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We compared the performance of expert-crafted rules, a Bayesian
network, and a decision tree at automatically identifying chest X-ray
reports that support acute bacterial pneumonia. We randomly selected
292 chest X-ray reports, 75 (25%) of which were from patients with
a hospital discharge diagnosis of bacterial pneumonia. The reports
were encoded by our natural language processor and then manually
corrected for mistakes. The encoded observations were analyzed by
three expert systems to determine whether the reports supported pneu-
monia. The reference standard for radiologic support of pneumonia
was the majority vote of three physicians. We compared (a) the perfor-
mance of the expert systems against each other and (b) the performance
of the expert systems against that of four physicians who were not
part of the gold standard. Output from the expert systems and the
physicians was transformed so that comparisons could be made with
both binary and probabilistic output. Metrics of comparison for binary
output were sensitivity (sens), precision (prec), and specificity (spec).
The metric of comparison for probabilistic output was the area under
the receiver operator characteristic (ROC) curve. We used McNemar’s
test to determine statistical significance for binary output and univariate
z-tests for probabilistic output. Measures of performance of the expert
systems for binary (probabilistic) output were as follows: Rules—sens,
0.92; prec, 0.80; spec, 0.86 (Az, 0.960); Bayesian network—sens, 0.90;
prec, 0.72; spec, 0.78 (Az, 0.945); decision tree—sens, 0.86; prec, 0.85;
spec, 0.91 (Az, 0.940). Comparisons of the expert systems against each

other using binary output showed a significant difference between the
rules and the Bayesian network and between the decision tree and the
Bayesian network. Comparisons of expert systems using probabilistic
output showed no significant differences. Comparisons of binary output
against physicians showed differences between the Bayesian network
and two physicians. Comparisons of probabilistic output against physi-
cians showed a difference between the decision tree and one physician.
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The expert systems performed similarly for the probabilistic output
but differed in measures of sensitivity, precision, and specificity pro-
duced by the binary output. All three expert systems performed simi-
larly to physicians. q 2001 Academic Press

INTRODUCTION

Computerized clinical guidelines and decision support
systems have been developed to help physicians diagnose
and manage disease. Success of these automated systems
depends largely on the availability of computable clinical
data in medical information systems. Computerized patient
records currently contain a variety of patient-specific data,
including lab values, nursing notes, admit and discharge
diagnoses, and radiology reports. Some of the computerized
data are represented in a computable format that can be
automatically accessed and manipulated by decision support

systems. However, a large portion of the patient data, includ-
ing history and physical exams, discharge notes, and radiol-
ogy reports, is stored as narrative reports. Narrative reports
are available for review or for printing but are not accessible
to computerized guidelines or decision support systems.
Thus computerized systems do not have access to important
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component is comprised of Bayesian networks that model
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clinical information such as physical symptoms, imaging
observations, and clinical assessments. Access to the missing
information would enhance the performance and increase
the usefulness of automated systems.

Computerized clinical guidelines and decision support
systems have been implemented to help physicians diagnose
and manage pneumonia and other infectious diseases [1–3].
Because information from the chest X-ray is a key compo-
nent in diagnosing pulmonary diseases, these systems need
automatic access to observations from chest X-ray reports.
Often the information from chest X-ray reports is the only
important piece of information the systems cannot automati-
cally access [4].

Some groups have developed natural language processing
(NLP) methods for extracting information from chest X-ray
reports and representing that information in a computable
format [5–13]. Coded output from an NLP system can be
stored in a hospital database, providing encoded data not
previously available to computerized methods.

NLP systems differ in the nature of their output and in
the degree to which the systems generate structured, semanti-
cally interpretable output. One goal of natural language pro-
cessing is to model the underlying idea represented by vari-
ous combinations of words. Therefore, output from an NLP
system contains inferences made from the phrases in the
text. An extension to the local inferencing made from the
text is global inferencing in which information from the
coded output is combined to classify the document.

In this paper we compare three computerized methods that
interpret the coded output of our NLP system to determine

whether a chest X-ray report contained enough information

to support a diagnosis of acute bacterial pneumonia. We
examine a rule based system, a probabilistic system called
a Bayesian network, and a machine learning system called
a decision tree. To isolate the performance of the inferencing
techniques from that of an imperfect NLP system, we cor-
rected mistakes in the NLP system’s output before testing
the expert systems.

BACKGROUND
Our study addresses the disease pneumonia for two rea-
sons. First, pneumonia-related information is frequent
enough in chest X-ray reports to provide a reasonable test
set. Second, two computerized decision support systems cur-
rently in use at LDS Hospital in Salt Lake City, Utah, require
information regarding pneumonia’s presence or absence in
a chest X-ray [2–4].
5

Other researchers have used the output of an NLP system
to support real medical processes. Some NLP systems were
built to extract specific information required by a decision
support system [12]. Other NLP systems have been created
as more general purpose systems that attempt to extract all
diseases and findings that are commonly discussed in a chest
X-ray report. Hripcsak and co-workers have tested the ability
of their NLP system (MedLee) combined with medical logic
modules to identify suspected tuberculosis patients [1, 14].
MedLee has also been tested for accuracy in recognizing
six other clinical concepts [7].

Natural Language Processing with SymText

We have created an NLP system called SymText that is
in use at LDS Hospital [13]. SymText is an NLP system
created for use on chest X-ray reports [15]. SymText has
also been applied to admit diagnoses [16] and ventilation/
perfusion scan reports [17]. SymText is comprised of a syn-
tactic and a semantic component. The syntactic component
contains an augmented transition network [18] combined
with a system for grammatical transformations. The semantic
the domain of interest. For chest X-rays we model all find-
ings, diseases, and devices found on a chest radiograph. The
input to SymText is a sentence. SymText’s output is an
attribute-value template that has been instantiated based on
relevant words in the sentence. Figure 1 represents Sym-
Text’s output for the sentence “The hazy opacity in the right
upper lobe has increased in size.”
FIG. 1. Partial Symtext output for the sentence “The hazy opacity
in the right upper lobe has increased in size.” Numbers in parentheses
are probabilities. Values with a probability of 1.0 are words from the
sentence. Values with an asterisk (*) are concepts SymText has inferred
from the words.
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We have previously tested SymText’s ability to extract
specific pneumonia-related concepts from chest X-ray re-
ports [19]. Once the pneumonia-related concepts are cor-
rectly encoded, the concepts can be used as input to an
expert system that will determine whether the information
in the report supports pneumonia.

Classification Algorithms

Determining whether a report supports pneumonia is a
classification problem. Several classification algorithms ex-
ist that analyze specific attributes describing an object to
classify that object into a predefined category. We compare
three classification algorithms: a rule based system, a Bayes-
ian network [20, 21], and a decision tree [22, 24].

Two distinctions among these algorithms are particularly
relevant to this project. The first distinction relates to how
the algorithm knows which values predict specific classifica-
tions. An expert system can learn classification patterns from
data or from experts. In our case, the Bayesian network and
the decision tree learned which combinations of attributes
predict a given classification from patterns in training cases.
Conversely, the rule-based system learned which attributes
predict which classification from experts.

The second distinction relates to creation of the expert
system’s structure. The structure of an expert system can
also be either learned from data or created by an expert. In
this study, the structure of the decision tree was derived
directly from training cases, whereas the structures of both
the rules and the Bayesian network were created by experts.

For this project we compared one algorithm that was
completely created by expert input (rules), one algorithm
whose structure was created by experts but whose classifica-

tion patterns were learned from data (Bayesian network),
and one supervised machin
both classification patterns
tree). Wilcox and Hripcsak
of applying classification a
system to infer a variety o
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classify reports as supporti

FIG. 2. Process of identifying chest X-
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METHODS

Figure 2 represents the overall process of identifying
pneumonia in chest X-ray reports.

Below we describe input to the expert system, the gold
standard, the training and test sets, the three inference algo-
rithms we compared, and our test metrics.

Input to the Inferencing Algorithms

Input to the inferencing algorithms was a list of finding
and disease templates encoded by SymText for a chest X-
ray report. SymText models a combination of 167 findings
and diseases described in chest X-ray reports, along with
characteristics describing the observations such as state, lo-
cation, severity, and change (see Fig. 1). For this project we
used only the observation concept and its state, e.g., localized
upper lobe infiltrate 2 present.

We tested the computerized inferencing algorithms on a
corrected version of SymText’s output. Two of the authors
reviewed separate portions of SymText’s coded observa-
tions, correcting observations that were both incorrect and
related to pneumonia; all encodings that were not related to
pneumonia or that were related to pneumonia and were
already correct were simply accepted as they were output.

Because our purpose was to determine if an automated
system could detect reports that indicated pneumonia, we
removed any information in the report that did not relate to
the X-ray itself. Therefore, the patient’s clinical history was
removed from the beginning of the report by the manual
coder.
n of radiology reports re-
ans who read and interpret
ogists may understand the
than clinicians. The radiol-
would be the best source
e learning technique that derived Gold Standard
and structure from data (decision
have examined practical aspects A study involving interpretatio

quires a gold standard of physicilgorithms to the output of an NLP
f clinical conditions [25, 26]. In the reports. On one hand, radiol
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for identifying the perceived state of the patients; however,
convincing the original radiologists to read their past reports
and remember the patients is impractical. On the other hand,
internists are the end users of chest X-ray reports whose
interpretations we seek to imitate with automated methods.
We have more access to internists willing to read and inter-
pret reports. Hripcsak et al. [7] compared radiologist and
clinician interpretations of chest X-ray reports and found no
significant difference in their performance. Therefore, in
this study the gold standard was comprised of the majority
opinion of three internists who read the full text of all 292
reports independently to determine whether the reports con-
tained radiologic evidence supporting pneumonia.

We assessed the reliability of the gold standard with a
methodology based on generalizability theory proposed by
Shavelson and Webb [27] and adapted to the NLP domain
by Hripcsak et al. [28]. Following this methodology, a gener-
alizability coefficient is computed. The coefficient, which
ranges from zero to one, quantifies the agreement among
the experts who generated the standard. A generalizability
coefficient of 0.7 or higher is considered adequate if the
gold standard is going to be used to estimate the overall
performance of a system [28].

Training Set

A set of 298 chest X-ray reports was used to train the
Bayesian network and the decision tree. Reports were col-
lected from all patients having a chest X-ray report dictated
before September 1998. We randomly selected 150 from the
subset of reports for which the patient had a hospital dis-
charge diagnosis of bacterial pneumonia. We randomly se-
lected 148 from the mutually exclusive subset of reports for
which the patient did not have a diagnosis of pneumonia.
Two physicians read the reports to determine if the reports
supported pneumonia. Cases on which the physicians dis-
agreed were decided by a radiologist. One hundred seventy-
three of the training cases (58%) supported pneumonia.

Test Set
Our test set was comprised of 292 chest X-ray reports
dictated at LDS Hospital. Three-quarters of the reports (217)
were randomly selected from all chest X-ray reports pro-
duced between October and December 1998. To increase
the prevalence of pneumonia-related reports in our sample
we randomly selected 75 additional reports from patients
with a known primary hospital discharge diagnosis of bacte-
rial pneumonia. The reports from pneumonia patients were
7

dictated between January and March 1999. We did not re-
strict the selection to patients’ first chest X-ray reports, so
more than one report for the same patient was sometimes
included in our test set.

Inferencing Algorithms

Below we describe the three inferencing algorithms we
compared.

Expert-crafted rules. An internist who completed his
internal medicine residency created the following rule to
determine whether a report supports pneumonia.

If any of the following encoded concepts are present, the
report supports pneumonia:

● Pneumonia ● Localized lower lobe
infiltrate

● Aspiration pneumonia ● Perihilar infiltrate
● Localized consolidation ● Generic infiltrate
● Consolidation (nos) ● Localized peripheral

infiltrate
● Localized infiltrate (nos) ● Localized parenchymal

abnormality
● Localized upper lobe

infiltrate

The encoded concepts in the rule already contain phrasal
inferences made by SymText. For example, the concept lo-
calized lower lobe infiltrate is inferred by SymText from
phrases in the text such as “hazy opacity in the right lower
lobe.” Because the diagnostic task was to determine radio-
logic support for acute bacterial pneumonia, only infiltrates
highly predictive of bacterial pneumonia, i.e., localized infil-
trates, were included in the rule.

Expert-crafted Bayesian network. A Bayesian network
is a directed acyclic graph representing joint probabilities
among concepts [20,21]. With input from an experienced
radiologist, the same physician who created the rules created
a Bayesian network (see Fig. 3) in which the top node was
“support pneumonia.” Nodes in the network are concepts
from the parser, and links connecting nodes represent condi-

tional dependence among the concepts. We used the Bayes-
ian network software application Netica (Norsys Software
Corp., Vancouver, British Columbia, Canada). Output of the
network is a probability between 0 and 1 that the report
supports pneumonia.

In creating the Bayesian network we attempted to model
findings that commonly rule in and rule out acute bacterial
pneumonia. In this way, the posterior probability of support



for another example of transforming output for the sake
FIG. 3. Part of the expert-crafted Bayesian network. Nodes with
an asterisk (*) are concepts encoded by SymText. Nodes without an
asterisk are super concepts whose children are concepts modeled by
SymText. Arrows represent conditional dependence between the con-
nected nodes. The root node makes an inference from SymText’s output.

pneumonia decreases from the prior probability when a find-
ing rarely associated with acute bacterial pneumonia is in-
stantiated. Hence, findings such as interstitial infiltrate
(which is more commonly associated with viral pneumonia)
or generalized infiltrate (which is more commonly associ-
ated with adult respiratory distress syndrome or congestive
heart failure) decrease the probability of support pneumonia.

Decision tree. We used Quinlan’s See5.0 Decision Tree
software (RuleQuest Research Pty Ltd, Australia) to learn
a decision tree from data [22]. Given a vector of attribute–
value (a–v) pairs for every training case, the algorithm calcu-
lates the information gain every pair contributes and chooses
the one with the highest value to be the first branch of a
tree. The winning a–v pair is not considered again and the
information gain for the remaining a–v pairs are calculated,
selecting the pair with the highest score and placing it at
the next branch of the tree. The process repeats until most
of the training cases are classified successfully.

From the training set every report was represented as an
a–v vector containing 168 attributes all with binary values
of absent or present. The first 167 attributes were every
possible disease and finding represented by SymText with
the possible values of present or absent. The default value
for concepts not discussed in the report was absent. The last

attribute was the correct classification of support/not support
pneumonia. The final decision tree created from training
cases contained 20 nodes (Fig. 4).

Comparison Metrics

We examined two questions: (1) which of the three expert
systems performs better at identifying reports that support
CHAPMAN ET AL.

pneumonia; and (2) do the three expert systems perform as
well as physicians perform? To address the second question,
four physicians not involved in creation of the gold standard
also determined whether the reports in the test set sup-
ported pneumonia.

Classification of a report as supporting or not supporting
pneumonia can be accomplished with a binary classification,
as the decision tree produces, or a probabilistic classification,
as the Bayesian network provides. Comparison of binary
and probabilistic output is not straightforward. One possible
method of comparison is to transform the binary output into
probabilistic output or the probabilistic output into binary
output. Such a transformation involves some loss of informa-
tion. Since each transformation may favor one or another
methodology we considered both transformations (see [23]
8

of comparison).
Below we describe transformation of the output data re-

quired to make valid comparisons among the subjects. We
then describe how we evaluated the two questions listed
above.

Transformation of the output data. We transformed out-
put from the Bayesian network into a binary response by
FIG. 4. Part of the decision tree for classifying reports by attribute
support pneumonia. Parentheses contain the proportion of training
cases the branch correctly classified.
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assigning a specific probability to be the threshold for a yes/
no classification. Reports with a computed probability less
than the threshold were classified as not supporting pneumo-
nia; reports with a probability greater than the threshold
were classified as supporting pneumonia. A threshold of
0.50 might seem appropriate, but sensitivity is more im-
portant than specificity in identifying reports that might
support pneumonia. Therefore, we selected 0.20 as the
threshold value because the value maintained high sensitivity
with a relatively small loss of specificity.

The four physicians classified the test reports into four
categories: (1) definitely not pneumonia, (2) possibly pneu-
monia, (3) probably pneumonia, and (4) definitely pneumo-
nia. Their ordinal responses were transformed into binary
responses by classifying any answer with possible support
for pneumonia (2)–(4) as supportive of pneumonia.

Output from the expert crafted rules was transformed into
ordinal output identical to that of the physicians, as shown
in Table 1.

We altered the decision tree to provide a probability in-
stead of a binary classification by using the actual proportion
of training reports successfully classified in each leaf node
of the tree as the probability of the classification. As an
example, consider the decision tree shown in Fig. 4. The
first node of the tree indicates that if consolidation (nos) is
present, the classification should be “yes.” In parentheses
we see that 79/81 of the training cases classified by this

node were correctly classified. Therefore, the transformation
of the binary classification of “yes” for this node is the

Pneumonia 4
Aspiration pneumonia Definitely pneumonia

Consolidation (localized or nos) 3
Infiltrate (localized or nos) Probably pneumonia

Localized parenchymal abnormality 2
Possibly pneumonia

No pneumonia-related concepts 1
Definitely not pneumonia
9

Bayesian network, and the decision tree using both binary
output and probabilistic output.

To compare the expert systems based on binary output
we calculated sensitivity, precision (positive predictive
value), and specificity as follows:

Sensitivity: Number of reports correctly classified by ex-
pert system as supporting pneumonia/Number of reports
classified by gold standard as supporting pneumonia

Precision: Number of reports correctly classified by expert
system as supporting pneumonia/Total number of reports
classified by expert system as supporting pneumonia

Specificity: Number of reports correctly classified by ex-
pert system as not supporting pneumonia/Number of reports
classified by gold standard as not supporting pneumonia

We then used McNemar’s test [29] to determine if any
expert system significantly differed from the others. Because
we made three comparisons we applied Bonferroni correc-
tions by dividing our a by 3 (a 5 0.05/3 5 0.017).

Probabilistic output can be analyzed by considering the
sensitivity and specificity of the output at various probability
levels with a receiver operating characteristic (ROC) curve
[30, 31]. The area under the ROC curve (Az) is an overall
measure of performance accounting for variation in true-
positive and false-positive rates that depend on the threshold
used to classify an item. A measure of Az ranges between
0.50 (chance classification) and 1.0 (perfect classification).

We used ROCkit (University of Chicago, Chicago, IL,
1998) to calculate the Az for all three expert systems with
a maximum-likelihood estimate equation. We also used
ROCkit to test the statistical significance of differences be-
tween the correlated ROC curves with a univariate z-score
test. Again, we made Bonferroni corrections for three
comparisons.

Similarity of expert systems to physicians. Correctness
of an expert system is not the only consideration in evaluat-
ing a system’s usefulness. An important comparison in evalu-
ating expert systems is how well the expert systems imitate
human experts. In our case, physicians are the human experts
to imitate. Therefore, we compared the performance of the
three expert systems against the performance of four physi-
probability that the classification is “yes”: 79/81 5 0.98.

Comparison of three expert systems. Once the output
data were transformed into both binary and probabilistic
output, we were able to analyze the performance of the three
expert systems. We tested the performance of the rules, the

TABLE 1

Transformed Expert-Crafted Rules That Provide Ordinal Output

Concepts detected in report Rule output
cians at the same task. The performance of physicians indi-
cates the highest level of performance we might reasonably
expect from an expert system. We also measured the perfor-
mance of three lay persons with no medical experience and
of a simple keyword search. Performance of the lay people
and key-word search provide a baseline against which we can
evaluate the expertise demonstrated by the expert systems.

Again, we used different comparative methods for binary



10

and probabilistic output. Using binary output we plotted
sensitivity by one minus specificity points on ROC axes for
the expert systems, three lay persons, a simple keyword
search, and four physicians. We used McNemar’s test to
determine if any statistically significant differences existed

between the physicians and the other subjects. Because we
divided the a of 0.05 by the 28 comparisons (four physicians

vs three expert systems, three lay persons, and one key-
word search), the statistically significant a value was 0.0018.

Probabilistic output was not obtained from the lay persons
or the key-word search. We compared the Az of the three
expert systems with that of the four physicians using univari-
ate z-score tests with an a of 0.004 (0.05/12 comparisons).

RESULTS

The generalizability coefficient for our gold standard was
0.89. According to our gold standard, 112 (38%) of the
reports supported pneumonia. Below we present results for
binary and probabilistic output that address (1) how well
the expert systems identify chest X-ray reports that support
pneumonia and (2) how well the expert systems imitate phy-
sicians.
FIG. 5. Performance accuracy of the three expert systems.
FIG. 6. Maximum-likehood estimated ROC curves for three expert
systems. The rules demonstrated an area under the curve (Az) of 0.960
(95% CI: 0.927–0.980), the Bayesian network an Az of 0.945 (95%
CI: 0.906–0.970), and the decision tree 0.939 (95% CI: 0.909–0.962).

(0.857). The decision tree performed better than the rules
and the Bayesian network in precision and specificity.

We found a statistical difference between the rules and the
Bayesian network (P 5 0.0071) and between the Bayesian
network and the decision tree (P 5 0.0079). However, there
was no difference between the rules and the decision tree
(P 5 0.7237).

The ROC curves generated for the expert systems are
presented in Fig. 6. The rules demonstrated the highest Az

(0.960), followed by the Bayesian network (0.945) and the
decision tree (0.939). The decision tree curve crossed the
curves of the rules and the Bayesian net, making a compari-
son of areas difficult to interpret. However, no statistical
differences existed among the Az’s for the three expert sys-
tems.
Comparison of Three Expert Systems

We tested the performance of the rules, the Bayesian
network, and the decision tree using both binary and probabi-
listic output. Figure 5 compares sensitivity, precision, and
specificity of the three expert systems. Sensitivity was high-
est for the rules (0.920) and lowest for the decision tree
CHAPMAN ET AL.
Similarity of Expert Systems to Physicians

We also compared the performance of physicians to that
of the expert systems for binary and probabilistic output.
Using binary output, we plotted the sensitivity and corres-
ponding specificity points on an ROC plot (Fig. 7). A subject
with perfect performance would appear at the upper-left
corner of the plot. The physicians are grouped near that



for the systems. For our purposes, sensitivity is the most
FIG. 7. ROC plot of sensitivity and corresponding specificity
points for physicians, expert systems, lay people, and the key-word
search.

corner, along with the three expert systems. The lay people
and the key-word search demonstrated high specificity but
low sensitivity. Statistical comparisons against the physi-
cians reveal a significant difference between physicians and
lay people with P values ranging from 0.0001 to 0.0004.
The physicians and the key-word search also differed signifi-
cantly with P values ranging from 0.0001 to 0.0003. The
Bayesian network significantly differed from two of the
physicians, whereas the rules and decision tree did not differ
AUTOMATICALLY IDENTIFYING PNEUMONIA REPORTS
from any of the physicians.
The Az’s from the expert systems were compared against
those of all four physicians (Fig. 8). Physicians’ Az’s ranged
from 0.969 to 0.980. At the P , 0.004 level, no statistical
differences were found except between the decision tree and
physician 1. Table 2 lists the P values for comparisons
between the binary and probabilistic outputs of the expert
systems and the physicians.

DISCUSSION

We compared the performance of a rule set, a Bayesian

network, and a decision tree at identifying chest X-ray re-
ports that support pneumonia. We also measured how well
the expert systems performed compared to physicians. Be-
low we discuss differences in the performance of the three
expert systems. To select the best expert system we also
discuss the performance of the systems in the context of (a)
how the system was derived and (b) how useful the system’s
output would be to automated decision support systems.
FIG. 8. Areas under the ROC curve (Az) for the four physicians
and the three expert systems. Bars represent 95% confidence intervals.
The only significant difference occurred between the decision tree and
physician 1 (P 5 0.0029).

Performance of the Expert Systems

The three expert systems performed well at identifying
chest X-ray reports that support pneumonia. The three sys-
tems did not differ in overall performance. However, specific
metrics such as sensitivity and specificity were different
11
important measure. In general, identification of a report that
supports pneumonia will comprise only one of several data
points analyzed by a decision support system. Therefore,
falsely identifying reports is less of a problem than missing
reports that support pneumonia.

Results from the binary output of the expert systems (Fig.
5) suggest that a screening application aiming to capture as

TABLE 2

P Values from Statistical Tests on Binary and Probabilistic Output

Physician 1 Physician 2 Physician 3 Physician 4

Binary

Rules 0.0031 0.5485 0.0278 0.398
Bayesian net 0.0010 0.0044 0.0001 0.0039
Decision tree 0.0112 0.8788 0.1390 0.6394

Probabilistic
Rules 0.1577 0.6190 0.5021 0.3555
Bayesian net 0.0316 0.1701 0.1030 0.1206
Decision tree 0.0029 0.0426 0.0183 0.0329

Note. Values in bold were statistically significant after Bonferroni
corrections
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many reports that support pneumonia as possible might be
best served by the expert crafted rules (sensitivity: 0.920).
The Bayesian network also demonstrated quite high sensitiv-
ity (0.902). The decision tree demonstrated lower sensitivity
(0.857) but higher precision and specificity than either of
the other systems. Because of higher precision and specific-
ity, the decision tree did not differ significantly from the
rules. The rules and decision tree did differ significantly
from the Bayesian net, however.

No significant differences were found among the Az’s for
the expert systems. At a high sensitivity level the rules appear
to maintain a higher specificity than the other methods (Fig.
6). However, curves that cross are difficult to interpret. We
were surprised that no significant difference existed between
the decision tree and the other systems in a test for which
the decision tree’s binary output was transformed into proba-
bilities.

We also analyzed the amount of expertise demonstrated
by the expert systems. Figure 7 shows the sensitivity and
specificity from the binary output of various subjects. All
three expert systems performed similarly to the physicians.
At the 0.0018 significance level, the Bayesian network dif-
fered significantly from two of the physicians, but the rules
and decision tree did not differ from any physicians. Compar-
isons on probabilistic output show a difference at the 0.004
level between the decision tree and one physician but not
between the other systems and the physicians.

The only expert systems that differed from any physicians
were those that had been altered to produce different output.
The Bayesian network’s binary classifications and the deci-
sion tree’s probabilistic classifications differed from some
of the physicians. In their natural state, however, none of
the expert systems performed differently from physicians.
The rules did not differ from physicians whether they pro-
duced binary or ordinal output.

Selecting the Best Expert System

Correctness is not the only factor contributing to selection
of the best expert system. Two other considerations are how
easily the system is expanded and the type of output the

system provides.

We compared one algorithm that was completely created
by expert input (rules), one algorithm whose structure was
created by experts but whose classification patterns were
learned from data (Bayesian network), and one algorithm
that derived both classification patterns and structure from
data (decision tree). Although the expert crafted rules consis-
tently performed more like physicians, a system that could
CHAPMAN ET AL.

be trained or derived from actual reports would be advanta-
geous for several reasons. First, the ability to train a system
on real data allows the system to evolve as the mix of
radiologists evolves or as the common way of describing
images evolves. Second, our study only addressed the dis-
ease pneumonia. Expanding the inferencing method to other
chest diseases is necessary to maximize the usefulness of
coded information from chest X-ray reports. An algorithm
that derives classification patterns and structure from data
could be more easily adapted to other diseases. Third, our
parser will be applied to other radiology reports such as
computed tomography or magnetic resonance imaging. Al-
gorithms that are easily ported to other domains will be
required. The decision tree performed slightly worse than
the other expert systems. However, the small loss in accuracy
might be offset by the ability to automatically expand to
other diseases and domains.

We transformed binary and probabilistic output so that
we could compare different systems. The format of a sys-
tem’s output is also important in selecting an inferencing
system whose output will be used by decision support tools.
For instance, the Antibiotic Assistant requires data from X-
ray observations to be labeled as either present or absent.
The Bayesian network that derives the probability a patient
has pneumonia [4] triggers a guideline that assists emergency
department physicians in managing pneumonia patients.
Probabilistic evidence of pneumonia from a chest X-ray
report would contribute more meaningfully to the pneumonia
Bayesian network than binary output would.

Limitations and Future Work

Our purpose was to test how well expert systems deter-
mine whether radiologic support for pneumonia exists in a
coded chest X-ray report. Because the focus was on the
content of the current report, we removed any information
about the clinical history from the beginning of the reports.
One could argue, however, that because the clinical history
influenced the radiologist in interpreting the examination,
the clinical history should have been included.

Transforming the output of the Bayesian network and
decision tree decreased the systems’ performance. We know

of no better way to transform probabilistic data into binary
responses. However, a better method for transforming binary
decision tree classifications into probabilities exists. A
method proposed by Quinlan [32] accounts for small num-
bers of instances in leaf nodes and for statistical relationships
between leaf nodes and variables higher in the tree. Using
this method might have improved the decision tree’s perfor-
mance with probabilistic output. Still, a decision tree is
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designed to give binary output, and transforming the values
may inevitably result in lower performance.

Accuracy of information encoded from chest X-ray re-
ports is dependent not only on the expert system that makes
inferences, but also on the accuracy of the parser. Any data
we actually store on the hospital information system will
originate with SymText’s parsed output. For this experiment
we used manually corrected output so that we could isolate
the performance of the expert systems from SymText’s mis-
takes. We describe elsewhere how well one of the expert
systems (the rules) performed on SymText’s uncorrected
parsed data [33]. Using parsed data as input to the rules
produced accuracy similar to that of physicians. We are
currently storing all pneumonia-related information from
chest X-ray reports on LDS Hospital’s HELP System [34].

A major limitation in this and similar studies is the meth-
odology for analyzing how physician-like an expert system
performs. We compared our expert systems to four physi-
cians. Some of the expert systems differed from one or
two physicians but not from the other physicians. Because
physicians also vary in their performance, determining
whether an expert system behaves like a physician is not
easily accomplished. Is an expert system that differs from
a few of the physicians different from physicians? If we
had compared against different physicians, our results might
have been different.

Moreover, the fact that an expert system does not differ
from physicians does not indicate that the system performs
the same as the physician. “Absence of evidence is not
evidence of absence” [35]. Detection of statistical differ-
ences between an expert system and physicians is dependent
on which physicians are used for comparison and on the

study’s power. Larger sample size and more physicians are
desirable in these types of studies, but both are expensive

and difficult to secure. We would like to experiment with
different testing methodologies where an expert system can
be compared against a distribution of physician performance
rather than against individual physicians. One such method
is equivalency testing [36] which is commonly used in the
pharmaceutical field.
CONCLUSION

We compared the performance of three inferencing algo-
rithms that automatically identify chest X-ray reports that
support acute bacterial pneumonia. The expert systems dem-
onstrated similar accuracy, with the expert-crafted rule set
13

performing slightly better than the Bayesian network and
the decision tree. All of the expert systems performed simi-
larly to physicians.
We acknowledge the physicians who read the reports: Bruce Bray,
M.D., Alexandra P. Edelwein, M.D., Philip Frederick, M.D., Chuck
Mullett, M.D., Gustavo Oderich, M.D., Greg Patton, M.D., and Ken
Zollo, M.D. We also thank Dominik Aronsky, M.D. for helpful sugges-
tions on this project. This work was supported by NLM Grant 1 R01
LM 06539-02.
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