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Abstract

We have implemented a fast collisionless N-body code which runs on GPU, the peak performance of the code

reaches 767 GFLOPS (corresponds to 74 % of theoretical peak performance for our measurement environment) under

an assumption of computational cost is 26 floating-point operations per interaction. Our implementation is 1.7 times

faster than CUDA SDK in maximum case (for low N region) due to our proposal algorithm of force accumulation

without synchronization. Detailed performance analysis clarifies that the performance metrics of collisionless N-body

simulations on GPU are only two quantities: first one is the number of running streaming multiprocessors and another

is the clock cycle ratio of latency to access global memory and operations to calculate gravitational interaction.
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1. Introduction

In astrophysics, collisionless N-body simulation is one of the most powerful tool to investigate structure formation

of large scale structure, formation and evolution history of stellar systems such as galaxies. The fundamental equation

of N-body simulation is Newton’s equation of motion expressed as

ai =

N−1∑
j=0, j�i

Gmj

(
x j − xi

)
(∣∣∣x j − xi

∣∣∣2 + ε2)3/2
, (1)

where G is the gravitational constant, mi, xi and ai are mass, position, and acceleration of i-th particle out of N
particles, respectively. The gravitational softening parameter ε, introduced to avoid divergence due to division by

zero, eliminates self-interaction when calculating gravitational force. The amount of computation is proportional

to the number of i-particles, Ni, and the number of j-particles, Nj. We use the word i-particles, and j-particles to
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denote particles feel gravitational force, and particles cause gravitational force, respectively. Since a large number

of N-body particles is necessary to investigate astrophysical phenomena in detail, many earlier studies have tackled

with achieving fast implementation of N-body code. Fast algorithms, such as the particle-mesh method and the tree

method, have been proposed to reduce the amount of computation [1, 2]. The computational complexity for the tree

method is O(N log N), since the multipole expansion technique reduce the contribution from Nj. In contrast, accepting

individual time step can also reduce the amount of computation by reducing Ni. Of course, there is another approach

to reduce computational time; that is usage of accelerator. The most famous and one of the most successive accelerator

for gravitational many-body systems is GRAPE (”Gravity PipE”) series [3, 4]. The GRAPE system can perform fast

calculation of gravitational interaction due to their design of pipelined and massively parallelized architecture. That

is to say, accelerated calculation using GRAPE is due to massive parallelization of force calculation.

In recent days, GPU (Graphics Processing Units) becomes one of the most attractive accelerator due to develop-

ment of GPGPU (General Purpose computing on GPU). Collisionless N-body simulation is one of the most succes-

sive example. Many earlier studies reported that high performance can be achieved by massive parallelization about

i-particles [5, 6, 7, 8]. Implementation of CUDA SDK, based on [6], can achieve high performance of 716 GFLOPS

(Giga FLoating-point Operations Per Second). Hamada et al. (2009) reported their implementation is slightly (about

6 %) faster than CUDA SDK [7]. However, there was no discussion about the origin of their difference. Their im-

plementation can achieve high performance in high N region, however, achieving high performance in low N region

is also essential to combine the tree-method or the individual time steps since the benefits of such algorithms comes

from reduced N. Therefore, keeping high performance in low N region is essential, to achieve high performance in

case of collaborating with such fast algorithms. For such purpose, CUDA SDK supports two-dimensional paralleliza-

tion, combination of parallelization about i-particles and j-particles, of calculating gravitational force [6]. In fact,

the implementation of CUDA SDK succeeded to achieve high performance in low N-region. However, there is a

possibility to develop performance due to their poor implementation of force accumulation process. Two-dimensional

parallelization also provide force accumulation process, since multiple threads calculate acceleration of a common

i-particle, thus results of calculation must be accumulated by all corresponding threads. In such process, synchroniza-

tion or exclusive control is necessary to account whole threads’ results appropriately.

In this work, we propose a new technique to accumulate acceleration without synchronization in section 2. In

addition, we have optimized our N-body code as introduced in section 3 and report measured performance of our

implementation in section 4. Furthermore, also at the view point of computational science, collisionless N-body

calculation is noteworthy due to its compute intensive aspect: calculations of O(N2) against for data transfer of O(N).

A detailed analysis of such characteristic calculation can contribute to optimize other GPGPU applications of compute

intensive problems. Therefore, we provide a detailed performance analysis based on clock cycles in section 5.

2. Algorithm: Force Accumulation without Synchronization

In general, synchronization and exclusive control prevent obtaining high performance in parallel computing. For

GPGPU, the cost of synchronization and exclusive control also high due to its characteristics as a many-core architec-

ture. The accumulation process implemented in CUDA SDK is as follows: 1) whole threads store their own results to

shared memory, 2) whole threads are synchronized by syncthreads(), 3) a representative thread adds loaded data

from shared memory to its own result. That is to say, CUDA SDK uses synchronization and exclusive control, both

of them can significantly decrease the performance for small N, which is the parameter region they tried to improve

performance.

Here, we propose a new technique to accumulate gravitational force without synchronization or usage of atomic

operations. Our proposal makes use of the following two features: 1) the target array has 4 components (3 components

for gravitational acceleration, and another one for gravitational potential), 2) 32 threads in a warp are synchronized

implicitly since the threads in a warp perform operations at the same time. Therefore, accumulating gravitational

acceleration is possible by shifting component to be accumulated, if a warp contains all relating threads.

Figure 1 and Code 1 show the above method to accumulate gravitational acceleration for a case of 4 threads

calculate an i-particle, the most straightforward case. Here, we introduce our method in detail for the case. The

4 threads which labeled by an index jj = 0, 1, 2, 3 have individual array ”src[4]” to store their own results of

calculations, and these results must be unified to shared array ”dst[4]”. At the first step, the threads store the data

from src[jj] to dst[jj] (the first step of Figure 1, the third line of Code 1). On the next step, exclusive OR (XOR)
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Figure 1: Basic image of accumulating gravitational acceleration without explicit synchronization

between jj and unity is performed, and the data stored in src[jj] is added to dst[jj] (the second step of Figure 1,

the fourth line of Code 1). The operation XOR with unity is taken to flip the lowest bit of the index jj with the smallest

cost to shift the index of the array to be updated (execution of logical operation for 32-bit integer needs only 1 cycle

for GPUs of compute capability 2.0). In the forthcoming step, src[jj] is added to dst[jj] after performing XOR

between jj and two. At the end of the step, each thread updates the one remained component, evaluated by taking

XOR between jj and unity.

1 float src[4];
2 __shared__ float dst[4];
3 dst[jj] = src[jj];
4 jj ^= 1; dst[jj] += src[jj];
5 jj ^= 2; dst[jj] += src[jj];
6 jj ^= 1; dst[jj] += src[jj];

Code 1: Source code for accumulating gravitational acceleration without explicit synchronization (4 threads version)

We have implemented the above algorithm of four cases (2, 4, 8, 16 threads share an i-particle) on our collisionless

N-body code.

3. Optimization of the Innermost Loop

Our implementation of the kernel function to calculate interactions is similar to CUDA SDK [6], except for some

additional optimizations.

The most influential difference is calculation process of r ji
2 + ε2 (Code 2). In both implementation, a float3 type

variable rji, a float type variable eps2, and a float type variable r2 store the displacement vector r ji ≡ x j − xi,

ε2, and result of r ji
2 + ε2 calculated as Code 2, respectively.

1 /* Implementation of CUDA SDK */
2 float r2 = rji.x * rji.x + rji.y * rji.y + rji.z * rji.z;
3 r2 += eps2;
4 /* Our Implementation */
5 float r2 = eps2 + rji.x * rji.x + rji.y * rji.y + rji.z * rji.z;

Code 2: Difference between CUDA SDK and our implementation

Above two source codes look like almost the same, however, generated instruction sets are quite different. For im-

plementation of CUDA SDK, 1 multiplication and 2 fused multiply-add (FMA) operations are performed at the line

2, and 1 addition is performed at the line 3. Thus, its computational cost corresponds to 4 clock cycles according to

CUDA C Programming Guide [9]. On the other hand, only 3 FMA operations are performed using 3 clock cycles

in our implementation. Therefore, our implementation would be faster than CUDA SDK. The most important point

of this optimization is that the innermost loop includes the calculation of r2; thus, this small care directly increase

performance.
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In addition, we set ”L1 cache preferred” since experiments exhibit slight performance increase compared with

”shared memory preferred” in most cases. In addition, we increase the number of unroll counts up to 128, four times

greater value than that of CUDA SDK.

Finally, we must take two additional treatments not to decrease performance. Our accumulation algorithm needs

to access array using an index calculated from thread index, thus the array src is placed in local memory, much slower

than register. This is because ”Arrays for which it cannot determine that they are indexed with constant quantities”

is likely to place in local memory [9]. To avoid performance decrease due to using slow local memory within the

innermost loop, we have decided to copy data of src to a new temporary array just before the accumulation process.

Furthermore, usage of 128-bit memory accesses instead of 32-bit memory accesses would contribute to performance

increase; therefore, we store data of acceleration in an array of union ”aligned4float” defined as shown in Code 3.

1 typedef union __align__(16) {
2 float4 r4;
3 float val[4];
4 } aligned4float;

Code 3: Definition of union

By using the union, the CUDA compiler knows that the array of acceleration is 128-bit aligned, thus 128-bit memory

accesses can be performed. Furthermore, components stored in the union can be indicated using an index as Code 1.

This property is essential to accumulate distributed information in multiple threads without synchronization, and the

structure float4 provided by CUDA does not have the property.

4. Performance Measurements

We have taken performance measurements of our implementation and CUDA SDK using an environment listed

on Table 1. In performance measurements, we measure executing time of calculating gravitational acceleration with

CPU AMD Opteron 6128 (2.0 GHz, 8 cores)

RAM 8 GB (DDR 3)

OS CentOS 5.5 (x86 64)

GPU Tesla C2070 (1.15 GHz, 448 CUDA cores)

Video RAM 6 GB (GDDR 5, ECC on)

Compiler gcc 4.1.2 (-O3), nvcc 4.0

CUDA SDK CUDA SDK 4.0.17

Table 1: Evaluation environment

direct summation. In other words, communication time between the CPU and the GPU via PCI Express is not

included. We study dependency of performance on Ni, Nj, and thread-block structure. Parameter region of N is

Ni, Nj = 256, 512, 1024, · · ·, 1048576. In our implementation, number of threads per block Ttot is always 256, same

with CUDA SDK, so only one parameter Tsub, represents a number of threads which share an i-particle, determine the

thread-block structure. That is to say, if Tsub = 2 then 2 threads calculate acceleration of the common i-particle and a

block calculate acceleration of 128 i-particles. We have measured performance for Tsub = 1, 2, 4, 8, and 16.

In order to compare the performance of our implementation and that of CUDA SDK under the same condition, we

have to take three additional treatments. At first, the gravitational constant G is assumed to be unity in our implemen-

tation as same as CUDA SDK. In addition, we omit calculation about gravitational potential in our implementation,

not included in CUDA SDK, as the second treatment. In our implementation, we have separately implemented func-

tion for orbit integration of N-body particles and gravitational interaction. This separate implementation is a desirable

feature for easily changing implementation of time integration scheme (e.g. leap-frog integrator using fixed time

step, or Runge-Kutta method using adaptive time step and so on). Thus, we separate the function in contrast to the

all-in-one implementation, calculation of gravitational force and orbit integration is performed in a kernel function,

of CUDA SDK. Since this difference of implementation strategy leads the difference of computational amount and an
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unfair comparison, we omit time integration of position and velocity in our performance measurements as the third

treatment. The effect of the first and third treatments on our performance measurements is expected to be negligibly

small due to its smallness of computational amount (O(N)). On the other hand, effects of omitting the calculation of

gravitational potential cannot be negligible due to its computational complexity of O(N2). However, the additional

execution time corresponds to only 1 clock cycle, since the calculation can be performed by one additional FMA

operation.

We show results of performance measurements about our implementation for Ni = Nj case in Figure 2. The

Figure 2: Measured performance of our implementation against N

horizontal axis is the number of N-body particles, and the vertical axis shows the performance under the assumption

of one interaction corresponds to 26 floating-point operations. Filled circles with a full line, triangles with a dot-

dashed line, crosses with a dotted line, open circles with a triple-dot-dashed line, and squares with a dashed line show

the performance of Tsub = 1, 2, 4, 8, and 16, respectively. The figure shows some clear behavior as follows: 1)

the performance increase in low N region looks like proportional to N, 2) the measured performance saturate in the

large N region, 3) critical N which determine transition point of performance dependency on N tends to decrease with

increasing of Tsub, and 4) the sustained performance of Tsub = 16 is much lower than that of other Tsub. The achieved

peak performance of 767 GFLOPS for Ni = Nj = 1048576, Tsub = 1 corresponds to 74 % of C2070’s theoretical peak

performance for single-precision floating-point operations.

To evaluate performance improvement from CUDA SDK, we show speed up of our implementation from CUDA

SDK against the number of N-body particles in Figure 3. At the left panel in Figure 3, filled circles with a full line,

triangles with a dot-dashed line, crosses with a dotted line, open circles with a triple-dot-dashed line, and squares with

a dashed line show the performance improvement of our implementation from CUDA SDK for Tsub = 1, 2, 4, 8, and

16, respectively (same symbols and lines with Figure 2). The figure clearly shows that performance of high Tsub in

low N region increase drastically, and speed up is greater than 5% in all N, Tsub. At the right panel in Figure 3, we

compare our implementation and CUDA SDK for the fastest Tsub and plot using triangles with a dot-dashed line. The

fastest Tsub is Tsub which can achieve the best performance for given N (e.g. 16 for N = 256, 1 for N = 1048576). To

evaluate performance increase due to optimization about Code 2, we modify the original implementation of CUDA

SDK and plot speed up of the optimized version from the original version of CUDA SDK using circles with a full

line. The performance increase of our implementation reach to 69.5 % in maximum, 7.0 % in minimum from the

original version of CUDA SDK, and that of the optimized CUDA SDK is 5.9 % in maximum. The figure shows that

our implementation is always faster than the optimized version of CUDA SDK, and performance for low N region
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Figure 3: Speed up from slightly modified version of CUDA SDK 4.0.17

drastically increase.

5. Performance Analysis Based on Clock Cycles

In this section, we present a detailed performance analysis based on clock cycles needed to calculate gravitational

interaction.

First of all, we must point out that the most basic evaluation cannot explain results of performance measurements

in section 4. For Tsub = 1, calculation of gravitational acceleration needs execution of a load instruction from shared

memory using 128-bit memory access, 3 subtractions, 3 multiplications, 6 FMAs, and one rsqrtf(), corresponds

to 24 clock cycles, per interaction in our implementation. Therefore, C2070 can calculate 1.15 × 448/24 � 21.47

billion interaction per second, so expected execution time is 51.2 seconds for Ni = Nj = 1048576, corresponds to

558 GFLOPS. Thus, expected performance is much lower than the measured performance of 767 GFLOPS. This

large discrepancy is due to over-wrapped execution of two different instructions at the same time. Therefore, we must

evaluate the number of clock cycles per interaction Ccal using results of performance measurements to investigate

effects due to such over-wrapped execution.

To evaluate Ccal and other quantities related to performance precisely, we estimate total clock cycles to complete

calculation of gravitational interaction Ctot. For simplicity, we assume Ni, and Nj are multiples of Ttot in below

analysis.

To start the computation, there is a certain cost to start kernel function Cker. In addition, position data of i-particle

must be loaded from global memory before calculating interaction. At the time, high latency L about 400− 800 clock

cycles occur [9]. Data transfer time from global memory is negligibly small than L due to GPU’s wide memory band

width of 144 GB/s. Once each thread stores position data of i-particle in the registers, then force calculation loop

start. To achieve high performance, we divide the force calculation loop in the following two steps: position data of

Ttot j-particles are copied from global memory to shared memory at the first step, then threads calculate gravitational

interaction among Ttot/Tsub i-particles and Ttot j-particles at the second step. This calculation loop is performed

Nj/Ttot times to deal all j-particles. Thus, execution of force calculation in a block needs clock cycles of

Cint =
Nj

Ttot

×
(
L +

Ttot

Tsub

Ccal

)
× Ttot

Ncore

=
Nj

Ncore

(
L +

Ttot

Tsub

Ccal

)
, (2)
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where Ncore is the number of CUDA cores per Streaming Multiprocessor (SM), 32 for GPUs of compute capability

2.0. The term Ttot/Ncore comes from the fact that the warp schedulers automatically divide execution of computation

in Ttot/Ncore groups due to the limited number of CUDA cores. Furthermore, if one SM contains multiple blocks,

then the latency L can be hidden by over-wrapping of data transfer from global memory and calculation of interaction

among i-particles and j-particles. For such case, Cint should be decrease to

Chid =
Nj

Ncore

max

(
L,

Ttot

Tsub

Ccal

)
. (3)

At the end of computation, Tsub threads accumulate acceleration data of i-particle to a thread if needed, and resultant

data are transferred to global memory in L clock cycles. Clock cycles to complete the accumulation process Cacc is a

function of Tsub. For our implementation explained in section 2, Cacc(Tsub) = 0, 17, 20, 34 and 45 for Tsub = 1, 2, 4,

8 and 16, respectively. To summarize the above analysis, clock cycles to complete computation of a block, Cblock, is

expressed as

Cblock =

{
Cint +Cker + 2L +Cacc(Tsub) ≡ Cblock, int, for BSM = 1,
Chid + [Cker + 2L +Cacc(Tsub)] /BSM ≡ Cblock, hid, for BSM > 1,

(4)

where BSM is the number of blocks assigned to an SM at the same time. The factor of 1/BSM represents an effect of

over-wrapped memory transfer time caused by the existence of multiple blocks in an SM.

To evaluate Ctot using Cblock, we must evaluate how many times blocks repeat the loop about computation. The

total number of blocks, Btot, is expressed as Ni/(Ttot/Tsub) = NiTsub/Ttot, therefore, the number of the loop, Ntot, is

represented using the number of SMs, NSM, as

Ntot = ceil

(
Btot

NSM

)
= ceil

(
TsubNi

TtotNSM

)
. (5)

If BSM ≥ 2, then some part of Ntot loops compute for Chid clock cycles, not Cint. The number of such loops is

Nhid = floor(Ntot/BSM), and the number of remain loops is Nrem = Ntot − BSMNhid, therefore, Ctot is expressed as

Ctot = Nhid × (BSMCblock, hid

)
+ Nrem ×Cblock, int (6)

= Nhid ×
[

BSMNj

Ncore

max

(
L,

Ttot

Tsub

Ccal

)
+Cker + 2L +Cacc(Tsub)

]

+Nrem ×
[

Nj

Ncore

(
L +

Ttot

Tsub

Ccal

)
+Cker + 2L +Cacc(Tsub)

]
. (7)

Hereafter, we estimate unknown parameters Ccal, L, and Cker using results of performance measurements.

To begin with, we evaluate the maximum BSM of our implementation. The number of available registers and the

capacity of shared memory per SM, 32768 and 16 KB for C2070 with L1 cache preferred option, determine the BSM.

All threads use 27 registers in maximum, therefore, BSM ≤ 32768/(27 × 256) = 4.7. Since the capacity of memory

to store position is 16 byte (4 elements of single-precision floating point numbers), each block uses 8 KB to store

the position data of 256 particles. Therefore, BSM = 2 for our implementation due to the limited capacity of shared

memory. Here, we estimate Ccal as a demonstration of how to use Equation 7. For Ni � TtotNSM = 3584, Nhid grows

much greater than Nrem and the contribution of the second term of the Eq. 7 to the Ctot becomes negligibly small.

Furthermore, if Nj � Ncore/BSM, then execution time for the inside of the interaction loop becomes much greater

than that for the outside of the loop, thus the contribution of the term Cker + 2L+Cacc(Tsub) becomes negligible small.

To assess the contribution of Ccal to the Ctot precisely, Tsub should be small to hide contribution of the latency L by

increasing arithmetic intensity TtotCcal/(TsubL). Therefore, Ni = Nj = 1048576 and Tsub = 1 is the most suitable case

in our performance measurements (section 4): estimation of Ctot and the corresponding execution time in the case is

2.45Ccal billion clock cycles and 2.13Ccal seconds, respectively. Measured execution time of our implementation is

37.3 seconds as listed on the top line of the Table 2; therefore, Ccal is estimated to be 17.5 clock cycles.

Continuously, we estimate clock cycles of the latency L accompanied with accesses to global memory. To evaluate

L, Tsub must be 16. This is because, that is the only case of L is greater than calculation of TtotCcal/Tsub = 16× 17.5 =
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Ni Nj Tsub note execution time (sec.)

1048576 1048576 1 rsqrtf() is performed 37.3
524288 524288 16 — 12.7

256 256 16 — 1.02 × 10−5
524288 256 16 — 8.25 × 10−3
1048576 1048576 1 8 multiplications are performed instead of rsqrtf() 46.3

Table 2: Measured execution time to estimate clock cycles

280 clock cycles, even if L is around 400 clock cycles of the minimum value appeared in CUDA C Programming

Guide [9]. For the case of Ni = Nj = 524288 and Tsub = 16, measured execution time is 12.7 seconds (Table 2) and

clock cycles and corresponding time predicted by Equation 7 are 38.3L million clock cycles and 33.3L milliseconds,

respectively. Therefore, L corresponds to 381 clock cycles in our implementation.

At the end of a series of estimation, we estimate Cker. To evaluate the contribution of the Cker to the Ctot precisely,

Nj/Ncore and TtotCcal/Tsub should be small to minimize the contribution from inside of the interaction loop. Nj = 256,

Tsub = 16 is the desired case, then Ctot is derived to be Nhid × (18L + 45 +Cker) clock cycles using Equation 7. Results

of performance measurements say Cker is 4827 and 1206 clock cycles for Ni = 256 and 524288, respectively. The

above estimated cost to start kernel function Cker using two measurements differs. Therefore, we can only say that

Cker is order of 103 clock cycles, or several micro-seconds. The estimated clock cycles of Ccal, L, and Cker are 17.5,

380, and order of 1000 clock cycles, respectively.

Here, we quantitatively discuss the reason why Ccal is 17.5 clock cycles, not evaluated value for our implementa-

tion of 24 clock cycles. The answer is due to encapsulation of execution time by over-wrapped execution of rsqrtf()

and accesses to shared memory with other instructions at the same time.

First of all, we discuss effects delivered by usage of rsqrtf() function. The special function units for single-

precision floating-point transcendental functions perform the rsqrtf() function [9]; thus, CUDA cores can perform

simple floating-point arithmetic operations, such as addition multiplication, at the same time. To quantify the degree

of the over-wrapped execution with rsqrtf() and other operations, we have taken an experiment: we measure

performance when 8 multiplications are performed instead of rsqrtf() to operate 8 clock cycles. The results listed

on Table 2 clearly exhibit over-wrapped execution rsqrtf() with other operations reduce the execution time. If the

throughput of rsqrtf() is 8 clock cycles as listed on CUDA C Programming Guide [9], then measured execution time

of rsqrtf() and 8 multiplications must be the same. However, the measured results of both case clearly different,

and the difference of 46.3 − 37.3 = 9.0 seconds means the effect of over-wrapped execution of rsqrtf() and other

operations. The execution time of 9 seconds corresponds to 4.2 clock cycles, it means that 4.2 clock cycles of 8 clock

cycles are hidden when rsqrtf() is performed. This is one of the reason why higher performance could achieve by

using built-in functions performed by special function units, such as sinf() and log2f.

Furthermore, we can evaluate how much time to access shared memory is hidden, because there is only one

chance to perform the over-wrapped execution of data transfer from shared memory and calculations. The previous

basic estimation, assumed no over-wrapping of multiple instructions, says 51.2 seconds is necessary to complete

calculation of gravitational interaction for Ni = Nj = 1048576 as mentioned before. In contrast, measured execution

time to perform data transfer from shared memory and calculation of 20 clock cycles is only 46.3 seconds as listed

on Table 2. Therefore, 2.3 clock cycles, derived from the difference of 4.9 seconds, of 4 clock cycles is the hidden

clock cycle due to over-wrapping of data transfer from shared memory and calculations. Such over-wrapping reduce

the execution time of 4.2+ 2.3 = 6.5 clock cycles, and Ccal becomes 17.5 clock cycles, much shorter than the original

value of 24 clock cycles.

To clarify the origin of the performance improvement from CUDA SDK appeared in section 4, we re-examine the

Equation 7 in below.

First of all, let us consider the origin of performance improvement of 7.0 % in minimum. It should not be related to

the force accumulation process, because the results of Tsub = 1 also show the performance improvement. In addition,

dependency of the speed up from CUDA SDK on the number of N-body particles at the left panel in Figure 3 is

quite weak, except for Tsub = 8 and 16 for low N. Therefore, the origin of the performance increase is considered
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to be due to the term Ccal. Our optimization concerning about Ccal is only about Code 2 which reduce execution

time corresponds to 1 clock cycle, thus let us evaluate the effect of the optimization. Ccal is 17.5 clock cycles for our

implementation, and 18.5 clock cycles is the expected value for that of CUDA SDK. The effect of this optimization

is evaluated to be 18.5/17.5 � 1.06; thus, performance increase of this optimization is considered to be 6 %, quite

close value to the 7.0 %. Of course, this speed up of 6 % also explains of the optimized version of CUDA SDK

shown at the right panel in Figure 3. The origin of performance increase from CUDA SDK reported by Hamada

et al. (2009) would be the same with the above optimization. For GPUs of compute capability 1.x, 4 and 8 clock

cycles are need to perform rsqrtf() and load from the shared memory, respectively. As a result, the total number

of clock cycles for computing interaction is same with the case of compute capability 2.0. If we assume the same

rate of clock cycles is hidden by over-wrapping with other operations for older GPUs, then the computation needs

17.3 clock cycles per interaction. The performance increase of 636GFLOPS/598.5GFLOPS ≈ 1.063 is fairly close

to (17.3 + 1)/17.3 � 1.058, therefore, the main reason of the increase is considered to be due to this optimization as

same with this work.

Now, let us consider the parameter region of small N to evaluate effects of our force accumulation technique

without synchronization. The term concerning the force accumulation process, Cacc(Tsub) of Equation 7, has no

dependence on Nj, so effects of the term become significant only for low Nj case. Thus, it is natural to consider that

the reduced clock cycles of Cacc(Tsub) is the origin of performance increase appeared in low N region of Figure 3. To

quantify the difference with CUDA SDK, we must evaluate the cost of synchronization, but it is not easy. According

to the CUDA C Programming Guide, the throughput for syncthreads() is ”16 operations per clock cycle”, thus

2 clock cycles are necessary to perform syncthreads() since Ncore is 32. The operation syncthreads() must

be executed by whole warps within a block; consequently, the execution time becomes Ttot/warpSize = 8 times

greater. However, the above estimation is valid only for the most lucky case of the whole warps have been already

synchronized, and the necessary clock cycles can grow much bigger without upper limit and reduce opportunities to

over-wrapped execution of multiple instructions, if at least one warp delays with other warps. For the above reason, we

omit a quantitative comparison between our implementation and CUDA SDK. In our implementation, execution time

of Cacc(Tsub) is negligibly small compared with that of 2L +Cker in any case. The significant performance increase of

our implementation appeared in Figure 3 suggest that the execution time of Cacc(Tsub) for CUDA SDK, which include

synchronization and exclusive control, would not be negligible small in contrast to our implementation. According to

the Equation 7, the contribution of Cacc(Tsub) to the total execution time becomes smaller with N increasing, it means

the benefits of the optimization about force accumulation process are not available for the large N. This is because the

control parameter is BSMNj/Ncore, so ”large N” means sufficiently large N to neglect the contribution of Cacc(Tsub) to

the total execution time. In fact, degree of the performance improvement decreases with N increasing in Figure 3.

At the end of this section, we explain trends appeared in the Figure 2. As we mentioned in section 4, our

implementation has five trends: 1) the performance increase in low N region looks like proportional to N, 2) the

performance increase saturate in the large N region, 3) critical N which determine the transition point of the perfor-

mance dependency on N tends to decrease with increasing of Tsub, 4) the sustained performance decreases gradually

with Tsub increase, and 5) that of Tsub = 16 is much lower than that of any other Tsub. At first, the performance

increase in low N region is due to the dependence on the term Nhid of Equation 7. Since Nhid is approximately ex-

pressed as TsubNi/(TtotNSMBSM) = TsubNi/7168, the increase of N does not mean increase of Nhid for the region of

Ni ≤ 7168/Tsub. Therefore, the execution time is proportional to Nj only while the amount of computation is propor-

tional to NiNj; consequently, the performance increase is proportional to N. Such performance increase continues as

long as Nhid is less than a few, which corresponds to the condition not to waste 14 SMs of a GPU. When Nhid suffi-

ciently grows up, then the performance reaches the peak performance (the second trend). The condition to achieve

the peak performance of GPU is that Nhid � 7168/Tsub, therefore, the third trend appears due to the term of 1/Tsub.

The origin of the fourth trend is considered to be a decrease of arithmetic intensity TtotCcal/(TsubL) � 12/Tsub in the

interaction loop to calculate gravitational interaction. The over-wrapping of the data transfer from global memory

and calculation of gravitational interaction becomes easier for the higher value of the arithmetic intensity (i.e. lower

Tsub). Since increasing degree of the over-wrapping would contribute for the increase of performance, that would be

the origin of the fourth trend. If the arithmetic intensity becomes lower than unity, then the latency due to accessing

global memory suppress the performance. This is the reason why the sustained performance of Tsub = 16 is much

lower than any other Tsub.
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6. Discussion and Summary

Here, we discuss estimation of floating-point operation count per interaction. Historically, a variety number of

operation counts have been assumed to evaluate performance of collisionless N-body simulations. The floating-

point operations count of 30 is assumed to evaluate performance of GRAPE series for collisionless systems [3, 4],

20 is GPGPU code by CUDA SDK [6], and 38 is the most frequently assumed value using various architectures

[10, 5, 11, 7, 8]. Different estimations about computational cost of the inverse square root are the origin of the above

difference (e.g. counting of 20 floating-point operations as an inverse square root operation leads to the assumption

of 38 floating-point operations per interaction). Since 8 clock cycles are need to perform rsqrtf() for GPUs of

compute capability 2.0 [9] whereas addition or multiplication need only 1 clock cycle to perform, the computational

cost of rsqrtf() corresponds to 8 floating-point operations. Therefore, 26 floating-point operations per interaction,

assumed value in this work, is the most plausible estimation for GPUs of compute capability 2.0. Of course, this

estimation of floating-point operations does not affect the speed up ratio appeared in Figure 3 because the overall

factor is canceled out.

Furthermore, we would like to mention about impacts of our implementation to N-body simulations performed

in studies of astrophysics. At least, 7.0 % of computational time for direct N-body simulations is reduced as shown

in Figure 3. Since the speed up rate is much higher in the low N region, the impact would become more powerful if

effective number of N-body particles is reduced by combining with tree method. However, this is only our expectation,

so quantitative verification of this speculation is an important future work.

We have implemented a fast collisionless N-body code which runs on GPU, the peak performance of 767 GFLOPS.

For the sake of our optimizations, we can achieve the performance increase of 7.0 % in minimum and 69.5 % in

maximum (due to reduction of computation and improving the algorithm for force accumulation, respectively) from

CUDA SDK. Our detailed performance analysis shows that the following two quantities determine the performance

of collisionless N-body simulations: first one is the number of running streaming multiprocessors and another is the

clock cycle ratio of latency for accessing global memory and operations to calculate gravitational interaction.
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