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Use of molecular markers to determine
postremission treatment in acute
myeloid leukemia with normal
cytogenetics
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Most patients with acute myeloid leukemia can be induced into complete remission, but postremission

treatment is required for cure. The choice of postremission therapy in a majority of nonelderly patients, between

intensive chemotherapy and allogeneic hematopoietic cell transplantation, is largely determined by the results

of conventional cytogenetic analysis. In 45% of patients with a normal karyotype, the presence or absence of

specific molecular mutations should be used to determine the prognosis and postremission treatment. In

addition, the identification of mutations may indicate a role for targeted intervention, including following

transplantation.
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Acute myeloid leukemia (AML) is a disease of
older adults; however, half of patients with
AML are 665 years of age at presentation.1

The incidence of AML has increased to nearly
20,000 new cases per year, in a large part due to more
patients surviving longer periods following
chemotherapy and radiation treatment for other
malignancies, and longer survival in general.2 Older
and treatment-exposed patients are at higher risk than
the general population. While patients with AML fare
poorly overall (<20% leukemia-free survival [LFS] at
5 years), nonelderly patients (<65 years of age) have
better outcomes than their older counterparts, and
most have a substantial chance for cure. Cytogenetic
analysis is used to risk stratify patients, and is the
most important factor in determining postremission
treatment. The identification of specific molecular
mutations is important in patients with normal cyto-
genetics for their appropriate risk categorization and
for help in determining the postremission treatment.
In addition to improvements in treatment and sup-
portive care, which have significantly lowered the
treatment-related mortality (TRM) with chemother-
apy3 and with allogeneic hematopoietic cell transplan-
tation (allo-HCT),4 these advances in risk
stratification and in the development of evidence-
based guidelines for choice of postremission treatment
are responsible for improving outcomes.
TREATMENT OF AML

Induction
The modern treatment of AML in the nonelderly
includes induction therapy, which achieves complete
remission (CR) in >70% of patients, followed by
postremission therapy designed to cure the patient.
For most patients 665 years of age and many healthy
patients older than 65 years, the standard aggressive
induction therapy in North America consists of 7
+ 3, shorthand for 7 days of cytarabine and 3 days
of an anthracycline. Some centers add etoposide or
other drugs to this regimen, although prospective
143

https://core.ac.uk/display/82220499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hemonc.2015.09.003&domain=pdf
mailto:Edward.Copelan@carolinashealthcare.org
mailto:Edward.Copelan@carolinashealthcare.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.hemonc.2015.09.003


144

review TREATMENT FOR ACUTE MYELOID LEUKEMIA
studies have not demonstrated long-term benefits over
7 + 3. Recent trials have demonstrated improved out-
comes with more intensive anthracycline dosing.5,6
POSTREMISSION THERAPY

The two main choices for postremission therapy in
those patients who achieve CR following induction
therapy are intensive chemotherapy, usually with
three to four cycles of high-dose cytarabine (HiDAC),
and allo-HCT. Patients who achieve CR with induc-
tion therapy, but who do not receive postremission
therapy, are almost never cured because they retain
leukemic stem cells that are not detectable by standard
measures. In many instances, the use of sophisticated
techniques (e.g., multiparametric flow cytometry7 or
next-generation sequencing8,9) may identify residual
disease in patients in CR.

Autologous transplantation was performed fre-
quently in AML as recently as a decade ago. Favorable
outcomes have been reported with this approach, par-
ticularly in young patients with favorable-risk
AML.10,11 A meta-analysis has demonstrated no pro-
longation of survival after autologous transplantation
compared to standard chemotherapy.12 Thus, inten-
sive chemotherapy and allo-HCT are the main alter-
natives for postremission treatment.

HiDAC requires brief hospitalizations with regu-
lar outpatient follow-up, and is safer and less expen-
sive than allo-HCT. It is curative in selected
patients. Allo-HCT is the other commonly employed
postremission therapy and exerts a more powerful
antileukemic effect, first through its use of myeloabla-
tive chemotherapy or combined chemo- and radiation
therapy, at doses which could not be tolerated without
hematologic rescue by donor hematopoietic cells, as
well as the potent antileukemia effect of the donor
immune cells, termed the graft-versus-leukemia effect.
Originally reported by Thomas et al.13 to cure some
patients with advanced acute leukemia, this approach
is now more commonly and effectively used in
patients in first CR.14,15 Allo-HCT often requires
hospitalization in excess of 4 weeks, followed by close
outpatient monitoring. Compared to intensive
chemotherapy, this approach is much more expensive.
Allo-HCT is associated with significantly higher rates
of nonrelapse mortality (NRM), and may be compli-
cated by chronic graft-versus-host disease, which com-
promises the quality of life of some long-term
survivors. It should be noted, however, that NRM fol-
lowing allo-HCT has been substantially diminished
over the past two decades.4 Whereas 1-year mortality
rates with allo-HCT of �30% were commonly cited a
decade ago, a recent Center for International Bone
Marrow Transplant Registry study of well over a
thousand patients with AML in first CR performed
at >100 international centers demonstrated a 1-year
mortality rate of 12% using what is now the most
widely administered pretransplant conditioning regi-
men, intravenous busulfan and cyclophosphamide.15

The dose adjustment of busulfan, based on plasma
levels following the first dose, could further improve
NRM by avoiding the variation in plasma levels
among different individuals. The optimal plasma
levels of busulfan in specific situations are uncertain;
it is likely that these may vary by disease, stage,
comorbidities, and other factors, and require further
investigation.

Further, the potential application of allo-HCT to
virtually all patients 665 years (and many older than
that) using alternative donors has had a substantial
impact. Only 30% of patients have human leukocyte
antigen (HLA)-identical sibling donors. Matched
unrelated adult donors, cord blood, and haploidentical
family donors (using post-transplant cyclophos-
phamide to prevent graft-vs.-host disease) have all
yielded results approaching those achieved in patients
with fully matched sibling donors.16

In addition to the use of alternative donors, the
application of allo-HCT has been enhanced by the
development of reduced-intensity regimens with less
toxicity than myeloablative conditioning. These regi-
mens have extended transplantation to older patients
and to those with significant comorbidities. The con-
sensus criteria to define regimen intensity have been
reported.17 A regimen of fludarabine and low-dose
total body irradiation has minimal toxicity, permits
the engraftment of cells from HLA-identical sibling
donors, and relies on the graft-versus-leukemia
effect.18 Additional donor lymphocytes can be infused
within a few months of transplantation to augment
the antitumor activity. More powerful (compared to
fludarabine/low-dose total body irradiation)
reduced-intensity regimens with less toxicity than
myeloablative therapy have been developed, including
widely used regimens with less than ablative doses of
busulfan in combination with fludarabine.19,20 These
regimens result in lower NRM and less toxicity than
myeloablative regimens, but are associated with higher
relapse rates. Generally, survival has not been shown
to be significantly different from that achieved with
myeloablative regimens; however, a myeloablative
busulfan/fludarabine regimen was associated with bet-
ter LFS and overall survival compared to a reduced-
intensity regimen using the same drugs in an analysis
of patients allografted in second CR by the European
Hematol Oncol Stem Cell Ther 8(4) Fourth Quarter 2015
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Group for Blood and Marrow Transplantation.21 The
development22 and refinement23 of comorbidity
indices designed to determine which patients could
tolerate myeloablative allo-HCT, those who might
fare better with reduced-intensity regimens, and those
best served by not performing bone-marrow trans-
plantation have been a major advance.

Categorizing AML patients by conventional
cytogenetic analysis
The likelihood of cure in an individual with AML is
influenced by a variety of factors, particularly cytoge-
netic analysis, which is the standard method used to
categorize patients into favorable-, intermediate-,
and adverse-risk groups.24–26 Patients with favorable
cytogenetics, including t(8;21), inv(16), or t(16;16),
collectively called core-binding factor AML, are gener-
ally at low risk of relapse when treated with three to
four cycles of HiDAC following the achievement of
remission, and do not generally benefit from allo-
HCT in first CR.27 More than half of these
favorable-risk patients are alive 5 years following
treatment.28 Roughly one-fourth of patients with
core-binding factor AML carry a c-KIT mutation,
and these individuals have a much higher risk of
relapse.29 It is uncertain whether this subset of
patients would fare better with allo-HCT in first
CR. In addition, the impact of targeted therapy with
c-KIT inhibitors (e.g., dasatinib) is being explored in
ongoing studies of patients with this mutation.

In contrast to those with favorable-risk AML,
patients with deletions of chromosome 5 or 7, del
(5q), abnormalities of 3q, or complex abnormalities
are classified as having adverse-risk AML. These
patients, even after obtaining CR, have poor outcomes
with standard intensive postremission chemotherapy
and exhibit a 5-year survival of <15%. Allo-HCT
improves results for this population substantially,
more than doubling the rate of sustained survival.27,30

Because genetic studies are fundamental in risk
stratifying and determining the appropriate postrem-
ission treatment for AML patients, the diagnostic
bone-marrow examination in patients suspected to
have AML must include cytogenetic and molecular
studies. The European LeukemiaNet has developed
a standardized system for reporting cytogenetics and
molecular alterations in adults with AML, and con-
firmed its prognostic significance.31 While patient
age, presenting white-blood count, extramedullary
leukemia, and other factors may influence outcome,
the specific genetic abnormalities in the leukemia cells
comprise the predominant factor predictive of the
outcome.
Hematol Oncol Stem Cell Ther 8(4) Fourth Quarter 2015
AML with a normal karyotype
Approximately 45% of patients with AML do not have
detectable cytogenetic abnormalities and, until
recently, were categorized together within an
intermediate-risk group.24–26 Overall, these patients
have a 5-year survival of 30–35% following postremis-
sion chemotherapy.24,27 A large prospective trial, unusual
in that 82% of patients “randomized” to allo-HCT on
the basis of having an HLA-matched sibling donor
actually underwent transplantation, demonstrated
clearly superior LFS among intermediate-risk-group
patients undergoing allo-HCT compared to those
receiving postremission chemotherapy.30 Meta-
analyses have demonstrated similar results.27 Based
on these data, allo-HCT was widely and reasonably
recommended for patients in either the intermediate
or adverse cytogenetic risk groups.

Next-generation sequencing has molecularly
refined the characterization of AML, and defined
the biologic and prognostic significance of identified
mutations.9 These advances have permitted the sub-
categorization of patients with normal cytogenetics,
and have better defined best postremission therapy
among these patients. Molecular markers are now
used to categorize patients with a normal karyotype,
into molecularly favorable or unfavorable group.31,32
Molecular mutations in AML with normal
cytogenetics
FMS-related tyrosine kinase 3
FMS-related tyrosine kinase 3 (FLT3) is a transmem-
brane tyrosine-kinase receptor, which, when activated
by the FLT3 ligand, stimulates cell proliferation. The
FLT3 internal-tandem-duplication (ITD) mutation
causes constitutive activation of the receptor tyrosine
kinase. It occurs in approximately one-third of
AML patients with normal cytogenetics, and bestows
an unfavorable outcome.33 Patients with high mutant-
to-wild-type ratios (>0.50)34 and those in whom the
ITD insertion occurs in the b1 sheet of the tyrosine-
kinase domain have a particularly dismal prognosis.35

Patients with FLT3–ITD mutation, regardless of the
presence of additional mutations, fare poorly with
postremission intensive chemotherapy, and have sig-
nificantly better results with allo-HCT.32 While
patients with FLT3–ITD experience better outcomes
with allo-HCT than with standard therapy, even with
allo-HCT, FLT3–ITD is an adverse prognostic fac-
tor.36 The addition of FLT3 inhibitors following
transplantation is well tolerated and appears to lower
the incidence of relapse.37 Its use in this context is
being further investigated.
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Nucleophosmin 1
Nucleophosmin 1 (NPM1) is a phosphoprotein inte-
gral to the assembly of ribosomes and protein trans-
port. Mutations of NPM1 impair the transport of
proteins to the nucleus; they occur in one-half of
normal-karyotype AML patients. Mutations in
NPM1, in the absence of the FLT3–ITD abnormal-
ity, confer a favorable prognosis on patients with
AML. AML patients with an isolated NPM1 muta-
tion fare well with postremission chemotherapy.32

Interestingly, a prospective-donor-versus-no-donor
analysis demonstrated significantly longer LFS among
patients with mutated NPM1 who underwent allo-
HCT.38 These results differed from previous studies.
The overall survival was not improved, however, likely
due to responsiveness to therapy in relapsed patients.

CCAAT/enhancer-binding-protein alpha
CCAAT/enhancer-binding-protein alpha (CEBPA)
is a critical transcription factor for myeloid-cell devel-
opment. CEBPA mutations result in a block in gran-
ulocyte differentiation. Patients with double CEBPA
mutations are less common than those with the
FLT3–ITD or NPM1 mutations, and comprise
fewer than 10% of patients with cytogenetically nor-
mal AML. These patients (with double mutations)
have a favorable prognosis with postremission
chemotherapy. While relapse-free survival appears to
be improved in patients with double-mutant CEBPA
who receive allo- or auto-HCT in CR as compared to
chemotherapy, relapsed patients still have a favorable
outcome after reinduction and allo-HCT.39

Mutations in these three genes (FLT3, NPM1,
and CEBPA) can be thus used to stratify patients
with AML characterized by normal cytogenetics. In
2010, an international expert panel provided evidence
and expert-opinion-based recommendation for the
management of AML, including an updated genetic
stratification.31 Under these guidelines, patients with
normal cytogenetics and mutated NPM1 without
FLT3–ITD or mutated CEBPA are classified in the
favorable group along with patients with core-
binding-factor leukemia. Patients with FLT3–ITD,
regardless of NPM1 mutations, and those with
wild-type NPM1 and FLT3 are classified as interme-
diate.31,40 Although intermediate I and II groups were
formulated, empirical data suggest that this discrimi-
nation may not be useful clinically.40,41

Additional mutations are of interest because
they influence prognosis and the effectiveness of
specific treatments. Advances in integrated genetic
profiling in AML promise to contribute further
to risk stratification and to aid therapeutic decision
making.42

DNA (cytosine-5)-methyltransferase 3 alpha mutation
Approximately one-third of patients with AML with
normal cytogenetics have DNA (cytosine-5)-
methyltransferase 3 alpha mutations.43 The DNA
methyltransferases maintain DNA methylation,
which silences specific genes. Although some studies
have reported an adverse impact on survival, others
have suggested varying impact of different mutation
types. Codon R882 mutations are associated with
worse relapse-free survival, while all other mutations
are associated with favorable survival. Interestingly,
the unfavorable impact with lower doses of anthracy-
cline induction was not seen when high anthracycline
doses (which are now standard) were utilized.42

Isocitrate dehydrogenase 1 and 2
Mutations in isocitrate dehydrogenase (IDH) 1 or
IDH 2 occur in approximately one-fourth of cytoge-
netically normal AML. These mutations impair the
DNA hydroxymethylation and cause aberrant DNA
methylation. A favorable effect is conferred in patients
with IDH 2 R140 mutations, which occur largely in
patients with NPM1 mutations, where these IDH 2
mutations further improve prognosis.42

The prognostic import of several other genetic
mutations in AML has been similarly explored. None
appears to have the clear impact that FLT3–ITD,
NPM1, and double CEBPA mutations have on prog-
nosis and on directing postremission treatment. Thus,
normal-karyotype AML patients with a wild-type
FLT3 gene who have an NPM1 mutation or double
CEBPA mutations have a favorable prognosis, and
are best treated with HiDAC or other intensive
chemotherapy once they achieve CR. It is important
to note that, as discussed previously here, all patients
with normal cytogenetics were categorized previously
as at intermediate risk of relapse and, based on evi-
dence from prospective randomized trials, deemed
to fare better with allo-HCT. Molecular characteriza-
tion thus spares a significant number of these patients
the risk of allo-HCT in first CR. Moreover, by
excluding these patients who do not benefit from
allo-HCT, the positive impact of allo-HCT on sur-
vival in the remaining patients with normal cytogenet-
ics should be magnified. Patients with FLT3–ITD
mutations and patients with none of the three muta-
tions achieve a significant survival benefit with allo-
HCT.32 In 45% of patients with AML who have
normal cytogenetics, molecular markers thus provide
Hematol Oncol Stem Cell Ther 8(4) Fourth Quarter 2015
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the best mechanism to determine the postremission
treatment.

Secondary AML
Patients with AML following an antecedent hemato-
logic disorder (secondary AML [s-AML]) or prior
chemotherapy or radiation treatment (therapy-
related AML), including those with a normal
karyotype, fare poorly with standard chemotherapy
compared to patients with de novo disease with sim-
ilar cytogenetics. Allo-HCT appears to provide better
outcomes.44–46 Stone et al.47 recently confirmed the
adverse prognostic impact of s-AML and therapy-
related AML (median overall survival 7 months). By
analyzing rigorously defined cases of s-AML, Lindsley
et al.48 defined a core group of mutations specific to
AML developing after myelodysplastic syndrome or
chronic myelomonocytic leukemia, and found that
adults with clinically defined de novo AML with these
mutations had similarly poor outcomes.49 Whether
the presence of these mutations in clinically de novo
AML should influence the choice of allo-HCT as
postremission treatment, similarly to a clinical diagno-
sis of s-AML, is unproven, but merits investigation.

Additional factors determining treatment
While cytogenetics and molecular profiling provide a
fundamental platform for determining postremission
therapy, the assignment of an individual to transplan-
tation or chemotherapy is complicated by the patient’s
health. Comorbidities may preclude transplantation
or make it more dangerous.22,23 Even patients at high
risk of relapse, but who have high risk of TRM based
on multiple significant comorbidities, may be best and
most safely treated with chemotherapy rather than
allo-HCT.

In addition, donor source is important. Approxi-
mately 30% of patients have an HLA-identical sibling
donor, the ideal donor for transplant. The other 70%
of patients can utilize matched unrelated adult
donors, cord-blood donors, or haploidentical family
donors, all of which appear to carry slightly higher
risk of TRM. The long-term survival after allo-
HCT from alternative donors is beginning to
approach that of allo-HCT using HLA-identical sib-
lings. Results vary, however, according to donor char-
acteristics. For example, cord-blood units that are well
matched and consist of high cell doses yield better
outcomes than less well-matched units with lower cell
doses. The results of haploidentical transplantation
with nonmyeloablative regimens are favorable;50

whether similarly favorable results are achieved with
ablative regimens is less certain. These and other
Hematol Oncol Stem Cell Ther 8(4) Fourth Quarter 2015
factors merit careful consideration in determining
optimal postremission therapy in patients with AML.

Mutation-targeted therapy in AML
In addition to playing an important role in risk strat-
ification, molecular abnormalities have emerged as
potential targets for therapy in AML. FLT3 inhibi-
tors have been in development for a number of years
as potential therapeutic options for patients with the
ITD mutation and other activating FLT3 mutations.
Small molecules that inhibit the FLT3 receptor have
been tested as single agents in the setting of relapsed/
refractory AML. Initial studies using the relatively
nonspecific tyrosine-kinase inhibitor (TKI), sorafenib,
showed high response rates in patients with the
FLT3–ITD mutation.51,52 Quizartinib, a newer
FLT3 TKI that is currently under evaluation in a
Phase 3 study, has shown efficacy as a single agent
in early studies of relapsed/refractory AML patients
and elderly AML patients harboring the FLT3–
ITD mutation.53–55 While FLT3 inhibitors, includ-
ing quizartinib, have been able to bridge some AML
patients to allo-HCT, these agents are not thought
to have curative potential as single-agent therapies
because AML emerges in a multistep process that
involves more than one mutation. Remissions with
TKIs are often short lived due to the multiple extrin-
sic, receptor intrinsic, and cell-intrinsic resistance
mechanisms that can aid a leukemia cell in evading
FLT3 inhibition.56

Chemotherapy combinations involving FLT3 inhi-
bitors have been tested in various settings. Incorporat-
ing sorafenib into induction chemotherapy for elderly
AML patients was associated with higher TRM and
lower CR rates.57 By contrast, a study of sorafenib
and the hypomethylating agent, azacitidine, in AML
patients, the vast majority of whom had relapsed/
refractory FLT3–ITD AML, showed an encouraging
response rate of 46%.58 Other combination therapies,
in the upfront, relapsed/refractory, and post-
transplant settings, are being investigated at present.
In addition to the ongoing studies involving quizar-
tinib, other new FLT3 inhibitors—including crenola-
nib, PLX-3397, and ASP-2215—are currently being
evaluated in clinical trials.

Targeted drug development is underway for other
molecular abnormalities occurring in AML. In partic-
ular, IDH 1 and IDH 2 mutations are thought to
represent appealing targets for AML therapy.59 In a
Phase 1 study of patients with IDH 2 mutation-
positive advanced hematologic malignancies, AG-221
appears to be a tolerable IDH 2 inhibitor.60 More-
over, the majority of patients on this clinical trial have
147
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exhibited responses, some of which have been durable
for months. If the efficacy of IDH inhibitors is repro-
duced in future studies, these agents will likely be
investigated in combination with other AML treat-
ment regimens in various settings.
CONCLUSION

AML is a remarkably heterogeneous disease with var-
ious somatic alterations responsible for differing
pathophysiologies and a wide range of presentations,
treatment responses, and outcomes. Specific muta-
tions identified in individual patients can be used to
categorize patients into risk groups and to identify
the best choice of postremission treatment. In the
sizable group of patients with normal cytogenetics,
mutations in FLT3, NPM1, and CEBPA define risk
of relapse and identify patients who are best treated
with either postremission intensive chemotherapy or
allo-HCT. Further advances in integrated mutational
analysis promise to improve care by identifying those
patients who should receive targeted therapy (e.g.,
FLT3 inhibitors), as well as to further refine the selec-
tion of those patients who should undergo allo-HCT
and those who should receive HiDAC in first CR.
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