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Abstract We examine an energy harvesting system of two magnetopiezoelastic oscillators coupled
by electric circuit and driven by harmonic excitation. We focus on the effects of synchronization and
escape from a single potential well. In the system with relative mistuning in the stiffness of the har-
vesting oscillators, we show the dependence of the voltage output for different excitation frequencies.
c© 2012 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1204309]
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Ambient energy harvesting by autonomous electro-
mechanical systems is an important source of energy
for small electronic devices and to recharge batteries or
enable remote operation.1,2 Many of the proposed de-
vices use the piezoelectric and electrostatic effects as the
transduction method.3–6 These devices are usually im-
plemented as patches on cantilever beams and designed
to operate at resonance conditions. The design of an
energy harvesting device must be tailored to the ambi-
ent energy available. For a single frequency excitation
the resonant harvesting device is optimum, provided it
is tuned to the excitation frequency.7,8

To optimize the harvesting system for harmonic ex-
citation, the harvester is designed with a natural fre-
quency to match the excitation frequency.1,7 For har-
monic excitation where the frequency varies, or for
broadband excitation, the bandwidth of the device has
to be extended. Nana and Woafo9 suggested the use
of an array of two or more harvesters to increase the
power delivered into the load. Shahruz10 analyzed a
set of parallel single degree of freedom harvesters tuned
at slightly different resonant frequencies, whereas Er-
turk et al.11 considered a harvester as a serial set of two
beams connected to each other to form an L-shape. Fer-
rari et al.12 investigated a piezoelectric multifrequency
energy converter for power harvesting in autonomous
microsystems. Ramlan et al.13 considered a harvester
made of two oblique springs and analyzed the potential
benefits of the hardening effects of the spring on the
output energy.

More recently Kim et al.14 introduced the idea of
association of two piezoelectric harvesters to produce
more efficient electric power generation. Their model
consisted of a proof mass, two cantilever piezoelectric
beams delivering the electric signal into an electrical
load. They showed through experimental analysis that
a two degrees of freedom energy harvester has two peaks
at different frequencies and also has a large frequency
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bandwidth in comparison with the conventional single
degree of freedom piezoelectric harvester. As suggested
by Kim et al.,14 connecting energy sources do not nec-
essarily result in an increase in the power generated.
Therefore a rigorous mathematical analysis has to be
performed to analyze the synchronization condition of
the harvesters.

The above discussion highlights the current require-
ment for energy harvesting solutions from broadband
vibration. Nonlinear dynamic systems have shown po-
tential to deliver novel broadband harvesting solutions.
However a full understanding of the nonlinear dynamics
of these systems is required. This letter considers a can-
didate energy harvesting solution based on two magne-
topiezoelastic beams delivering power into an electrical
circuit. A novel analysis is provided for the mistuning
in the stiffness of the harvesting oscillators, which is vi-
tal to provide a broadband response but significantly
complicates the resulting analysis.

A schematic picture of the parallel coupled har-
vesters is shown in Fig. 1(a). The mathematical model
may be written as the following dimensionless equations

ẍ+ 2ζẋ− 1

2
x(1− x2)− χv = F (t),

ÿ + 2ζẏ − 1

2
αy(1− y2)− χv = F (t), (1)

and

v̇ + λv + κẋ+ κẏ = 0, (2)

where x and y are the dimensionless transverse displace-
ments of the beam tips, v is the dimensionless voltage
across the load resistor, χ is the dimensionless piezoelec-
tric coupling term in the mechanical equation, κ is the
dimensionless piezoelectric coupling term in the electri-
cal equation, λ ∝ 1/RCP is the reciprocal of the dimen-
sionless time constant of the electrical circuit, R is the
load resistance, and CP = CP1+CP2 is the capacitance
of the piezoelectric material. Finally, α is the stiffness
mistuning parameter which should be considered in any
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Fig. 1. (a) Schematic diagram of the harvester system;
(b) Potentials of restore forces V1(x) = −x2 + x4/2 and
V2(y) = α(−y2 + y4/2) (α = 1.1) against displacements x
and y for the corresponding mechanical oscillators (Eq. (1)).

realistic system, and F (t) is the harmonic excitation of
the following form

F (t) = F0 sin(ωt). (3)

The double well potentials of the proposed mechanical
oscillators (Fig. 1(a), Eq. (1)) are shown in Fig. 1(b).

Using the above equations (Eqs. (1)–(3)) we per-
formed simulations of the dynamical system. The sys-
tem parameters used in the calculations were chosen to
fit a realistic experiment7

χ = 0.05, κ = 0.5, λ = 0.01,

ζ = 0.01, F0 = 0.2, α = 1.1. (4)

The results of the output power as well as the ap-
pearance of synchronization are illustrated in Fig. 2. As
expected the resonance curve mirrors the mechanical
hardening. Duffing type nonlinearity and the peak fre-
quency is located at about ω ≈ 1.0 (Fig. 2(a)). Interest-
ingly, after passing through the maximum response the
system switches from the resonant to the non-resonant
solution. By examining the standard deviation of oscil-
lator’s relative displacement σ(x−y) we observe that the
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Fig. 2. (a) Output power in terms of mean squared voltage
〈v2〉 versus excitation frequency ω; (b) Relative difference in
the oscillator displacements x − y in terms standard devia-
tion σ(x − y) versus excitation frequency ω. In the simula-
tions the frequency was changed quasi-statically (the system
parameters are given in Eq. (4)).

mistuning parameter α = 1.1 breaks the synchroniza-
tion effect (Fig. 2(b)). Synchronization (σ(x − y) ≈ 0)
is fulfilled for ω ∈[0.60, 0.95] and [1.55, 1.60]. Inter-
estingly, the resulting power generated in the second
interval is low. However at frequency giving the peak
power σ(x− y) ≈ 1.6.

To investigate the above solutions of Eqs. (1)–(3)
further, Fig. 3 shows the simultaneously estimated av-
erage values of 〈x〉 and 〈y〉. By observing these parame-
ters one can distinguish the symmetric (usually double-
well) and non-symmetric (usually single-well) solutions.
Apart from some synchronized motions where both av-
erages (〈x〉 and 〈y〉) have fairly close values, there are
also regions with completely different averages. It is
evident that mistuning (see α in Eq. (1)) can lead to
complicated mixed solutions where one of the oscillators
exhibits single well vibrations while the other exhibits
double-well vibrations.

The effect of switching between different possible
solutions, from single to double well solutions and vice
versa, can be also identified in Fig. 4, where we present
the bifurcation diagrams for the mistuned oscillators.
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Fig. 3. The average values of x and y displacements: (a)
〈x〉, (b) 〈y〉 versus excitation frequency ω, obtained simul-
taneously with results in Fig. 2.

For more detailed studies we have concentrated on
the three cases defined by different excitation frequency
ω = 0.75, 1.00, 1.70. The corresponding phase por-
traits, Poincare points and time series are illustrated in
Figs. 5–7, respectively. The initial conditions were cho-
sen as [x, ẋ, y, ẏ, v] = [0.01, 0, 0.01, 0, 0] for each case.

Note that according to Fig. 2(b) the solution for
ω = 0.75 is fairly well synchronized. The topology of
phase portraits and Poincare maps (Figs. 5(a), 5(c))
and the simultaneous time series (Figs. 5(b), 5(d)) con-
firm that conclusion. Interestingly the system response
period corresponds to four excitation periods which is
presumably due to the electrical coupling of mechani-
cal parts (Eqs. (1) and (2)) and the effect of mistuning
(Fig. 1(b)).

The solution for ω = 1.00 is obviously non-
synchronized (see Fig. 2(b)). Note that Figs. 6(c), 6(d)
clearly show that the discussed solution is chaotic. In-
terestingly, the chaotic solution seems to be induced by
the second oscillator (with the coordinate y) while the
first oscillator (with the coordinate x) shows a more
regular response (Figs. 4(a), 4(b)). In the plane x–ẋ,
the attractor (Fig. 4(a)) resembles a smeared point of
a regular solution in the presence of noise-like distur-
bances. These disturbances are created by the chaot-
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Fig. 4. Simultaneously estimated bifurcation diagrams for
(a) x, and (b) y versus the excitation frequency ω, which was
changed quasi-statically (the system parameters are shown
in Fig. 2).

ically changing coordinate y coupled to the first os-
cillator through the linear electrical circuit coupling
(Eq. (2)).

Finally, the solution for ω = 1.70 shows interest-
ing phenomena and the corresponding phase portraits
show a different topology. The first mechanical beam
structure oscillates in a single potential well (Figs. 7(a),
7(b)) while the second beam structure exhibits well de-
veloped oscillations (Figs. 7(c), 7(d)) crossing the poten-
tial well V2(y) (Fig. 1(b)). This phenomenon is related
to the nonuniform distribution of the system energy.
The above solutions confirm qualitatively the appear-
ance of different averages 〈x〉 and 〈y〉 shown in Fig. 3
in the region of ω ∈ [1.75, 1.90], as well as the differ-
ences in the bifurcation diagram. However one should
note that different initial conditions may lead to differ-
ent solutions and consequently change the vibrational
energy concentration in this nonlinear system. From
the Poincare points one can conclude that the response
frequency corresponds to thirty excitation periods.

In summary, we have investigated the dynamical re-
sponse of two magnetopiezoelastic harvesters with mis-
tuned stiffness connected in a parallel way via an electri-
cal circuit. The total output power versus the excitation
frequency showed the typical resonance curve, however
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Fig. 5. Phase portraits (lines) with Poincare points (black points) projected into planes x–ẋ in (a) and y–ẏ in (c), and time
series of x(t) in (b) and y(t) in (d) for ω = 0.7.
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Fig. 6. Phase portraits (lines) with Poincare points (black points) projected into planes x–ẋ in (a) and y–ẏ in (c), and time
series of x(t) in (b) and y(t) in (d) for ω = 1.
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Fig. 7. Phase portraits (lines) with Poincare points (black points) projected into planes x–ẋ in (a) and y–ẏ in (c), and time
series of x(t) in (b) and y(t) in (d) for ω = 1.75.

due to mistuning the harvesters worked mostly in the
unsynchronized regime. In the vicinity of the resonance
peak we found a chaotic solution which was driven by
one of the oscillators.

Note that in this paper we used only one set of ini-
tial conditions (Figs. 5–7) and ω was changed quasi-
statically (to get the results in Figs. 2–4). However,
to explain the problem of multiple solutions in nonlin-
ear systems (Eqs. (1)–(3)) their synchronization, and
bifurcations one has to perform more extended studies
on initial conditions and to estimate basins of attrac-
tion for the given excitation frequency ω. For instance,
two degrees of freedom dynamical systems with fric-
tion have been extensively studied by Awrejcewicz and
Olejnik.15,16

It is interesting that the appearance of different
solutions directly affect the energy harvesting as they
implies various distributions of the vibrational energy.
Furthermore, it would be important to note to test the
robustness of particular solutions against weak noise
conditions.5,17
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