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Abstract

We propose a simple and effective heuristic to save memory in dynamic programming on tree decompositions when solving
graph optimization problems. The introduced “anchor technique” is based on a tree-like set covering problem. We substantiate
our findings by experimental results. Our strategy has negligible computational overhead concerning running time but achieves
memory savings for nice tree decompositions and path decompositions between 60% and 98%.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, tree decompositions of graphs have received considerable interest in practical applications and
experiments [3,16–18,20,24,29,30]. Intuitively, due to its “tree-likeness” a graph with small treewidth often allows
for efficient solutions for otherwise hard graph problems. The core tool in this solution process – besides constructing
a tree decomposition of hopefully small width – is dynamic programming on tree decompositions [6,7,15]. As a rule,
the running time of this dynamic programming is exponential with respect to the treewidth of the graph. Moreover, also
the memory space consumption (in form of dynamic programming tables) is exponential with respect to the treewidth.
Indeed, by our own practical experiences, the main bottleneck for the efficiency often is memory consumption and
not running time. Koster et al. [17] point out that “Mainly due to limitations in computer memory, we are not able to
solve the other instances”.
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Attacking the “memory consumption problem” is the subject of recent research. Aspvall et al. [5] deal with the
problem by trying to find an optimal traversal of the decomposition tree in order to minimize the number of dynamic
programming tables stored simultaneously. Bodlaender and Fomin [9] theoretically investigate a new cost measure
for tree decompositions and try to construct better tree decompositions in this way.

By way of contrast, in this empirically oriented paper we sketch a new approach that decreases the memory
consumption by employing a (tree-like) set covering technique with some heuristic extensions. The point here is that
our newly introduced “anchor technique” applies whenever, in principle, one needs to store all dynamic programming
tables of a given tree decomposition. This is usually the case when one wants to solve the optimization version
of a problem, that is, to construct actually an optimal solution or all of them. Here, the anchor technique tries to
minimize the redundancy of information stored by avoiding to keep all dynamic programming tables in memory.
Aspvall et al.’s [5] technique only seems to apply with respect to the decision version of a problem where one simply
needs to do a bottom-up traversal of the decomposition tree and no second phase with a top-down traversal, as is
typical in the case of optimization problems, is needed. Bodlaender and Fomin’s [9] measure tries to minimize the
cost when assuming that all tables need to be stored whereas we try to avoid storing all tables. Another possibility to
prevent the storing of all tables is given by a naive “PSPACE-like” simulation: The first step consists of computing
an optimal solution value for the root table and storing the corresponding pointers to the tables of its children. Next,
one carries on recursively by repeating this process up to the level of the leaves. In this way, only all tables of one
branch in the decomposition tree need to be stored at the same time. Obviously, this approach leads to a significantly
increased running time whereas the increase of running time for our anchor technique is negligible. So far, according
to our experiments the anchor technique seems to give the best results when dealing with path decompositions
(with memory savings of around 95%) and nice tree decompositions (with memory savings of around 80%). We
tested our technique when solving the NP-complete DOMINATING SET problem by dynamic programming on tree
decompositions as described in [2,4]. The overhead concerning additional running time etc. for realizing the anchor
technique is negligible.

2. Basic definitions and the anchor technique

2.1. Basic definitions

To describe our new technique, we first need to introduce some notation.

Definition 1. Let G = (V, E) be an undirected graph. A tree decomposition of G is a pair 〈{X i | i ∈ I }, T 〉, where
each X i is a subset of V , called a bag, and T is a tree with the elements of I as nodes. The following three properties
must hold:

(1)
⋃

i∈I X i = V ;
(2) for every edge {u, v} ∈ E , there is an i ∈ I such that {u, v} ⊆ X i ;
(3) for all i, j, k ∈ I , if j lies on the path between i and k in T , then X i ∩ Xk ⊆ X j (consistency property).

The width of 〈{X i | i ∈ I }, T 〉 equals max{|X i | | i ∈ I } − 1. The treewidth of G is the minimum k such that G has
a tree decomposition of width k.

If the tree in Definition 1 is only a path, then we speak of a path decomposition. A tree decomposition with a
particularly simple (and useful with respect to dynamic programming, cf., e.g., [15,2,4,14]) structure is given by the
following.

Definition 2. A tree decomposition 〈{X i | i ∈ I }, T 〉 is called a nice tree decomposition if the following conditions
are satisfied:

(1) Every node of the tree T has at most two children.
(2) If a node i has two children j and k, then X i = X j = Xk (in this case i is called a JOIN NODE).
(3) If a node i has one child j , then either

(a) |X i | = |X j | + 1 and X j ⊂ X i (in this case i is called an INSERT NODE), or
(b) |X i | = |X j | − 1 and X i ⊂ X j (in this case i is called a FORGET NODE).
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It is not hard to transform a given tree decomposition into a nice tree decomposition. More precisely, the following
result holds (see [15, Lemma 13.1.3]).

Lemma 3. Given a graph G and a tree decomposition of G that has width k and O(n) nodes, where n is the number
of vertices of G. Then, we can find a nice tree decomposition of G that has also width k and O(n) nodes in time
O(n).

We substantiate our findings using DOMINATING SET as concrete application problem for our experimental
investigations. The NP-hard DOMINATING SET problem is defined as follows.

Input: An undirected graph G = (V, E).
Task: Find a minimum size subset V ′

⊆ V such that every vertex from V is contained in V ′ or is adjacent to at
least one vertex in V ′.

The set V ′ is called a dominating set.
Tree decomposition based algorithms usually proceed in two phases. First, given some input graph, a tree

decomposition of bounded width is constructed. Second, one solves the given problem (such as DOMINATING SET)
using dynamic programming. Here, we are only concerned with the second step; see Bodlaender [8] for a recent
survey concerning the first step. Dynamic programming to solve the optimization version of a problem again works
in two phases—first bottom-up from the leaves to an arbitrarily chosen root node and then top-down from the root
to the leaves in order to actually construct the solution.1 To do this two-phase dynamic programming, however, in
principle we need to store all the information gathered in this process. In particular, this means that one has to store
all dynamic programming tables, each of them corresponding to a bag of the tree decomposition. Each bag B usually
leads to a table that is exponential in its size. For instance, the table size in case of DOMINATING SET is 3|B| since
each vertex in a bag may be in one of three different states [26,2,4]. Clearly, even for modest bag sizes this leads to
enormous memory consumption. This is the point where the anchor technique comes into play. It tries to avoid storing
all dynamic programming tables by applying a set covering strategy.

The following two definitions are from [13].

Definition 4. Given a base set S = {s1, s2, . . . , sn} and a collection of subsets of S, C = {c1, c2, . . . , cm}, ci ⊆ S,
we say that C is a tree-like subset collection if we can organize the subsets in C in a tree T such that every subset
one-to-one corresponds to a node of T , and, for each s j ∈ S, 1 ≤ j ≤ n, all nodes in T corresponding to the subsets
that contain s j induce a subtree of T .2

Now, we can define a set covering problem where the inputs are restricted to tree-like subset collections, that is,
TREE-LIKE WEIGHTED SET COVER (TWSC):

Input: A base set S = {s1, s2, . . . , sn} and a tree-like subset collection C = {c1, c2, . . . , cm} of S such that⋃m
i=1 ci = S. Each subset in C has a real-valued weight w(ci ) > 0 for 1 ≤ i ≤ m.

Task: Find a subset C ′ of C such that
⋃

c∈C ′ c = S and
∑

c∈C ′ w(c) is minimum.

Note that the tree-likeness of a subset collection C of a base set S corresponds to the acyclicity of the hypergraph
H := (S, C) and, hence, it can be checked in linear time by means of the acyclicity test developed by Tarjan and
Yannakakis [25].

2.2. The anchor technique

Trying to minimize space consumption, we have to obey that for each graph vertex we need to store important
information. For instance, as to the DOMINATING SET, this information is either “being in the dominating set”
or “being dominated but not being in the dominating set” or “not being dominated”. Hence, on the one hand, we
want to minimize the memory space consumed by the tables and, on the other hand, we have to make sure that no
information is lost. In a natural way, this leads to a special WEIGHTED SET COVER problem: Each bag B of a tree

1 For the decision version, the bottom-up phase suffices.
2 This is nothing but the third condition of Definition 1 (consistency property).
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Fig. 1. Simplified tree structure with use of anchors. Herein, the anchors are drawn dark. The left-hand side shows a decomposition tree using all
bags (tables), the right-hand side shows a decomposition tree only using the anchor bags (tables).

decomposition translates into a set containing its vertices and an associated weight exponentially depending on its table
size (for DOMINATING SET, this is 3|B|). Losing no information then simply means that we have to cover the base set
consisting of all graph vertices V by a selection of the “bag sets”. To use as little memory as possible then means to do
the selection of the bag sets such that their total weight is minimized while keeping each vertex from V covered. This
is nothing but a TREE-LIKE WEIGHTED SET COVER (TWSC) problem with exponential weight distribution. This
formalization inspired theoretical work on TWSC [13] with applications also in computational biology [23]. There is
a polynomial-time algorithm in case of paths (instead of trees) and a fixed-parameter tractability result for the general
version. More precisely, the following results are known [13]:

• TWSC is polynomial-time solvable with respect to unit weights (O(m · n) running time).
• TWSC is NP-hard in the general case and also with respect to exponential weight distribution.
• If the underlying tree is restricted to be a path (in this case we refer to it as PATH-LIKE WEIGHTED SET COVER),

the problem has been studied under the name SET COVER WITH CONSECUTIVE ONES PROPERTY (SCC1P) and
can be solved in polynomial time (O(m2

· n)) [27].
• TWSC is fixed-parameter tractable with respect to parameter k := “maximum subset size”, that is, TWSC can be

solved in O(3k
· m · n · l) time, where l < m is the maximum degree of a node in the tree of the underlying tree-like

subset collection.

Note that the anchor technique as described here can be applied for every weight function as defined for TWSC.
In particular, it also applies to combinatorial problems in which the number of states depends on the vertex—for an
example, consider the CONNECTED DOMINATING SET problem where one asks for a dominating set which forms a
connected component.

As it turns out, in our concrete application scenario already simple polynomial-time computable data reduction
rules suffice to obtain optimal solutions of TWSC in a fast way (see Section 3.1 for more details).

We call the bags that are in the above described set cover solution C ′ anchors. After finding a set of anchors, we
can simplify the decomposition tree with respect to the memory requirements by setting our pointers directly from
anchor to anchor. This means that, apart from the table involved in the current update step between neighboring bags,
we do not have to save any bag tables that are not anchors. In this context, however, it is important to observe that each
bag table row has an entry pointing to all of the bag’s child bags. Fig. 1 gives a graphical illustration of the pointer
reduction by using anchors.

More precisely, considering the pointers representing the (simplified) tree structure between the rows of the
dynamic programming tables, we have to differentiate two cases: First, if the bag of a child of a tree node is an
anchor, then we set our pointer in the normal way. If the bag of a child is not an anchor, then we use the pointer from
the corresponding row of the child’s bag table: Assume that the value for row c in the table of a bag was computed
using row c′ in a child table which is not an anchor and that row c′ has an entry pointing to c′′, then instead of setting
the pointer of c to c′ (as is usual in the case without the use of anchors) we set the pointer to c′′. Finally, the table
containing c′ can be removed. Note that, assuming that we perform this restructuring process in a bottom-up manner,
the table that contains c′′ is always an anchor. If c′ points to more than one anchor, we have to set pointers to all of
them. Observe that the bag table of the root is treated in a special way. We do not have to store it because we are only
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interested in one entry with optimal value. So, we can assume that all vertices of the root bag are already covered.
This concludes the description of the basic ideas of the anchor technique.

At this point, we have to emphasize one important fact concerning the applicability of the anchor technique
as described here. First, note that with respect to path decompositions the goal to minimize the overall memory
consumption has its one-to-one correspondence in the optimization goal of the PATH-LIKE WEIGHTED SET COVER

problem as described above. Going to trees, however, the formalization as TREE-LIKE WEIGHTED SET COVER

does not take into account the additional costs that are due to the modified pointer structure caused by the anchor
technique. Hence, to somewhat mitigate this effect, in our experiments, which we report on in Section 4, we further
used a heuristic to modestly increase the set of anchors with the goal to decrease the overhead caused by the pointers.
This will be further discussed in Section 3.2.

3. Algorithmic aspects of the anchor technique

In order to compute the set of anchors we first find – by the use of simple data reduction rules – a solution for the
TWSC instance where each bag is associated with a weight which has a value exponential in its table size, and then
we apply a heuristic to find so-called help anchors if necessary. These help anchors shall mitigate the effects caused
by the pointer structure modifications as discussed in the last paragraph of Section 2.

3.1. Data reduction rules for TWSC

Let 〈{X i | i ∈ I }, T 〉 be a tree decomposition of graph G = (V, E) with T = (I, F) and a weight function
w : {X i | i ∈ I } → R+. We consider a TWSC instance with base set V and tree-like subset collection {X i | i ∈ I }.
We implemented the following simple and efficient data reduction rules for TWSC. The data reduction process works
as long as possible, that is, until no reduction applies any more. If possible the rules determine bags from {X i | i ∈ I }
that must be part of an optimal TWSC solution and return a reduced TWSC instance consisting of bags that contain
uncovered vertices (if there are any). Note that the weight initially assigned to a bag is not changed by any reduction
rule.

Rule 1: If a bag X i contains at least one element that is not contained in any other bag, then put X i into the solution
and remove all elements that occur in X i from all bags of the tree decomposition.

Rule 2: If there is an edge e = {i, j} ∈ F such that

(1) X i ⊆ X j and
(2) w(X i ) ≥ w(X j )

then connect each neighboring node of i (except for j) with j and delete i together with its incident edges
from T .

Rule 3: If for any bag X i the fact a ∈ X i implies b ∈ X i , then remove b from the bags of the tree decomposition.
Rule 4: If there is an edge e = {i, j} ∈ F such that X i ∩ X j = ∅, then remove this edge from F .
Rule 5: If for a bag X i there is a set of nodes j1, j2, . . . , jl ∈ I , such that

(1) X i ⊆
⋃l

k=1 X jk ,
(2) w(X i ) ≥

∑l
k=1 w(X jk ), and

(3) the neighbors N (i) of i form a tree-like subset collection,

then remove i from I and connect its neighbors such that the tree-likeness is not violated.

Note that Rule 2 and Rule 4 may apply to an instance which already has been reduced by application of other
reduction rules. The correctness of the above rules is easy to see. Rule 5 has only been implemented restricted to the
special case that node i has two neighbors which cover X i . In this case, the neighbors can always be connected
without violating the consistency property of tree decompositions (since in any case a set of two bags is tree-
like). Because of the NP-completeness of TWSC in general the above polynomial-time data reduction rules do not
suffice in order to obtain an optimal solution for TWSC for all possible inputs. Nevertheless, in many cases of our
experiments the instances were completely solved in this way, and, if not so, the remaining “reduced” instances
were small enough (or split into small enough independent pieces, respectively) such that a simple exhaustive search
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algorithm could efficiently be applied.3 We mention in passing that similar observations concerning the effectiveness
of simple polynomial-time data reduction rules in the context of domination-like or set covering problems were made
in [1,21,28].

3.2. Help anchors

In this section we present a heuristic to determine a set of “help anchors” to mitigate the effects caused by neglecting
the pointer structures in the TWSC formalization. Let 〈X = {X i | i ∈ I }, T = (I, F)〉 be a tree decomposition and
A ⊆ I be a set of anchors, that is, a selection of the bags such that all vertices are covered (

⋃
i∈A X i = V ). So, we

call the set

Ci := { j ∈ I | j is the first anchor on a path from i to a leaf}

the anchor children of node i . Furthermore, if we refer to the number of children of node i as outdeg(i), let

max-table-size := max{w(X i ) · outdeg(i) | i ∈ I }

be the maximum space consumption of a table without the use of anchors.
We further comment on the problems – as already stated in the last paragraph of Section 2 – with the TWSC

formalization in the context of finding suitable anchors. There are two main problems in case of trees instead of
paths which are put down to the memory costs for the pointers (reflecting the (modified) tree structure) and which are
neglected in the TWSC formalization.

The first problem concerns the overall memory consumption in the end of the bottom-up phase of dynamic
programming (that is the information that is needed to trace back a solution). In fact, formulating the problem in
terms of the DOMINATING SET problem, to get the best savings concerning this memory consumption one should
minimize the sum∑

i∈A

3|X i | · |Ci |

where A denotes the set of anchors (whose union of the corresponding bags still has to cover the set of all graph
vertices) and Ci denotes the set of anchor children of node i in the tree decomposition. More generally, the goal is
to minimize

∑
i∈A w(X i ) · |Ci | where w(X i ) basically reflects the size of table X i . The multiplicative factor |Ci | is

ignored in the formalization as TWSC.
The other problem with the TWSC formalization arises from the fact that we have to store all pointers of every (not

only anchors) bag table during one step in the local update process. It turned out to be a crucial source of memory
demands: In some tree decompositions we find a set of anchor bags that consists only of the bags of the leaves and
the root. In this case the children of the root (which usually have big bag tables) have to store pointers to all leaves in
the tree decomposition during the local update process.

To mitigate the effect of the additional factor |Ci | and to ensure that we do not even increase the total amount of
memory requirement, we designed a heuristic that extends an anchor set solution found by the TWSC optimization.
In a few words, the central objective of our heuristic is to avoid to store – even temporarily – a table (including its
pointers) which has a memory consumption greater than the maximum space consumption of any table of the tree
decomposition without anchors.

More specifically, the idea for finding the help anchors is as follows. Consider a node i in the decomposition tree
that has more anchor children than “normal” children, i.e., |Ci | ≥ outdeg(i). If the table of i has a space consumption
greater than the maximum space consumption of a table without anchors (that is, w(X i ) · |Ci | > max-table-size),
we make use of additional bags (called help anchors) from the descendants of i in order to decrease the number of
anchor children of X i . Furthermore, the heuristic additionally chooses subsets of vertices as help anchors that have
more (help) anchor children than original children. It tries several possibilities for this choice and simply picks out
the one with lowest memory requirement. An interesting observation is that we sometimes can decrease the space
consumption by adding more help anchors.

3 Alternatively, the fixed-parameter algorithm from [13] or other sophisticated approaches such as integer linear programming could be applied.
In the experiments which are presented subsequently, this was not necessary.
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Fig. 2. Screen-shot of the original decomposition tree (left-hand side) and its simplification by the anchor technique (right-hand side). The grey
shaded nodes are anchors and the dark shaded nodes are help anchors. Instead of storing the whole structure (left-hand side) one only has to store
the tables of the anchors and help anchors and the pointers from (help) anchor to (help) anchor.

It is conceivable, however, that this heuristic for finding help anchors will not be the final word to say in this
respect. Future (experimental) work has to show whether better strategies are available. As also indicated by the
experiments presented in Section 4, the anchor technique seems to be least effective in case of tree decompositions
with some big bags close to the root and lots of small anchor leaves. These difficulties also seem to be the reason that
the technique so far achieves no satisfactory improvements in memory consumption when dealing with “normal” (that
is, non-nice) tree decompositions. On the positive side, however, with anchors one can “always” afford to use nice tree
decompositions instead of normal ones without loss of (memory) efficiency. Observe that nice tree decompositions
significantly simplify the dynamic programming as concretely exhibited in the cases of DOMINATING SET [2,4],
CONNECTED DOMINATING SET [11], and POWER DOMINATING SET [14].

4. Computational analysis and results

We performed empirical tests with the anchor technique on path and nice tree decompositions. If not stated
otherwise, our tests were run on a standard Linux PC with one gigabyte main memory and a 2.26 GHz processor
using the LEDA library [22]. We implemented the data reduction rules from Section 3.1 (combined with, if necessary,
fast exhaustive search) to find anchors, that is, to solve the corresponding TWSC problem. Having the anchors at
hand, it then is rather simple to adapt the pointer structure between the dynamic programming tables as described
before. Without going into details, let us only mention that the overhead for adding the pointer technique turned out
to be negligible in terms of the overall running time of dynamic programming—we found this when doing tests with
DOMINATING SET. Thus, to start with a summary of our empirical findings, we may say that the anchor technique

• is easy to implement,
• costs very little additional running time, and
• leads to significant savings concerning memory usage in case of path decompositions and nice tree decompositions.

Fig. 2 shows a screen-shot of a tree decomposition together with anchors as produced by our software system
realizing the anchor technique together with tree decomposition based algorithms for hard graph problems.

To generate tree decompositions for our test graph instances, we basically used the same heuristics as described
in [10,16]. We briefly mention in passing that the running times consumed by the anchor technique never exceeded
few seconds, whereas running dynamic programming for DOMINATING SET took time in the range of up to minutes
for graphs with treewidth smaller than 14.

We begin with first results on path decompositions of grid graphs.4 A grid graph simply is a graph of maximum
vertex degree four whose vertices and edges form an r ×s grid for positive integers r and s in the canonical way. Recall
that for path decompositions we have argued in the last paragraph of Section 2 that the formalization as PATH-LIKE

WEIGHTED SET COVER is perfectly alright. Thus, no help anchors are needed. Not surprisingly, hence, in this case
we obtained the strongest memory saving of more than 90%. Table 1 shows our results in more detail.

4 For grid graphs an optimal path decomposition is an optimal tree decomposition as well.
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Table 1

Memory savings for 10 × 10, 10 × 30, and 10 × 50 grids, assuming a table size of 3|B| for each bag B (as also shown in the subsequent tables)

Grid graphs Path decomposition Nice path decomposition
Name |V | |E | pw nob noa mem (%) nob noa mem (%)

grid 10 10 100 180 10 89 9 90.9 178 9 97.7
grid 10 30 300 560 10 289 27 91.0 578 29 97.6
grid 10 50 500 940 10 489 45 91.0 978 49 97.5

Here, pw denotes the width of the underlying path decomposition, nob denotes the number of bags, noa denotes the number of anchors, and mem
denotes the percentage of memory saved.

Table 2
Results for graphs generated with the BRITE tool

|V | |E | nob noa maxb maxa nomb av10b al noh maxh avh mem (%)

100 197 579.0 55.5 12.3 4.5 24.1 11.5 52.1 12.8 12.1 10.1 77.2
150 297 1023.9 84.7 16.8 4.5 25.9 15.2 80.3 20.8 16.7 12.0 74.0
200 397 1573.7 114 21.1 4.4 24.6 18.7 108.1 25.8 20.6 14.4 79.9

Each row represents the average numbers taken over 15 graphs each time. We only consider nice tree decompositions here. Besides the figures
used in Table 1, we additionally measured maxb (maximum bag size; equivalent to treewidth +1), maxa (maximum anchor size), nomb (number of
maximum size bags), av10b (average size of the 10 percent biggest bags), al (number of anchors which are leaves), noh (number of help anchors),
maxh (size of maximum help anchor), and avh (average size of help anchors).

Table 3
Results for combinatorially random graphs generated with LEDA (single graphs, no average numbers)

|V | |E | nob noa maxb maxa nomb av10b al noh maxh avh mem (%)

200 415 1595 84 44 6 6 36.2 74 13 42 28.0 93.1
200 371 1459 88 38 6 8 32.1 73 16 38 28.5 65.3
200 425 1662 91 44 6 7 36.9 83 23 44 22.1 62.5
200 372 1484 95 37 6 4 31.1 79 21 36 18.8 79.1
200 410 1636 82 49 6 6 40.3 73 13 48 33.9 83.1
200 415 1735 83 43 6 14 38.4 76 12 43 32.3 76.3

Again only nice tree decompositions are considered. Same figures as in Table 2.

As to nice tree decompositions, we performed tests with so-called “Internet graphs” as produced by the BRITE
topology generator [19] and combinatorially random graphs generated by LEDA [22]—both yielding sparse graphs.
Here, to achieve a significant progress in comparison with ordinary dynamic programming, we had to extend the
anchor technique by the help anchor heuristic as described in Section 3.2.5 With this heuristic, some more bags are
added to the set of anchors in order to deal with otherwise increased memory requirements due to the pointer structure.
Doing so, we achieved memory savings of around 80%, see Tables 2 and 3.

The following experiments were run on a standard Linux PC with a 2.4 GHz processor, 512 KB cache, and 1 GB
main memory.

Furthermore, we considered nice tree decompositions of real-world graphs from Bodlaender’s TreewidthLIB
library6 which provides a benchmark for tree decomposition based algorithms. We investigated 137 graphs and
achieved even better results than for the synthetically generated graphs. On average we could achieve memory savings
of 86.6%. In Table 4 we show some results for graphs with tree decompositions with a size reasonable for dynamic
programming for DOMINATING SET. Furthermore, it seems to be interesting that there are very few instances for
which the anchor technique seems not to allow for a great improvement. Out of all 137 graphs there was only one
instance with memory savings of less than 50%—whereas for 49 instances we could save more than 99% of memory.

5 In fact, without the additional help anchor heuristic the memory usage was even worse in some cases.
6 See http://www.cs.uu.nl/people/hansb/treewidthlib/index.php.

http://www.cs.uu.nl/people/hansb/treewidthlib/index.php
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Table 4
Results for graphs obtained from Bodlaender’s TreewidthLIB

Name |V | |E | nob noa maxb maxa nomb av10b al noh maxh avh mem (%)

163 80 508 288 39 11 10 9 9.81 24 3 10 7.67 86.2
219 189 366 660 83 12 6 7 9.98 56 13 12 8.62 60.3
259 74 211 268 34 13 7 5 11.6 21 5 12 9.8 80.6
315 23 71 97 10 11 6 20 11 10 2 11 10.5 90.1
402 41 195 78 7 12 9 6 11.8 3 0 0 0 99.6
567 76 218 161 17 12 11 62 12 4 0 0 0 95.1

Again only nice tree decompositions are considered. Same figures as in Table 2; additionally, the name of the graphs from the TreewidthLIB is
given.

At last, we like to mention that the anchor technique allowed us to solve instances that have not been solved by our
dynamic programming before. For example, applying the anchor technique we could compute an optimal dominating
set of a grid graph of size 12 × 50 whereas before we could not even compute a solution for a 12 × 12 grid graph.

5. Conclusion

We introduced the anchor technique to significantly reduce the space consumption of dynamic programming on
(nice) tree decompositions of graphs for solving (hard) optimization problems. We only mention in passing that our
technique not only applies to path/tree decomposition based dynamic programming but also appears to be useful for
dynamic programming on branch decompositions (see [12] for a recent algorithm employing branch decompositions).
The computational and implementation overhead caused by our method was negligible in all our experiments.

In future work, one might try to further mitigate the gap between the formalization of the anchor idea in
terms of TREE-LIKE WEIGHTED SET COVER and the practically relevant point of keeping the tree/table pointer
structure reasonably simple—recall that the pointer structure is neglected by the TREE-LIKE WEIGHTED SET

COVER formalization. Finally, it would be interesting to see how our technique combines with the saving techniques
from [5,9].
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