birds were unlikely to perform

a sufficient number of trials to obtain meaningful results. Sequential behavior

and physiology experiments allowed for accurate characterization of psycho-

metric functions and high yields of well-isolated neurons at multiple stages of

the auditory pathway.

Stimuli

Behavioral and electrophysiologic experiments were performed with the same

set of song, chorus and auditory scene stimuli. The songs were from 15 unfa-

miliar zebra finches. The zebra finch chorus was created by superimposing the

songs of seven unfamiliar zebra finches that were not included in the library of
150 Neuron 79, 141–152, July 10, 2013 ª2013 Elsevier Inc.
individual songs. To remove energy troughs from the chorus, we applied a

time-varying scaling function that was inversely proportional to the RMS

energy, averaged over a sliding 50 ms window. This was done so that chorus

amplitude troughs did not influence the detection of each song differently by

allowing ‘‘dip listening’’ (Howard-Jones and Rosen, 1993). Each song was

2.0 s in duration. For both behavioral training and electrophysiology, each

individual song was flanked by 0.25 s of zebra finch chorus, resulting in total

durations of 2.5 s. We used flanking chorus to eliminate onset and offset

cues that could signal the song identity during behavioral recognition and

because variations in the strength and timing of the onset response across

stimuli could provide potent cues for neural discrimination. Auditory scenes

were composed of an individual song presented simultaneously with the

chorus. We varied the SNR of the auditory scene by varying the song level

(48–78 dB, in steps of 5 dB) while keeping the chorus level constant (63 dB).

All neural analyses were constrained to the central 2 s that were distinct to

each stimulus.

Songs were separated into notes based on changes in overall energy and

transitions in spectrotemporal features. When two contiguous notes morphed

into one another without any obvious transition point, the note sequence was

left intact and presented as a single ‘‘note.’’ To determine the acoustic similar-

ity between pairs of notes, we compared their spectrotemporal features using

Sound Analysis Pro (Tchernichovski et al., 2000). For every pair of notes, we

computed a percentage similarity score that quantified their overall acoustic

similarity based on measures of pitch, amplitude modulation, frequency

modulation, Weiner entropy, and goodness of pitch. Notes that were spec-

trotemporally similar to one another had percentage similarity scores near

100%, whereas notes that were spectrotemporally different from one another

had percentage similarity scores near 0%. We also computed individual

acoustic features for each note. To determine whether a BS neuron in the

higher-level AC was responsive to particular spectrotemporal features, we

computed the percentage similarity between notes that evoked responses

and we compared these values to the percentage similarity between notes

selected at random.

Electrophysiology

Using electrophysiology techniques that have been previously described

(Schumacher et al., 2011), we recorded the spiking activity of individual
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auditory neurons along three stages of the ascending auditory pathway in eight

conscious birds; neurons were recorded from the mesencephalicus lateralis

dorsalis (MLd, midbrain), Field L (used as a proper name, primary auditory

cortex), and caudomedial nidopalliam (NCM, higher-level AC). Birds were

not anesthetized during physiology but were restrained with a metal post

affixed to the skull and a jacket around their bodies. Booth lights were on

throughout the recording session. Craniotomies were made bilaterally at ste-

reotaxic coordinates measured relative to the bifurcation of the sagittal sinus

and centered over each of the three areas: MLd, 2.7 mm medial, 2.0 mm

rostral; Field L, 1.3 mm medial, 1.3 mm rostral; and NCM, 0.6 mm medial,

0.6 mm rostral. Glass pipettes (3–12 MOhm impedance) were used to record

extracellular signals in each brain area. On each recording day, neurons were

recorded in the midbrain of one hemisphere and the primary or higher-level AC

of the other hemisphere, and locations were changed on subsequent days.

Physiologic recordingsweremade for up to 14 days after the last day of behav-

ioral testing. On the last day of physiology, BDA injectionsweremade along the

recording paths to estimate recording sites.

We measured average firing rates, Z scores, precision, and selectivity from

the responses of individual neurons. Z scores were measured as (driven firing

rate� baseline firing rate)/(SD of baseline firing rate). We quantified trial-to-trial

precision by first computing the shuffled autocorrelogram using the spiking

responses to individual songs (Joris et al., 2006). The shuffled autocorrelogram

quantifies the propensity of neurons to fire spikes across multiple presenta-

tions of the same stimulus at varying lags. The correlation index is the shuffled

autocorrelogram value at a lag of 0 ms, and it indicates the propensity to fire

spikes at the same time (±0.5 ms) each time the stimulus is presented. To

quantify selectivity, we first determined the number of songs that drove at least

one significant spiking event. Significant spiking events were defined by two

criteria: (1) the smoothed PSTH (binned at 1 ms and smoothed with a 20 ms

Hanning window) had to exceed baseline activity (p < 0.05), and (2) during

this duration, spiking activity had to occur on >50% of trials. Selectivity was

then quantified as 1 � (n/15), where n was the number of songs (out of 15)

that drove at least one significant spiking event.

To quantify population sparseness, we computed the fraction of neurons

that produced significant spiking events during every 63 ms epoch, using a

sliding window. We then quantified the fraction of neurons active during

each window, with low values indicating higher levels of sparseness. To create

population PSTHs, we first computed the PSTH of each individual neuron

within a population in response to a single song, smoothed with a 5 ms Han-

ning window. We then averaged the PSTHs of every neuron in a population,

without normalizing.

To quantify the degree to which neural responses to auditory scenes

reflected the individual song within the scene, we computed an extraction in-

dex using the PSTHs to a scene at a particular SNR, aswell as the PSTHs to the

song and chorus components of that scene. From these PSTHs we computed

two correlation coefficients: Rsong was the correlation between the song and

scene PSTHs and Rchor was the correlation coefficient between the scene

and the chorus PSTHs. The extraction index was defined as (Rsong � Rchor)/

(Rsong + Rchor). Other methods for quantifying the extraction index from the

PSTHs or from single spike trains produced qualitatively and quantitatively

similar results.

STRFs were calculated from the spiking responses to individual vocalization

and the corresponding spectrograms using a generalized linear model, as pre-

viously described (Calabrese et al., 2011). We validated the predictive quality

of each STRF by predicting the response to a song not used during estimation.

We then calculated the correlation coefficient between the predicted and

actual PSTHs.

We performed an ANOVA to determine the impact of bird ID, recording day,

training performance, and recording hemisphere on neural selectivity and neu-

ral extraction from auditory scenes, and found that none of these variables

were correlated with neural results (p > 0.1).

Pharmacology

Local and temporary administration of the GABA-A receptor antagonist gaba-

zine was performed simultaneously with electrophysiology using a carbon

electrode coupled to a three-barrel pipette (Carbostar). Two pipettes were

filled with 0.9% saline and one pipette was filled with 2.7 mM gabazine diluted
in 0.9% saline. An injection current of 30 nA was used to deliver both drug and

vehicle, and a retention current of �30 nA was used at all other times. A vari-

able current was passed through the second saline barrel to balance the net

current at the tip of the electrode. Physiology experiments during gabazine

administration were started 2–5 min after beginning iontophoresis, which

was continued throughout the drug phase. Immediately following gabazine

administration, saline was administered for 5 min before and continuously

throughout the wash-out phase.

Simulations

To simulate the activity of a primary AC neuron, we convolved the STRF of a

primary AC neuron with the spectrograms of songs, chorus, and auditory

scenes. By rectifying the resultant with an exponential, we generated a simu-

lated PSTH that was highly similar to the PSTH recorded in vivo (r > 0.60). We

generated spike trains by sampling each PSTH with a Poisson spike generator

and we simulated 10 trials of every stimulus.

The kernel defining the BS temporal filter was a mixture of excitatory and

inhibitory Gaussians with different delays and variances, representing excita-

tion from the primary AC and delayed inhibition from NS neurons, and was

constant for every simulated BS neuron. We simulated multiple BS neurons,

each of which had the same temporal filter but received input from a different

primary AC neuron. In this way, each BS neuron inherited a spectrotemporal

filter from the primary AC, onto which was applied a temporal kernel. The width

of the excitatory Gaussian corresponded to the duration of a typical BS spiking

event (�15 ms) and the width of the inhibitory Gaussian corresponded to

the duration over which contextual suppression was observed in vivo

(�100 ms). Because a single primary AC neuron provided input to the BS

and NS neuron, the excitation and inhibition that each BS neuron received

were cotuned. To simulate BS spiking activity, we convolved a primary AC

PSTH with the BS temporal kernel shown in Figure 5A. We added an offset

to the resultant of this convolution, rectified the outcome with an exponential

filter, and generated spiking activity with a Poisson spike generator. We quan-

tified simulated primary AC and BS spike trains with the same methods

described above for recorded spike trains.

Statistical Analysis

For statistical analysis, the nonparametric Kruskal-Wallis and Wilcoxon rank-

sum tests were used.
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