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Resveratrol has emerged in recent years as a compound conferring strong protection against metabolic, cardio-
vascular and other age-related complications, including neurodegeneration and cancer. This has generated the
notion that resveratrol treatment acts as a calorie-restriction mimetic, based on the many overlapping health
benefits observed upon both interventions in diverse organisms, including yeast, worms, flies and rodents.
Though studied for over a decade, themolecular mechanisms governing the therapeutic properties of resveratrol
still remain elusive. Elucidating how resveratrol exerts its effects would provide not only new insights in its
fundamental biological actions but also new avenues for the design and development of more potent drugs to
efficiently manage metabolic disorders. In this review we will cover the most recent advances in the field, with
special focus on the metabolic actions of resveratrol and the potential role of SIRT1 and AMPK. This article is
part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient
outcomes.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Resveratrol (trans-3,4′,5-trihydroxystilbene, Rsv) is a small polyphe-
nol that has been intensively studied for a couple of decades in a large
spectrum of therapeutic research areas. The natural occurrence of Rsv
in a large variety of plant species, in particular, mulberries, peanuts
and grapes, has further fostered the attention of the general public
and claims around the possibility of using Rsv in the fields of natural
medicine and dietary supplementation.

To help understand the impact of Rsv on the general public and the
scientific community, two concepts should be introduced: 1) the French
Paradox and 2) the Caloric Restriction (CR). The concept of the French
Paradox, introduced almost 25 years ago [1], summarizes the apparently
paradoxical epidemiological observation that the French population has
a relatively low incidence of cardiovascular complications despite
having a diet rich in saturated fats. Although the validity of this observa-
tion has been a matter of debate, one of the implications derived from it
rapidly gained momentum, i.e.: that there was a component in the
French diet or lifestyle that could protect against the coronary disease
complications associated with high saturated fat consumption. The
impact of dietary habits on health is further enhanced by the second
concept, CR. CR is defined as a moderate (normally, 20–40%) reduc-
tion in caloric intake in the absence of malnutrition or deficits in
atrol: Challenges in translating

ciences, EPFL Innovation Park,
6116.
Cantó).
vitamin or mineral needs. To this date, CR is the most consistent non-
pharmacological intervention increasing lifespan and protecting against
the deterioration of biological functions inmodel organisms [2]. Almost
80 years ago, McCay and colleagues identified how CR increased maxi-
mal longevity in rats [3]. Multiple lines of evidence indicate that the
effects of CR on lifespan extension stretch all along the evolutionary
scale and up to a 50% increase in maximum lifespan has been reported
in caloric restricted lower eukaryotes (such as yeast and worms),
rotifers, insects, fish and mammals [4]. While data on how CR affects
primate lifespan is not yet fully consistent, it seems clear that CR
prevents age-related physical deterioration at themetabolic, cardiovas-
cular and tissue damage levels, as well as cancer incidence [5,6]. The
ability of CR to prevent numerous age-related diseases with apparently
disparate etiology suggests that CR affects the fundamental basis of the
aging process. However, it is the general view that there would be
unwillingness in a large portion of the population tomaintain a lifestyle
based on CR so as to obtain health benefits. Therefore, as with the
French Paradox, it is not surprising that there have been numerous
efforts to understand how CR promotes health benefits and whether
small molecule compounds could mimic the benefits of CR without
the need to commit to major lifestyle changes.

2. Building the links between Rsv, Caloric Restriction and the
French Paradox

While previous reports indicated an antioxidant action of Rsv, the
initial finding that placed Rsv in the limelight was provided by the
Pezzuto lab, which identified Rsv as a cyclooxygenase (COX) inhibi-
tor with antitumoral effects [7]. Rsv efficiently protected against
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carcinogenesis models in the mammary gland and skin from mice [7].
These results fueled the possibility of using this natural compound as
a cancer chemopreventive agent. Importantly, CR is an intervention
that heavily protects against cancer development in rodents [8]. As
discussed later, this was just the first of numerous findings suggesting
that Rsv might have some CR-mimicking actions. A second line of
evidence that raised the attention of the scientific community was the
possibility of Rsv acting as a cardioprotective compound. Rsv effectively
protected against plaque development in different animal models of
atherogenesis [9,10]. In addition, Rsv enhanced endothelial nitric
oxide production [11], potentially improving vasodilatation. The addi-
tion of Rsv to a high fat diet ameliorates arterial wall inflammation
and other cardiovascular risk markers associated with aging in mouse
models [12]. In porcine models, Rsv improved myocardial perfusion,
and regional contractility while decreasing oxidative stress [13]. In a
recent study using Rhesus macaques fed with high-fat/high-sucrose
diet, a two year dietary supplementation of Rsv significantly reduced
central arterial wall inflammation and stiffening, which accompanies
most age-associated diseases, such as atherosclerosis, hypertension
and diabetes [14]. This provided critical evidence indicating that Rsv
supplementation could safely reduce many of the negative conse-
quences of excess caloric intake on cardiovascular health. Studies in
humans indicate that an acute administration of Rsv is enough to
dose-dependently improve endothelium-dependent vasodilatation [15].
Also, a three month administration of Rsv at low doses (10 mg/day)
had beneficial effects on left ventricle diastolic function, endothelial
function and LDL-cholesterol in patients with coronary artery disease
[16]. Other studies in obese humans have also observed that Rsv
(150 mg/day) ameliorated plasma lipid profiles and inflammatory
markers after one month of treatment [17]. The presence of significant
amounts of Rsv in grape skin (20–100 μg of Rsv per gram of dry grape
skin, depending on the grape variety) and, consequently, on wine
(most notably, red wine, with a concentration around 1.5 to 3 mg/L) [7,
18] rapidly forged a popular hypothesis in which Rsv, as a wine compo-
nent, could explain the French Paradox. Nonetheless, it must be clarified
that only a small fraction of the ingested Rsv reaches mammalian tissues.
At doses similar to those achievable through normal diet, Rsv levels in
plasma are either not detectable or clearly below the micromolar range
[19,20], as used in vitro. Even doses up to 5 g would only lead to very
low micromolar concentrations in blood (~2–4 μM) [19–21]. However,
it must be taken into account that Rsv is a lipophilic molecule that can
quickly move across membranes. Therefore, intratissular/cellular Rsv
levels might be higher than what plasma levels suggest. Indeed, recent
elegant evidence suggests that Rsv might be quickly metabolized in
human colorectal cells into stable sulfate-conjugated forms, which
would then gradually regenerate into the parental compound, providing
the beneficial effects in vivo [21]. Whether Rsv and Rsv-sulfate forms are
metabolized similarly in other tissues – e.g.: peripheral tissues, such as
muscle or adipose tissue – however, has not yet been explored.

3. Resveratrol and Sir2/SIRT1 — metabolic health and longevity
within our grasp

Tounderstand howRsv took center stage in themetabolic arena, one
needs to jumpback to 1999,whenKaeberlein and colleagues discovered
that a protein called Sir2 (Silent information regulator 2) was involved
in the yeast replicative aging process [22]. In a seminal paper, it was
demonstrated that extra copies of Sir2 increased yeast replicative
lifespan by 30%, whereas ablation of the Sir2 gene had the opposite
effects, reducing lifespan by 50% [22]. Sir2 was initially characterized
as a protein having an unusual NAD+-dependent enzymatic histone
deacetylase activity [23,24]. The deacetylation reaction catalyzed by
Sir2 is coordinated with the cleavage of NAD+ into nicotinamide and
1-O-acetyl-ADP-ribose [23,24]. Later, the deacetylase activity of Sir2 or
that of the closest mammalian ortholog, SIRT1, was shown to extend
beyond the histone realm into other nuclear and cytosolic targets [25].
Importantly, the KM of yeast Sir2 (and the mammalian SIRT1) for
NAD+ is over 100 μM, which is in the range of physiological changes
in NAD+ availability [25]. Since NAD+ acts as a cofactor in various
metabolic reactions, the above data suggests that Sir2 could act as a
metabolic sensor, capable of fine-tuning gene expression according to
themetabolic state of the cell. In linewith this, several studies indicated
that Sir2 could be a criticalmediator of the effects of CR on yeast lifespan
[26,27]. In yeast, mimicking CRby reducing glucose concentration in the
media from 2 to 0.5% is enough to increase replicative lifespan [27]. This
effect, however, was lost in yeast where the gene coding for Sir2 was
deleted [27]. Genetic manipulation of Sir2 orthologs was later demon-
strated to affect lifespan in higher eukaryotes, such as nematodes [28,
29] and insects [30,31], even though the consistency and amplitude of
this effect has been a matter of debate [32–34].

In mammals, there are 7 sirtuin enzymes (SIRT1–7). Among them,
SIRT1 has been the most extensively studied [25]. A wide range of
substrates have already been described for SIRT1, among which are
key regulators of mitochondrial respiration, lipid metabolism and the
aging process, such as the FOXO family of transcription factors [25].
SIRT1 overexpression does not enhance maximal lifespan in mice
under regular food regimes [35]. However, SIRT1 transgenic mice
display some features resembling CR. The first reported SIRT1 gain-of
function mice were leaner, metabolically more active, and had im-
proved glucose tolerance [36]. A second, independent, SIRT1 transgenic
line with a mild overexpression of SIRT1 displayed lower levels of DNA
damage, decreased expression of aging-associated markers, a better
general health and fewer spontaneous carcinomas and sarcomas upon
aging [35]. These effects, however, were not sufficiently potent to affect
longevity. One of the major caveats of the gain-of-function approaches is
that higher SIRT1 expression does not necessarily result in a proportional
increase in SIRT1 activity, particularly in aged rodents, where NAD+ con-
tent declines to the levels thatmight compromise SIRT1 activity [37,38]. A
growing body of evidence derived from in vivo studies suggests that
SIRT1 may mediate the effects of CR in mice. The study of SIRT1 knock-
out mice is complicated, as SIRT1 deletion is lethal at embryonic or early
post-natal stages in inbred mice [39,40]. Hence, most studies had to rely
on outbred stocks. In general, mice deficient for SIRT1 display develop-
mental and growth defects as well as altered birth rate [39,40]. The few
SIRT1 knock-out mice that survive until adulthood, however, are
metabolically inefficient and, display a blunted response to CR-induced
adaptations, including the effect of CR on longevity [41,42].

Based on the hypothesis that sirtuins are critical mediators of CR and
its associated health benefits, the Sinclair lab used an in vitro screening
strategy with a fluorescent labeled substrate aimed to identify small
molecule activators of SIRT1 [26]. The screen identified a number of
polyphenols as possible allosteric SIRT1 activators, Rsv being the most
potent hit [26]. Subsequently, Rsv was shown to extend lifespan in
lower eukaryotes – including yeast, worms and flies – in a SIRT1 depen-
dent manner [26,43]. This way, Rsv treatment in lower eukaryotes
was sufficient to mimic one of the most well-known effects of CR,
i.e.: lifespan extension. Chronic treatment ofmicewith Rsv also had dra-
matic effects on metabolic health. Mice on a high-fat diet were largely
protected against body weight gain when supplemented with Rsv
at 400 mg/(kg*day), accompanied by a significant amelioration of
impairedwhole body glucose and lipid homeostasis [44]. Themetabolic
benefits of Rsv supplementation culminated in a remarkable protection
of treated mice (at ~25 mg/(kg day)) against the lifespan reduction
promoted by high-calorie diets [45]. When supplemented at
~25 mg/(kg day) to a regular diet in one year old mice, Rsv induced
changes in the transcriptional profile of keymetabolic tissues that close-
ly resemble those induced by CR [12]. In the liver and muscle, these
changes could also be correlated to the gene expression patterns of
younger animals [12]. Rsv supplementation also reduced osteoporosis,
cataracts, vascular dysfunction, and the age-related decline in motor
coordination [12]. However, Rsv did not increase longevity in mice fed
regular, low-fat, diets [12].



Fig. 1. Resveratrol and the complex relationship between AMPK and SIRT1. AMPK and SIRT1 constitute two key targets of Rsv. As a mildmitochondrial poison, Rsv inhibits mitochondrial
ATP production, leading to a higher AMP/ATP ratio and an LKB1-dependent activation of AMPK. Then, AMPK enhances NAD+ availability, which would overcome the rate-limitation that
this cofactor exerts on SIRT1 enzymatic activity. In turn, SIRT1, as a possible direct target of Rsv, can deacetylate LKB1, facilitating the formation of an active kinase complex through the
association of LKB1 with STRAD and MO25. This way, SIRT1 could also positively control AMPK activity. Together, AMPK and SIRT1 create a positive feed-forward loop to amplify the
adaptation response to nutrient scarcity. Through the modulation of diverse transcriptional regulators, as exemplified, the actions of AMPK and SIRT1 can explain many of the beneficial
effects of Rsv against metabolic and age-related complications. In addition, AMPK activation by Rsv would lead to the inhibition of mTOR signaling, while SIRT1 activity would
repress NF-κB activity, two key paths by which Rsv modulates cellular growth, autophagy and immune responses.
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The health benefits of Rsv inmice have been largely attributed to the
ability of Rsv to enhance energy expenditure by boostingmitochondrial
respiration and lipid oxidation [44]. Given that defective mitochondrial
function has been associated with insulin resistance and other age-
related pathophysiological complications, including sarcopenia, cogni-
tive decline and cancer (see [46] for review), improving mitochondrial
function might be key to impinge on all these disorders. By acting as a
SIRT1 activator, Rsv triggers the deacetylation of diverse metabolic
transcriptional regulators in vivo [44]. For example, PGC-1α is one
well-established target of SIRT1 that acts as a master orchestrator of
mitochondrial biogenesis [47]. Upon deacetylation by SIRT1, PGC-1α in-
creases its activity as a co-activator of numerous transcription factors
and nuclear receptors controlling mitochondrial gene expression [48].
Accordingly, Rsv treatment led to large increases in mitochondrial con-
tent in key metabolic tissues, such as skeletal muscle or brown adipose
tissue [44]. In cultured myotubes, the effect of Rsv on PGC-1α activity
was completely blunted when SIRT1 was knocked-down [44], further
proving that Rsv action is SIRT1 dependent. Recently, an elegant
model has been developed in order to genetically ablate SIRT1 exclu-
sively in adulthood. The deletion of SIRT1 in adult mice did not result
in any overt phenotype, but completely impaired the ability of Rsv to
increase mitochondrial biogenesis and function [49].

It has been recently proposed that SIRT1 small molecule activators
(STACs), such as Rsv, might be acting as direct “assisted allosteric
activators” [50]. In this case, STACs would not interact strongly with
SIRT1, but rather bind to a steady-state enzyme–substrate complex
[50]. By screening different SIRT1 mutations, it was revealed that
SIRT1 has an N-terminal domain that is required for STAC binding,
which includes E230 (E222 in mice), a critical residue for the activation
of SIRT1 by STACs [50]. An E230A or E230K mutation on SIRT1 did not
have any major effect on basal SIRT1 activity, but was enough to largely
attenuate the ability of Rsv to activate SIRT1 [50]. Accordingly, while Rsv
nicely increased mitochondrial mass and ATP levels in SIRT1 KO myo-
blasts reconstituted with wild type SIRT1, it failed to do sowhen the re-
constitution was made with the E222K mutant form [50]. The elegant
work by Hubbard and colleagues additionally pointed out that target
deacetylation residues for SIRT1might need to be surrounded by specif-
ic features, such as a hydrophobic residue at the+1position [50]. In line
with this, efforts from the Steegborn lab illustrated how Rsv action only
triggers SIRT1-mediated deacetylation in a substrate specific fashion,
and even led to a paradoxical inhibition of SIRT1 actions on certain sub-
strates [51]. Altogether, these data indicate that Rsv is not just a mere
global SIRT1 activator, but it might only influence the deacetylation of
particular groups of substrates. While the work presented above
marks a great improvement in our understanding of the mechanism
by which Rsv could directly activate SIRT1, a number of findings have
strongly contested the possibility of Rsv being a direct SIRT1 activator.
First, the assay that initially identified Rsv as a SIRT1 activator has
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been called into question when it was demonstrated that the
nonphysiological “Fluor de Lys” substrate used for screening can lead
to artefactual results [52–55]. Several laboratories have demonstrated
that Rsv fails to activate SIRT1with native peptides or full-length protein
substrates, whereas they do activate SIRT1 when using fluorphore-
containing peptides [52–55]. Second, there are a number of discor-
dances between the in vivo effects of Rsv treatment and SIRT1 genetic
gain-of-function models (Table 1). For example, Rsv largely protects
against high fat diet-induced body weight gain [44], while SIRT1 trans-
genic mice gain weight in a similar fashion to control wild-type mice
[56,57]. Similarly, Rsv, but not SIRT1 overexpression or CR, leads to a
dramatic increase in skeletal muscle mitochondrial content [44,56,58].
In fact, while most data suggests that Rsv increases skeletal muscle
glucose uptake [44,59,60], even in an acute fashion [61,62], SIRT1
transgenesis in the muscle does not affect insulin action [63]. More
specifically, the positive effects of SIRT1 transgenesis on global insulin
sensitivity seem to be largely derived from a protection against hepatic
metabolic damage [57]. Importantly, Rsv also ameliorated glucose ho-
meostasis in high-fat fed SIRT1 deficient mice [49], thus additional
mechanisms, other than SIRT1 ormitochondrial biogenesis, are required
for Rsv to improve metabolic health. Last, but not the least, one has to
take into account that there is uncertainty on whether it is Rsv or one
of its metabolized forms that accounts for the biological effects upon
dietary supplementation. Indeed, it has always been striking how a
relatively permeable compound such as Rsv has generally needed long
time frames (several hours) in order to drive SIRT1 activation (discussed
in [25]). As a whole, while a large body of evidence indicates that Rsv
requires SIRT1 for most of its key metabolic actions, the activation of
SIRT1 does not necessarily have to be through direct means and SIRT1-
independent events definitively exist.

4. Resveratrol as an AMPK activator through affecting
mitochondrial metabolism

Could the activation of other pathways drive themetabolic actions of
Rsv? Interestingly, the health benefiting properties of SIRT1 activation
overlap in many ways with those conferred by AMP-activated protein
kinase (AMPK) activation [45]. AMPK has emerged as a key nutrient
sensor with the ability to regulate whole-body metabolism. AMPK is
an evolutionarily conserved enzyme whose activity is triggered by in-
creases in the AMP/ATP ratio, which reflects the energy status of the
cell. A recent report combining structural and biochemical approaches
revealed that, apart from AMP, also ADP binding might also crucially
contribute to AMPK activation [64], further supporting the exquisite
sensitivity of this kinase to be modulated in response to energy needs.
Consequently, AMPK is activated under the physiological conditions of
energy stress such as hypoxia, fasting and exercise [4,65,66]. Upon acti-
vation, AMPK diminishes the rates ofmost energy consumingmetabolic
programs such as lipid and protein biosynthesis, and triggers energy
producing biochemical processes such as lipid oxidation and glycolysis
to counter energy depletion [65]. In addition, AMPK exerts long term
changes in energy homeostasis by triggering transcriptional programs
related tomitochondrial biogenesis and the use of oxidativemetabolism
to fuel cellular energy demands [47]. Given the conserved ability of
AMPK to sense energy stress and trigger metabolic adaptations, it has
also been speculated that AMPK could act as mediator of the beneficial
effects of CR (reviewed in [67]). Certainly, while AMPK activation
mimics certain aspects of CR and has been shown to be necessary to
promote longevity under certain circumstances, whether AMPK is an
effector promoting longevity and healthy aging during CR is far from
clear [67].

By early 2007 several labs reported that Rsv had the ability to acti-
vate AMPK [45,68,69]. Surprisingly, Rsv led to AMPK activation within
minutes inmost cell lines tested, including hepatic and cultured skeletal
muscle cell models [45,62,69,70] much faster than generally required
for SIRT1 activation. Mice fed with Rsv at doses ranging from ~25 to
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400 mg/(kg day) displayed enhanced AMPK activation in the liver,
skeletal muscle and white adipose tissue [45,71]. Themost likely mech-
anism bywhich Rsv could activate AMPK relies on the ability of Rsv and
related polyphenols (such as piceatannol and quercetin) to directly bind
and inhibit the mitochondrial F1F0-ATPase/ATP synthase (Complex V),
thus impairing ATP production [72,73]. Elegant experiments using
AMPKmutants that are insensitive to changes in AMP/ATP ratio provid-
ed further evidence that Rsv activates AMPK as a consequence of
decreased ATP production [74], even though the concentration on
these assays, 100 μM, was far higher than those generally reported to
activate AMPK in cultured cell models, which are generally between 5
and 50 μM.

Many experimental lines indicate that the metabolic effects of Rsv
crucially depend on AMPK activation. For example, Rsv required
AMPK in order to decrease lipid accumulation in HepG2 cells [75].
Similarly Rsv triggered skeletal muscle glucose transport in an AMPK-
dependent manner [62]. Using an AMPKγ3 knock-out mouse model, it
was demonstrated that defective AMPK prevents the activation of
SIRT1 upon Rsv treatment [76]. Consequently, PGC-1α was not
deacetylated in response to Rsv treatment in AMPKγ3 knock-out mice
[76]. A parallel study by Um and colleagues demonstrated that Rsv
required AMPK to promote metabolic benefits in mice, as Rsv failed to
improve insulin sensitivity, glucose tolerance, physical endurance and
mitochondrial biogenesis in mice deficient for the catalytic AMPKα1 or
AMPKα2 subunits [71]. Finally, studies in worms indicated that Rsv
requires intact AMPK activity to enhance lifespan [77]. Altogether,
these observations not only demonstrate that AMPK is a critical media-
tor of themetabolic actions, but also suggest that AMPK activation could
be one of the earliest signals triggered by Rsv.

5. AMPK and SIRT1: partners in crime?

The largely overlapping outcomes of AMPK activation and SIRT1
activation, together with the strong links of Rsv with the activation of
both metabolic sensors, quickly fueled the possibility that their actions
could be intertwined. From a simplistic perspective, the fact that Rsv
requires AMPK and SIRT1 activities for some actions (for example, to
trigger mitochondrial biogenesis in vivo [49,71]), suggests that AMPK
and SIRT1 might be part of a common signaling pathway or that they
might act in concert. However, in what order are they activated? And
how are their activities connected?

On the question of whether AMPK or SIRT1 lies upstream of each
other, there is evidence to support both directions. As discussed at the
end of this section, this is not necessarily contradictory. Intuitively, the
very rapid effect of Rsv on AMPK activation would place AMPK in a
privileged position to be an upstream driver. Supporting this hypothe-
sis, Rsv has been reported to activate AMPK independently of SIRT1, at
least at high doses [49,68,71]. Conversely, defective AMPK activation
compromises the ability of Rsv to trigger SIRT1 activity [71,76]. In fact,
the activation of AMPK seems to consistently lead to higher SIRT1 activ-
ity, irrespective of the nature of the agonist [78]. Furthermore, physio-
logical activation of SIRT1 in response to diverse nutrient and energy
stresses, such as glucose restriction, fasting or exercise, seems to depend
on AMPK inmammalian cells and tissues [76,79]. Finally, the significant
effects of Rsv onmitochondrial biogenesis in the skeletal muscle closely
mimic those observed by treatment with AMPK agonists [80] or AMPK
gain-of-function models [81], but were not observed in models where
SIRT1 was moderately overexpressed [56,82,83]. In all, the above evi-
dence would indicate that, in response to Rsv, AMPK activation is an
early event that would lead to a downstream activation of SIRT1. Differ-
ent mechanisms have been proposed to link AMPK and SIRT1 activities.
First, AMPK activation seems to increase NAD+ availability, both in cul-
tured myocytes or skeletal muscle [78,79]. As discussed in a previous
section, NAD+ can be rate-limiting for SIRT1 activity. Consequently, an
increase in NAD+ availability would favor SIRT1 action. This increase
in NAD+ availability might derive from, at least, two complementary
actions: on one hand, the increase in fat oxidation rates induced by
AMPK would be permissive for an increase in NAD+ within hours
after treatment [78]. On the other, AMPK triggers nicotinamide
phosphoribosyltransferase (Nampt) expression, which would increase
NAD+ salvage from nicotinamide (NAM) [79]. Accordingly, Rsv fails to
enhance NAD+ content in mammalian tissues with defective AMPK
activity [10]. The beauty of this model is that the activation of SIRT1
would rely on long term metabolic and/or transcriptional adaptation,
explainingwhyRsv requires a relatively long time to trigger SIRT1 activ-
ity in vivo. A second mechanism by which AMPK could regulate SIRT1
has been proposed recently. According to it, AMPK would directly
phosphorylate SIRT1 [84]. This phosphorylation event would disrupt
the interaction of SIRT1with its endogenous negative regulator, Deleted
in Breast Cancer 1 (DBC1) [84], therefore rendering SIRT1 active.
However, as discussed in a recent review [83], this mechanism might
need further clarification given that previous reports failed to detect
such phosphorylation event.

The above findings elaborate a mechanism in which AMPK is at the
apex of the energy sensing machinery and translates the message to
SIRT1, which then initiates cellular transcriptional responses aimed to
optimize energy production from non-carbohydrate sources. However,
several evidences suggest that SIRT1 could also act as an upstream
modulator of AMPK. Initial evidence for this was obtained in HepG2
cells, where the use of splitomicin as a SIRT1 inhibitor prevented Rsv-
induced AMPK phosphorylation [75]. In a parallel study, the incubation
of HepG2 cells with NAM, an end-product inhibitor of SIRT1 activity,
also led to amarked decrease in basal AMPK activity [70].More convinc-
ingly, blunting SIRT1 activity using specific shRNAs or through the
generation of dominant negative models largely decreased both basal
and Rsv-triggered AMPK phosphorylation, either in HepG2 or HEK293
cells [75,85]. These results, however, are seemingly contradictory with
other observations showing that the suppression of SIRT1 activity in
fibroblasts or muscle C2C12 cells does not lead to decreased AMPK
activity [71,78,86]. Similarly, basal AMPK activity in the skeletal muscle
seems unaffected by SIRT1 deletion [49,87,88]. This argues that the im-
pact of basal SIRT1 activity on AMPK could be tissue or cell-specific,
probably relying on the level of basal SIRT1 activation in the tissue.
Interestingly, however, overexpression of SIRT1 has been consistently
shown to increase basal AMPK activity in theHepG2 cells, liver and skel-
etal muscle [49,75]. As a whole, the above results strongly suggest that
SIRT1 can also influence AMPK activity. In this sense, a recent study
has brought further light into these concepts by demonstrating that
the molecular pathway through which Rsv leads to AMPK activation is
dose dependent thus emphasizing the dose as a critical factor. This
way, low Rsv doses (~25 mg/(kg day) in mice; 25 μM in cultured
myotubes) lead to SIRT1-dependent AMPK activation, while high
doses (~220 mg/(kg day) in mice; 50 μM in cultured myotubes) can
do so in a SIRT1-independent fashion [49]. Therefore, Rsv dosing has
to be carefully examined when exploring the mechanistic insights on
its action.

As the results above illustrate, SIRT1 can affect the ability of diverse
AMPK agonists to trigger AMPK activity. It was, hence, exciting to see
that the Liver Kinase B1 (LKB1), the main upstream kinase for AMPK
activation [89,90], was a target for SIRT1 deacetylation in cultured
cells and rodent tissues [85]. Original experiments in HEK293 cells
demonstrated that acetylated LKB1 fails to shuttle from the nucleus to
the cytoplasm [85]. Upon deacetylation by SIRT1, LKB1 shuttled more
efficiently to the cytoplasm, allowing the binding of STRAD and MO25
and the formation of the final active kinase complex [85]. Consequently,
SIRT1 could potentially modulate AMPK activity by influencing the ac-
tivity of LKB1. The finding that not only Rsv, but also AICAR, the most
widely used AMPK agonist, failed to stimulate AMPK when SIRT1 activ-
ity was blocked in C2C12 myotubes, primary hepatocytes and primary
myoblasts [49], stands fully in line with this possibility. In this sense,
Rsv and nutrient deprivation both led to LKB1 deacetylation, potentially
triggering AMPK activation [49,85]. The above hypothesis is an



1119S.S. Kulkarni, C. Cantó / Biochimica et Biophysica Acta 1852 (2015) 1114–1123
extremely attractive one. However, as with the ones connecting AMPK
to SIRT1 activity, it has some weaknesses. First, LKB1 activity in the
cell is unlikely to be limiting for energy-stress induced AMPK activation,
as even hypomorphicmicewith 10-fold lower LKB1 activity retain a sig-
nificant ability to activate AMPK [90]. Second, and in linewith the above
comment, AMPK phosphorylation seems to be regulated largely at the
phosphatase level in an AMP-dependent fashion, making it difficult for
an LKB1-dependent mechanism to explain higher AMPK activity upon
SIRT1 overexpression.

While answering some of the caveats of the diverse mechanisms of
action proposed will still require further investigation, the weight of
evidence indicates that SIRT1 and AMPK are required for Rsv metabolic
actions and that both effectors likely act in concert to promote health
benefits. For example, blocking either AMPK or SIRT1 is enough to
prevent Rsv-induced mitochondrial biogenesis in vivo [49,71]. The
common need for both actors might also be explained by a “double
hit” hypothesis in which critical mediators might require inputs from
both enzymes in order for them to become fully active or inactive. A
classic example might be found in PGC-1α, the master transcriptional
regulator of mitochondrial biogenesis. AMPK activation promotes
mitochondrial biogenesis in a PGC-1α dependent manner [91]. The
AMPK–PGC1α axis of action was then mechanistically explained with
the discovery that AMPK activation led to direct phosphorylation of
PGC1α protein at T177 and S538 and that the phosphorylation of
these residues was essential for the induction of PGC1α activity [91].
Thus AMPK-mediated phosphorylation of PGC1α initiated the essential
transcriptional circuitry governing mitochondrial metabolism. SIRT1
was also reported to directly control PGC1α activity, in this case by di-
rect deacetylation [48]. Strikingly, treatment of mouse fibroblasts and
myotubes with AMPK agonists led to a marked SIRT1-dependent
PGC1α deacetylation [78]. So, why should AMPK trigger two indepen-
dent events stimulating PGC-1α activity (i.e.: phosphorylation and
deacetylation). The answer might be provided by experiments demon-
strating that PGC-1α forms where both T177 and S538 have been mu-
tated to alanine fail to become deacetylated upon AMPK activation
in vivo [78,92]. The above result indicates that the phosphorylation of
these residues might be necessary for the PGC-1α protein to be recog-
nized by SIRT1 in vivo, allowing this way its deacetylation and full acti-
vation. This, in turn, could constitute an elegant mechanism by which
SIRT1 substrates could be specifically targeted for deacetylation upon
SIRT1 activation. In addition, it could explain why models of modest
SIRT1 overexpression do not necessarily show higher mitochondrial
biogenesis [56], as the signal from AMPK might be missing. In line
with this observation, AMPK and SIRT1 share a number of downstream
targets, includingp53 or the ForkheadObox (FOXO) family of transcrip-
tion factors among others [47], suggesting further interactions of both
signaling systems. Finally, theAMPK/SIRT1/PGC-1α path has been prov-
en to be an extremely conserved axis of action through which mito-
chondrial biogenesis is regulated not only by pharmacological and
nutritional cues, but also by diverse key metabolic hormones, including
adiponectin [92], leptin [93] and fibroblast growth factor 21 (FGF21)
[94]. In conclusion, the above sections demonstrate that AMPK and
SIRT1 are core effectors of Rsv action and that their activities closely in-
tertwine (Fig. 1).

6. Other possible effectors for Rsv

While all the above data point to AMPK and SIRT1 as key metabolic
effectors of Rsv, it is also true that these two effectors are unlikely to be
exclusively responsible for the myriad of effects derived from Rsv treat-
ment. Similarly, the mechanism of activation of AMPK and SIRT1 might
be indirect and, therefore, influenced by other direct or indirect Rsv
targets. In this section we will briefly discuss some additional relevant
targets proposed for Rsv. We will particularly focus on classic and
novel possible targets relevant for the metabolic effects of Rsv, and,
more specifically, on those where a direct action has been described.
For further information on the possible impact of Rsv on other diverse
cellular processes, such as anti-oxidant protection or sphingolipid
metabolism, the reader is kindly referred to other reviews where the
topic has been largely covered [95–98].

6.1. Cyclooxygenases (COX)

The initial cancer chemopreventive activity of Rsv was attributed to
the inhibition of cyclooxygenases (COXs) [7]. COX activity catalyzes the
conversion of arachidonic acid to pro-inflammatory substances, such as
prostaglandins, which act as critical second-messengers for immune
processes and stimulate tumor growth [7]. Jang et al. performed a
fractionation study on an extract from a leguminous plant, Cassia
quinquangulata, known to inhibit COX activity. The authors identified
Rsv as the active component, inhibiting COX-1 at a median effective
dose of 15 μM [7]. Rsv could also inhibit COX-2, but at ED50 ~5 times
higher than those described for COX-1 [7]. It was, hence, not surprising
that Rsv does not only display anti-inflammatory actions, but it has even
been also proposed to display analgesic actions [99]. However, despite
strong data indicating that Rsv can directly inhibit COX activity, there
is also a large body of evidence indicating that, in vivo, Rsv reduces
COX activity by transcriptional means. This way, Rsv has been shown
to dramatically reduce COX-2 transcription by the combined downreg-
ulation of the Akt, MAPK and NF-κB pathways [100,101]. Irrespective of
mechanism, COX activity seems a clear mode of action by which Rsv
reduces inflammation and tumorigenesis. In addition, Rsv has also
been described to inhibit lipooxygenases (LOX) activity [102,103],
which is also involved in leukotriene synthesis, further leading to the
production of other inflammatory and carcinogenic-related signals
[104]. This further solidifies the key action of Rsv in the regulation of
eicosanoid metabolism and their action as second messengers.

6.2. Phosphodiesterases

A recent study by Park and colleagues provided evidence suggesting
that the direct inhibition of phosphodiesterases (PDEs) could be at the
root of themetabolic benefits exerted by Rsv [105]. The direct inhibition
of PDE1, 3 and 4 by Rsv, at IC50 between 6 and 14 μM,would lead to PKA
activation and to the phosphorylation of AMPK in a Ca2+-dependent
manner, increased NAD+ availability and, finally higher SIRT1 activi-
ty [105]. Accordingly, the treatment of micewith rolipram as a PDE4 in-
hibitor led to very similar metabolic effects to those described for Rsv,
such as prevention against diet-induced obesity and an increase in
mitochondrial function [105]. While attractive, this idea will need
further work to gain solidity and explain some inconsistencies. For
example, Price and colleagues have reported that Rsv can increasemito-
chondrial biogenesis without affecting cellular NAD+ levels [49].
Further, the activation of PKA can directly lead to SIRT1 activation via
phosphorylation [82]. While some reports support that cAMP signaling
might trigger AMPK activation [106–108], PKA has also been reported to
directly phosphorylate and negatively influence AMPK activity [109].
Also, the outcomes of enhancing cAMP levels can have diametrically op-
posite effects to AMPK activation in some Rsv target tissues, such as the
liver, where cAMP signaling is generally associated with increased
hepatic glucose production. In this sense, however, it is important to
note that Rsv has a strong protective effect against hepatic steatosis
upon high-fat feeding [45], which might override possible detrimental
effects of cAMP signaling on gluconeogenesis. Finally, Rsv failed to
activate mutant AMPK forms insensitive to changes in AMP/ATP ratio
[74], which refutes a significant role for the Ca2+–CAMKKβ pathway.

6.3. NF-κB

A wealth of data has been gathered indicating how Rsv might inter-
fere with the nuclear factor-kappaB (NF-κB) family of transcription fac-
tors. This family includes RelA (p65), NF-κB1 (p50 and p105), NF-κB2
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(p52 and p100), c-Rel and RelB [110]. These factors are generally
retained in the cytoplasm through their interactionwith IκB,which pre-
vents NF-κB and nuclear translocation [110]. By enhancing the degrada-
tion of IκB, NF-κB can then migrate into the nuclear compartment,
where these transcription factors act as heterodimers that bind the
DNA promoters of many inflammatory and immune response genes
[110]. Rsv has been largely reported to interferewith NF-κB activity. Ini-
tial hypothesis suggested that Rsv might either reduce NF-κB nuclear
presence [111] or interfere with the transcriptional activity [112]. The
mechanism underlying such actions, however, remains largely obscure.
In fact, no evidence exists for a direct effect of Rsv on NF-κB. To date,
most hypotheses converge on the possibility that Rsv reduces the ability
of several pro-inflammatory stimuli, such as tumor necrosis factor α
(TNF-α) lipopolysaccharide (LPS) or H2O2 to trigger IκB phosphoryla-
tion and degradation [113], hence hampering NF-κB translocation. To
do so, it has been suggested that Rsv might lead to the suppression of
IκB kinase (IKK) activity [114,115], therefore preventing IκB degrada-
tion and, consequently, NF-κB nuclear translocation. Interestingly,
SIRT1 physically interacts with the RelA/p65 subunit of NF-κB
deacetylates it at K310, inhibiting its transactivation potential [116]. It
is likely that Rsv might also negatively influence NF-κB indirectly
through this path. In agreement, Rsv reduced RelA/p65 acetylation
levels [116].

6.4. PI3K/Akt signaling

Given that a modest inhibition of the insulin signaling pathway can
enhance lifespan in virtually all species tested to date [117], it could
be hypothesized that Rsv might enhance lifespan by reducing insulin
action. While evaluating the impact of Rsv on insulin signaling, Frojdo
and colleagues unveiled that Rsv could inhibit PI3K signaling indepen-
dently of SIRT1 [118]. Rather, this was due to a direct inhibitory action
of Rsv on class IA PI3K catalytic subunits p110α and p110β [118].
Their results indicated that Rsv targeted the ATP binding site in a non-
covalent fashion at an IC50 of 25 and 50 μM (for α and β isoforms,
respectively) [118]. Consequently, Rsv prevented the activation of Akt
by a number of different stimuli [118]. Indeed, such mechanism would
explain themultiple lines of evidence indicating decreased Akt signaling
in a number of cell lines following Rsv treatment (see [95] and [98]),
also supporting the Rsv chemopreventive activity. That said, some
authors have also suggested that Rsv might be inhibiting insulin-
stimulated interaction between IRS1 and PI3K, as well as between
IRS-1 and Grb2, which drives MAPK activation [119], although the
genuine molecular mechanism was not identified in that case. It
must be noted, however, that chronic treatment with Rsv in vivo
can actually lead to insulin sensitivity [44,45], probably through
transcriptional mechanisms leading to a SIRT1-driven downregula-
tion of Protein Tyrosine Phosphatase 1B (PTP1B) [120], which
downregulates insulin signaling, or by enhancing mitochondrial
lipid catabolism [44,45] and preventing the subsequent accumulation
of potential lipid intermediates that could interfere with insulin action,
such as ceramides or diacylglycerols.

6.5. mTOR signaling

The mammalian target of rapamycin (mTOR) is a central controller
of cell growth, proliferation and metabolism [121]. As part of the
mTOR complexes 1 and 2 (mTORC1 and mTORC2), the mTOR kinase
plays a key role in several pathways involved in cancer and metabolic
diseases [121]. Genetic or pharmacological strategies aimed to decrease
mTOR signaling have been shown to enhance lifespan across a broad
range of species [121]. Therefore, inhibition of mTOR signaling could
also be a mechanism by which Rsv promoted health benefits. Recent
studies have also demonstrated that Rsv inhibits mTOR signaling via a
SIRT1-independent mechanism [122] and that it represses protein
synthesis [123]. Intriguingly, the disruption of upstream regulators of
the mTOR pathway, such as Akt signaling and tuberous sclerosis 1 and
2 (TSC1/2) expressions has no significant effect on the inhibitory effect
of Rsv on leucine-stimulated mTOR activation [122]. AMPK activation
can trigger the phosphorylation of Raptor, a component of the
mTORC1 complex, thereby repressing mTORC1 activity [124]. Hence,
the activation of AMPK by Rsv could explain such an effect. Nonetheless,
Liu and colleagues have proposed that Rsv could promote the associa-
tion between mTOR and DEPTOR, an inhibitor of mTOR [125], thus
uncovering a novel mechanism by which Rsv inhibits mTOR signaling
[122]. In this study, the ability of Rsv to inhibit mTORC1 activity was
maintained in C2C12 cells where AMPKα2 was knocked-down [122],
arguing in favor of a direct inhibition mechanism. Further evidence,
however, will need to be collected to prove that AMPK activity was
truly impaired in this cell model and to more finely establish how Rsv
promotes the binding of DEPTOR to mTOR and whether the concentra-
tions at which this event takes place are biologically relevant. Interest-
ingly, Rsv has also been found through an in vitro screen to act as a
direct inhibitor of p70S6K [126], a key downstream target of the
mTOR pathway regulating autophagy and protein translation rates,
albeit at an IC50 of 25 μM[126], which is higher than the lowmicromolar
concentrations at which Rsv enhances AMPK activity [45,127] and its
subsequent induction of autophagy [128,129].

6.6. Estrogen receptors

Based on the structural similarities between Rsv and diethylstilbes-
trol, a synthetic estrogen, Gehm and colleagues examined whether
resveratrol might be a phytoestrogen. Rsv inhibited the binding of
17-β-estradiol (E2) to the estrogen receptor (ER) in a competitive
manner at an IC50 of 10 μM [130], indicating that it was a relatively
weak ligand for the receptor. Rsv binding acted as an agonist of ER
and increased the transcription of estrogen-responsive reporter gene
[130]. The amplitude of the effect, however, was cell type-dependent.
This way, in the MCF-7 human breast cancer cell line, Rsv produced a
greater maximal transcriptional response than estradiol whereas in
BG-1 (a human ovarian carcinoma line) it was weaker [130]. These
results demonstrate that Rsv can act as a phytoestrogen. It was later re-
ported that Rsv interacted directly with ERα and ERβ with Ki values of
8 μM and 25 μM respectively, though it appears to exert particularly
strong transcriptional effects via ERβ [131]. Rsv appears to have a bi-
phasic effect on cell proliferation, stimulating growth at low concentra-
tions and suppressing growth at high concentrations [131,132].
Interestingly, Rsv inhibited cell proliferation at all concentrations in
ER-negative cancer cell lines [131,132]. This further demonstrates
how Rsv exerts its biological effects by various mechanisms. While the
phytoestrogenic action of Rsv could support a chemoprotective role in
breast cancer, there is also evidence suggesting possible adverse effects
[132], likely depending on the distinctive patterns of ERα and ERβ
expressions in different cell types.

6.7. MAPK signaling

Some activities of Rsv have been linked to the activity of the
mitogen-activated protein kinases (MAPKs), including the extracellular
signal regulated kinases 1 and 2 (ERK1/2; also known as p44/42MAPK)
pathway, the p38MAPK and the c-Jun N-terminal protein kinase (JNK).
MAPKs critically influence cellular proliferation, survival and differenti-
ation. As with other effectors, it seems that the dosage of Rsv is key to
determineMAPK activity. For example, doses up to the lowmicromolar
range might increase ERK signaling, whereas Rsv is inhibitory at the
most commonly used, higher, doses (N50 μM) [133]. This clearly sug-
gests that the impact on this path might be indirect, where MAPKs
might act as integrators of diverse signaling paths triggered by Rsv. In
this sense, while the literature is abundant on identifying a MAPK/
p53-dependent path for Rsv to promote cell death and senescence [95,
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98], no particular mechanisms for direct activation/repression of a
particular kinase in the path have been described.

7. Conclusions

Rsv has gathered N6500 references on PubMed since the landmark
finding of its chemoprotective activity by Jang and colleagues. Mean-
while, the benefits of Rsv in a constellation of age-related complications
gained a strong momentum due to its finding as a possible direct SIRT1
activator, capable ofmimicking the benefits of CR inmultiple organisms.
The evidence described above supports that Rsv attenuates many age-
related chronic diseases and improves overall health status in mam-
mals, including humans. The exact mechanism by which Rsv promotes
such a wide range of beneficial effects is, still to this date, unclear. The
intrinsic anti-oxidant capacity of the Rsvmolecule and its ability to trig-
ger the activation/repression of a wide range of membrane receptors,
kinases and other enzymes have turned the quest for amolecularmech-
anism of action into an epic task. It is always difficult to judge howmuch
detail is needed on the mechanism of action of a dietary component in
order to make clinical use. However, the further we understand Rsv
actions, themorewe can decrease the risk for adverse effects and define
novel therapies or agents to obtain health benefits. It might also be true
that it is the combination of themany different actions triggered by Rsv
that ultimately lead to health benefits. Transgenic mouse models
provide information about requirements, but rarely about mechanisms.
In this sense, transgenic mouse models clearly illustrate that AMPK and
SIRT1 are key mediators of the metabolic health actions prompted by
Rsv. However, it seems likely that new analytical methods and para-
digms might be needed to understand the fascinating nature of this
compound that makes it different from the thousands of other polyphe-
nols found in the western diets.
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