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The advances in experimentalmethods and thedevelopment of high performance bioinformatic tools have substan-
tially improvedour understanding ofmicrobial communities associatedwithhumanniches.Many studies have doc-
umented that changes inmicrobial abundance and compositionof the humanmicrobiome is associatedwithhuman
health and diseased state. Themajority of research on humanmicrobiome is typically focused in the analysis of one
level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the
different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun se-
quencing data of the human microbiome. We also discuss how some of the recent insights in the combination of
metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions be-
tweenmicroorganisms and viruses in oral and gutmicrobiomes. Recent studies on viromics have begun to gain im-
portance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic
combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differ-
entially regulated relative to theirmicrobial genomic abundances. Thus, understanding themolecular interactions in
themicrobiome using the combination ofmetagenomics,metatranscriptomics and viromics is one of themain chal-
lenges towards a system level understanding of human microbiome.
© 2015 Bikel et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
2. Sequencing and bioinformatic strategies to study the human microbiome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

2.1. 16S rRNA gene profile analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
2.2. Metagenomic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
2.3. Metatranscriptomic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
2.4. Viromic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

3. Characteristics of oral and gut microbiomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
3.1. Metagenomic and 16S rRNA profiling combined with viromic analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
3.2. Metagenomic combined with metatranscriptomic analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

4. Perspectives and future trends of the human microbiome analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

391
logía Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca

nam.mx (A. Ochoa-Leyva).

n behalf of the Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.csbj.2015.06.001
mailto:adriano8a@gmail.com
mailto:aochoa@ibt.unam.mx
http://dx.doi.org/10.1016/j.csbj.2015.06.001
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/18077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2015.06.001&domain=pdf


391S. Bikel et al. / Computational and Structural Biotechnology Journal 13 (2015) 390–401
1. Introduction

The human body is inhabited by a high diversity of bacteria and ar-
chaea, as well as fungi, protozoa and viruses. These microbes inhabit
in several niches within the human body sections and are collectively
known as the human microbiota, whereas their collective genomes
form the human metagenome [1]. The advance in high-throughput
technologies used to analyze the components of the microbiome have
substantially improved our knowledge of the microbial communities
associated to human niches [2,3]. The decrease in cost of sequencing
using high-throughput technologies has enabled large-scale studies of
the human microbiome, revealing high interindividual variability of
the microbiota composition and in different body sites within individ-
uals [4–7].

Changes in abundance and composition in the fecal microbiota
(dysbiosis) has been observed in patients with several human diseases,
ranging from inflammatory bowel disease and obesity to diabetes and
neurological disorders [8–17]. The fundamental objectives of human
microbiome research is to study the structure and dynamics ofmicrobi-
al communities, the relationships between theirmembers (microorgan-
isms, viral particles and host) and their potential associationwith health
and disease. The study of interactions between the DNAs, RNAs, and vi-
ruses that are present in the microbiome, are the main interest of
metagenomics, metatranscriptomics, and viromics, respectively. For
studying the microbial community of the human microbiome using
high throughput sequencing technologies, there are several types of
large scale analyses: the 16S profiling analysis which is based in se-
quencing the hypervariable regions of the 16S rRNA gene and the shot-
gun analysis which is based in direct sequencing of the total DNA
(metagenome) and/or total RNA (metatranscriptome). In addition, the
viral component of the microbiome (virome) can be also analyzed by
sequencing the total viral particles.

In the last decade, many studies using the sequencing of the 16S
rRNA gene to characterize the microbiota composition have been
conducted, however, this analysis mainly identifies the abundance and
diversity of bacteria and archaea in the sample. Although, there is a
computational approach to predict themetagenome functional compo-
sition by the 16S rRNA gene sequences [18]. The metagenomic analysis
also identifies the abundance and diversity of microbial community, but
additionally can identify the gene content and inferred functional po-
tential of proteins encoded in the genomes of themicrobial community.
The metatranscriptomic analysis allows the identification of expressed
transcripts in the microbiome. The transcript numbers can also be
used to compare the gene expression profiles between microbial
communities. In addition, for comparative study, metatranscriptomic
data must be paired with metagenomic data in order to analyze if the
transcript abundance is reflecting changes in community composition
[19,20]. The use of high throughput sequencing technologies to analyze
humanmetagenomes has also revealed the existence of many bacterio-
phages in metagenomes [21]. Interestingly, it has been proposed that
bacteriophages may have a role in shaping the diversity and composi-
tion of the oral and gut bacteria [22,23]. The involvement of phages in
microbial dysbiosis may indirectly contribute to the disease. In this re-
gard, amodel suggesting that viromemay contribute to the intestinal in-
flammation and bacterial dysbiosis was recently reported in the human
gut microbiome [24]. However, studies that involve metagenomic or
metatranscriptomic combined with viromic analysis are still necessary
to understand themolecular interactionswithin the humanmicrobiome
and their relevance in health and diseased states.

The microbiome has been conceptualized as a dynamic ecological
community consisting of multiple taxa each potentially interacting
with each other, the host and the environment [25]. Hereafter, we use
the termmicrobiome, to refer to themicrobial communities and viruses
in conjunction with the environment they inhabit, interacting as a
system. In the first section of this review, an overview of the different
sequencing, experimental, and bioinformatic procedures that have
been used to study the human microbiome are discussed. In the
second section, the recent advances combining metagenomic,
metatranscriptomic and viromic analyses to identify the molecular
dialog within the microbiome are dicussed. The metabolomic and
metaproteomic analyses are not in the focus of this review.

2. Sequencing and bioinformatic strategies to study the
human microbiome

2.1. 16S rRNA gene profile analysis

The small ribosome subunit 16S gene (16S rRNA gene) is used as a
housekeeping genetic marker to study bacterial phylogeny and taxono-
my as it is highly conserved between different species of bacteria and
archea. In addition to highly conserved regions, the 16S rRNA gene con-
tains hypervariable regions that are used to identify between different
bacteria. Furthermore, some bacteria have a different copy number of
the 16S rRNA gene, often existing as a multigene family, or operons.
Hence, the 16S rRNA gene sequencing has become typically used to
identify and quantify bacterial taxa present within a microbiome
sample. 16S rRNA profiling relies on using PCR ‘universal’ primers
targeted at the conserved regions and designed to amplify a range of dif-
ferent microorganism as wide as possible. The amplified fragments
(amplicons) of the gene correspond to selected short-hypervariable re-
gions ranging from V1 to V9, making it faster and cheaper to sequence
with high throughput technologies than many other bacteria genes
(Figs. 1 and 2). Two of the most significant limitations of 16S rRNA
sequencing that should be considered before starting a sequencing pro-
ject are: (1) the introduction of biases by selection of the 16S rRNA hy-
pervariable regions and (2) the introduction of biases by PCR primer
design,whichmay select for or against particular groups ofmicroorgan-
isms (Fig. 2). To minimize the biases introduced by primer design, the
primers include degenerated bases and can be used at lower hybridiza-
tion temperatures to capture more microbial diversity. Other problems
using the PCR is that bacterial contamination of reagents may be affect-
ing the results [26] and that the 16S rRNA gene is also present in differ-
ent copy numbers in bacterial genomes influencing the apparent
relative abundance of a microorganism [26].

The sequence fragments obtained by high throughput sequencing
technologies are typically called sequence reads. Longer read lengths
(1000 bp), as the ones obtained by 454/Roche technology, can span
multiple hypervariable regions of the 16S rRNA gene, increasing the
number of the microorganisms that can be identified at species level.
Although, this technology is cost prohibitive and it will be discontinued
in 2016. However, short-read length sequences spanning only one hy-
pervariable region has sufficient resolution for the accurate taxonomic
assignments [27,28]. The optimal community clustering confirmed
with sequence reads of this length is an important advance in amplicon
design because sequencing only one hypervariable region is more cost-
effective (Table 1). There is a large amount of PCR primers to amplify
different hypervariable regions of 16S rRNA gene for sequencing in the
short read sequencing platforms. Although, the compatibility of the
fragment length should be according with sequencing platform read
length capacity. There are many studies that target different regions of
the 16S rRNA gene, for example V3–V5 [29], V1–V2 [30], V1–V3 [26],
V4–V5 [31], and V8–V9 [32]. There is an active discussion about the hy-
pervariable region that should be sequenced to perform a microbial di-
versity analysis. For example, the V6 region is not optimal for
sequencing analyses that are directed for taxonomic assignment and
community clustering, as opposed to sequence reads spanning the V2
and V3 regions [33,2]. The most informative 16S rRNA gene region to
amplify may also depend of the analyzed environment, for example, in
a study for the diagnosis of pathogenic bacteria Chakravorty at al.,
showed that in a mix of 110 different bacterial species including com-
mon blood borne pathogens, CDC-defined agents and environmental
microflora, the V2 and V3 were most suitable for distinguishing all



Fig. 1. Different sequencing and bioinformatic strategies for humanmicrobiome analysis. In the 16S rRNA gene profiling the raw sequences obtained are passed through quality filters to
minimize the presence of sequencing artifacts. The resulting filtered sequence reads are clustered into operational taxonomic units (OTUs), which represent similar organisms. After that,
taxonomic identity is assigned for each OTU based in sequence homology against known 16S rRNA gene databases and the relative abundance of each OTU is calculated for each sample.
The resulting OTUs table is also used for quantifying population diversity within and between the samples, as the alpha and beta diversity measurements, respectively. In the shotgun
approaches, metagenomic, metatranscriptomic and viromic analyses are performed. In the metagenomic analysis, the DNA sequences obtained can either be mapped to reference ge-
nomes/genes or used for de novo assembly of genomes. Then the relative abundance of the present genomes/genes and the functional potential of the sequences can be assessed using
functional annotated databases. In viromics analysis, first the viral particles (VPs) must be enriched and posteriorly sequenced to obtain the virus genomes. Furthermore, to analyze
the active genes and species of the microbiome, the metatranscriptomic analysis is applied and the obtained RNA sequences are mapped to reference pathways and genes. The results
are used to identify the active pathways, genes and microorganisms. Thus, the relative abundance of each active pathway/gene/microorganism in the humanmicrobiome is determined.
The de novo assembly of genomes and transcriptomes can be also performed to identify novel genomes or pathways.
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bacterial species to the genus level except for closely related enterobac-
teriaceae [34]. Additionally, the V2 region was best distinguished
among Mycobacterium species and V3 among Haemophilus species
[34]. Another study suggests that sequencing of the V2 and V3 regions
Fig. 2. Importance of primer selection for the amplification of the hypervariable regions of the
fication of different hypervariable regions of the 16S rRNA gene has an influence in the result
abundance distribution obtained using primer set 1 shows a more similar distribution to that
manner, Kuczynski et al [2], demonstrated that using the universal primer set F515–R806 (w
showed poor results for the identification of Propionibacterium, however the use of primer set
performs well for both community clustering and taxonomic assign-
ments in a wide range of different samples (i.e. the mouse and human
gut and in the hypersaline microbial mat from Guerrero Negro). On
the other hand, the Vaginal Human Microbiome Project has validated
16S rRNA gene. The figure illustrates how choosing different sets of primers for the ampli-
ing abundance of hypothetical bacteria A, B and C. For example, in this figure, the species
observed in the microbiome than the abundance obtained from primer set 2. In a similar
hich is typically used to amplify a great coverage of bacteria and archea) in skin samples
F27–R338 was better to identify this bacteria [2].



Table 1
Typical high throughput sequencing platforms used in 16S rRNA gene profiling and shotgun sequencing approaches.

Sequence
read
length

Hypervariable regions that
can be evaluated

Shotgun utility Costs Sequence reads
per run

Run time

Platform: Roche 454 GS-FLX+
800 base
reads

Up to seven per read; long reads allow a good
coverage of 16S rRNA gene, allowing a good
taxonomical assignment.

Long reads help with assembly
of new genomes.

Cost limits the
deep sequencing
analysis.

1 million 20 h

Platform: Illumina HiSeq, MiSeq and NextSeq
100–500
base
reads

Only one per read (NextSeq)
Up to 3 per read (HiSeq and MiSeq);
short reads do not seem to limit the
taxonomical analysis.

Short reads, but high sequencing
output allows a deep sequencing
analysis.

Cost-effective
deep sampling

25 million, 2 × 300 bp (MiSeq)
130–400 million, 2 × 150 bp
(NextSeq)
2.5 billion, 2 × 150 bp (HiSeq)

5–55 h
(MiSeq)
12–30 h
(NextSeq)
24–84 h
(HiSeq)

Platform: Life Technologies ion personal genome machine (PGM)
35–400
base
reads

Up to 3 in custom design.
Up to seven using the Ion
16S metagenomics kit;
in a very fast sequencing time.

Short reads, but mid sequencing
output in a very fast sequencing
time.

Time-effective
with a mid-cost
for deep
sequencing
analysis.

1 × 200 or 1 × 400 and number of
reads depends on model of the
sequencing chip:
10 million (314)
100 million (316)
1 billion (318)

2–4 h
(314)
3–5 h
(316)
4–7 h
(318)
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a protocol that provides species-level classification of V1–V3 16S rRNA
sequences from the vaginal microbiome [35]. The primer pair 515F/
R806, targeting the V4 region, was highly recommended by several
human microbiome studies [20,28,36,37] and a well-established
illuminaprotocol has been reported for this primer set [36,37]. Although
no consensus has been established, the V4 region has been suggested as
the gold standard for human gut microbiota characterization by
MetaHit consortium [6]. Furthermore, the Earth Microbiome Project
also has demonstrated that the V4 region can be extensively supported
as the standard 16S rRNA region for general community assessment
across a range of very different environments [38].

The most widely used bioinformatic pipelines to analyze the
amplicons of the 16S rRNA gene, are QIIME [39] Mothur [40], MGRAST
[41] andGalaxy [42], which are open source packages. The typical bioin-
formatic pipeline to analyze amplicon sequences involves three basic
steps. First, the amplicon sequences are subjected to data filtering
based on several quality filters. The typically used quality filters are
read length, base quality (Phred score), ambiguous base calls, homopol-
ymers, low complexity sequences and CG content. In addition, the
adapter sequences should be eliminated and errors in barcodes should
be corrected. Of those, it is critical to be concerned about barcode errors
to avoid assigning sequence reads to the wrong sample. Second, the
amplicon sequences are clustered into groups of related sequences
based on their sequence similarity at a particular taxonomy level of in-
terest (97% sequence identity is frequently chosen for species). The clus-
ters of similar sequences are referred to as operational taxonomic units
(OTUs) or sometimes phylotype, which provide a working name for
groups of related bacteria (Fig. 1). OTU counts are summarized in a
table of their relative abundances for each sample. Then the OTUs are
compared against a reference ribosomal sequence database such as
Greengenes [43], RDP [44] or SILVA [45] to assign the taxonomical clas-
sification. The third phase of analysis uses the resulting data for quanti-
fying population diversity in the samples [46]. Within a microbial
community, several measures including Shannon Index, Chao1 and
Simpson's Diversity exist for calculating alpha diversity within sample.
These give rise to plots of alpha diversity versus simulating sequencing
effort, known as rarefraction curves. Additionally, when comparing
multiple populations, beta diversity measures are applied to describe
how many taxa are shared between them. In this regard, UniFrac is a
beta diversity measure that uses phylogenetic information to compare
the taxa shared between multiple samples and when it is coupled
with standard multivariate statistical techniques including principal
coordinate analysis (PCoA), identifies factors explaining differences
among microbial communities [27].

2.2. Metagenomic analysis

Metagenomics sequencing allows the determination of the function-
al potential codified in themicrobiome. In addition, metagenomic anal-
yses also have been used for the discovery of novel enzymatic functions,
microorganisms and genes thatmay be used for bioremediation [47,48],
for understanding the host-pathogens interactions [49] and for novel
therapeutic strategies in human diseases [50]. One challenge in
metagenomic analysis is addressing the presence of host DNA in sam-
ples. For example the Human Microbiome Project (HMP) has reported
high levels of human DNA in different microbiome samples, such as
mid-vagina, throat and saliva samples [51,52]. The amount of host
DNA varies greatly by body site and sample type, for example the sam-
ples of sputum or lung tissue in cystic fibrosis usually contain a large
amount of human DNA released by neutrophils during the immune re-
sponse, sometimes representing even more than 99% of the total DNA
[53–55]. As a result, only a small percentage of the sequence reads
from such samples correspond to microbial genomes and consequently
a large percentage of sequences are eliminated. Therefore, obtaining
sufficient sequence coverage of themetagenomes can become cost pro-
hibitive. In this regard, improved experimental methods for solving the
host DNA problem are needed, which are not only limited to selective
cell lysis. It is also important to note that even in the absence of host
DNA; themetegenomic sequencing requires a high amount of sequence
to get a reasonable coverage of the microbial genomes present in the
sample. Contrarily, the 16S rRNA profiling only requires a little amount
of sequence to get a reasonable taxonomical census of the microorgan-
isms present in the sample; however, it misses out the determination of
gene content. A typical metagenomic experiment involves the isolation
of the total DNA from the microbiome followed by its fragmentation to
smaller pieces of DNA (the fragment sizes in bp depend of the selected
sequencing platform). After that, the 5′ and/or 3′ ends of DNA library are
repaired and adapters (containing sequences to allow hybridization to a
flow cell) are ligated. The final steps are library cleanup and amplifica-
tion, followed by quantification, after which the library is finally ready
for sequencing.

The typical bioinformatic pipeline to analyze the sequences obtained
by shotgun analysis involves as the first step the data filtering aswas pre-
viously explained for 16S rRNAprofiling analysis. The sequence reads that
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passed all quality controls aremapped to knowngenomes and can be also
used for de novo assembly of contigs or genomes. However, no genomes
are usually recovered for most species using metagenomic approaches.
In the mapping strategy, the sequence reads are mapped (located) to a
reference genome. There are powerful methods like BLAST and BLAT
that are not specialized for the vast amount of data obtained by sequenc-
ing platforms. In this regard, different mapper algorithms have been de-
veloped for mapping the sequence reads to a reference genome in an
efficient and productive manner, some of them are Bowtie [56], SMALT
[57], BWA [58] and GEMmapper [59]. The metagenomic sequence reads
are usually mapped to the human microbiome reference genome data-
base of theHumanMicrobiomeProject [51] and/or to specific genomeda-
tabases like the HumanOralMicrobiomeDatabase (HOMD) [7] or the gut
microbial gene catalog [6]. After mapping, the microbial abundance can
be measured as the fraction of sequence reads that mapped to a single
species in the database. Additional to the mapping strategies, there are
several pipelines that compare metagenomic sequence reads against
gene markers using BLAST [60], Usearch [61] or HMMs [62,63] to taxo-
nomically annotate and quantify each metegenomic homologue.
(Fig. 1). The sequence identity of the bestmatch can be used to determine
themost likely phylogenetic origin of the read. The functional diversity of
themicrobiome can be estimated by annotatingmetagenomic sequences
with known functions. To this end, the sequence reads that contain pro-
tein coding genes are identified and their sequence is homology com-
pared to the coding sequences of protein databases like the Kyoto
Encyclopedia of Genes and Genomes (KEGG), protein family annotations
(PFAM), gene ontologies (GO) and clusters of orthologous groups (COG).
KEGG is a database resource that integrates genomic, chemical and sys-
temic functional information [64] and PFAM is a large collection of protein
families, each represented by multiple sequence alignments and hidden
Markov models (HMMs) [65]. The COG database consists of clusters of
orthologous groups (COG) of proteins found to be orthologous for at
least three lineages and are classified into functional groups. The GO pro-
vides a controlled vocabulary of terms for describing gene product prop-
erties at three different levels: the cellular component, the molecular
function and the biological process [66]. Hence, the function of the
query sequence is assigned based on its similarity to sequences function-
ally annotated in all the abovementioned databases. The resulting data is
used to describe the number of potential functions and their relative
abundance in the metagenome. Furthermore, INFERNAL is a powerful
tool that can be used to predict small RNA in the metagenomic data
[67]. HUMAnN is an automated pipeline to determine the presence/ab-
sence and abundance of microbial pathways and gene families in a com-
munity directly frommetagenomic sequence [68]. This pipeline, which is
an offline platform, converts sequence reads into coverage and abun-
dance tables summarizing the gene families and pathways in a microbial
community [68]. Another offline platform used to analyze metagenomic
data is the MEtaGenome Analyzer (MEGAN) [69]. Furthermore, there
are integrated suites that have been designed to analyze metagenomic
data sets online in an automated manner from metagenomic sequence,
such as RAST (MG-RAST) [41], IMG/M server [70] and JCVIMetagenomics
Reports (METAREP) [71].

In de novo assembly strategy, the total sequence reads are used to as-
sembly genomes (Fig. 1). Additionally, the assembly can be also per-
formed only using the sequence reads that were not mapped to
known genomes (Fig. 1). There are several bioinformatics tools used
for de novo assembly like MetaVelvet [72], khmer [73], metamos [74],
Meta-IDBA [75], MetaORFA [76] and RayMeta [77]. Metagenomic as-
semblers generally adapt graph-based reconstruction approaches as
the overlap–layout–consensus (OLC) to assemble longer sequences
and de Brujin graph to assemble shorter sequences. However, the as-
semblers based in the de Brujin graphs are themost used due to the suc-
cess of the shorter sequences produced by popular sequencing
platforms of Illumina and Life Technologies companies (Table 1). After
that, the new assembled genomes can be used for mapping the
metagenomics sequence reads to estimate the abundance of these
new genomes in the microbiome. Furthermore, the new genomes are
also used for functional annotation when compared against sequences
annotated in databases as KEGG or GO (Fig. 1).

2.3. Metatranscriptomic analysis

Metagenomics is a powerful tool used to describe the gene content
and potential functions encoded in sequenced genomes. However,
metagenomics approaches have a very limited role in revealing the mi-
crobial activity measured by gene expression. The metatranscriptomic
shotgun sequencing (RNAseq) provides the access to the
metatranscriptome of the microbiome allowing the whole-genome
analysis profiling of the active microbial community under different
conditions. In this regard, sequencing of metatranscriptomes has been
recently employed to identify RNA-based regulation and expressed bio-
logical signatures in humanmicrobiome [78]. However, only few inves-
tigations (which are discussed in the second section of this review)
have performed a combined analysis using metatranscriptomics with
metagenomics. A typical metatranscriptomic experiment involves the
isolation of the total RNA from themicrobiome followed by RNA enrich-
ment depending on the type of RNA to be sequenced (i.e. mRNA,
lincRNA, and microRNA). After that, the RNA is fragmented to smaller
pieces (the fragment sizes in bp depend of the selected sequencing plat-
form) followed by cDNA synthesis using reverse transcriptase and ran-
dom hexamers or oligo(dT) primers. After that, like in the construction
ofmetagenomic libraries, the 5′ and/or 3′ ends of the cDNA are repaired
and adapters are ligated, followed by library cleanup, amplification and
quantification and finally the library is sequenced. As converting RNA
into cDNA has been shown to introduce biases in quantification of tran-
scripts [79], semi direct RNA sequencing without cDNA synthesis has
been developed [80–82]. There are several technical issues affecting
the large-scale application of metatranscriptomics: (1) the collection
and storage procedures to preserve the RNA of the sample, (2) the lim-
itation to obtain high-quality and sufficient quantity of RNA from
human microbiome samples, (3) the mRNA enrichment procedures
by removing ribosomal RNA (rRNAs) which represent over 90% of the
RNA, (4) the average useful life of mRNA leads to difficulty in the detec-
tion of rapid and short-term responses to environmental changes,
(5) the transcriptome databases are insufficient, (6) the host RNA con-
tamination which cannot be removed by currently available rRNA puri-
fication methods and (7) the poly-A RNA selection kits to capture the
mRNA population are not feasible in prokaryotes. However, several ef-
forts have been recentlymade to tackle these technical issues, for exam-
ple Franzosa et al. have developed experimental strategies to improve
the point 1 [19] and Giannokus et al. [83] have analyzed strategies to
improve points 2 and 3. Interestingly, the Ambion's MICROBEnrich Kit
uses hybridization capture technology to remove human, mouse, and
rat RNA (bothmRNA and rRNA) from complex host-bacterial RNA pop-
ulations, leaving behind enriched microbial total RNA.

The typical bioinformatics pipeline to analyze the data obtained
from a metatranscriptomic experiment is similar to the one used in
metagenomics and it is also divided in two strategies: (1) mapping se-
quence reads to reference genomes and genes and (2) de novo assembly
of new transcriptomes (Fig. 1). In the first strategy, after mapping the
RNA sequence reads to different genomes or pathways is possible to
identify the taxonomical classification of active microorganism and
the functionality of their expressed genes. For example, through the
mapping of metatranscriptomic sequences to KEGG database [64], the
pathways whose expressed genes are up and down regulated or un-
changed in the microbiome during health and disease conditions are
obtained [84]. There are several bioinformatic programs used in
metagenomics like SOAPdenovo [85], ABySS [86] and Velvet-Oases
[87] that have been reported to be successfully applied to the
metatranscriptome assembly of microbiomes [86,88–91]. However,
Trinity is a program specially developed for de novo transcriptome as-
sembly from short-read RNA-seq data and it is a very efficient and
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sensitive in recovering full-length transcripts and isoforms and now is
one of the most used bioinformatics tools to assembly de novo
transcriptomes of very different species [92–94].

2.4. Viromic analysis

Viruses outnumber microbial cells 10:1 in most environments;
however, viral DNA only represents 0.1% of the total DNA in a microbial
community [6]. Hence, to obtain a deep sequence coverage of the
human viruses that are present in the microbiome, the isolation of
viral particles (VPs) becomes necessary [95–98]. In solid samples con-
taining viruses, such as human feces, a common approach is to suspend
the fecal material in an osmotic neutral buffer followed by serial filtra-
tion steps to remove large particles, including undigested or partially
digested food fragments and microbial cells [99]. Additionally, other
protocols use the ultracentrifugation with a cesium chloride
density gradient to separate the viral particles from the microbial cells
[100,101]. After that, viral particles are purified and the non-
encapsulated free nucleic acids are removed by treatment with DNase
and RNase, then the VP-derived nucleic acids are isolated. However, be-
cause the amount of DNA extracted from purified VPs is often below the
required for sequencing, the amplification of the total viral DNA is typ-
ically necessary. To this end, a range of amplification methods have
been developed, such as random amplified shotgun library (RASL)
[102], linker-amplified shotgun library (LASL) [103] and the Multiple
Displacement Amplification (MDA) [104]. The MDA method takes the
advantage of the high processivity of the phage-derived φ29 polymer-
ase which synthetize N70,000 nucleotides per association–dissociation
cycle and its strong strand displacement capability, which together
allow the amplification of complete viral genomes. Although, recent
publications have shown that critical biases and contamination are in-
troduced to the sample when theMDA amplification is used [105–109].

The sequencing technologies that prioritize long read lengths over
those of short read lengths are preferred, because most viral sequences
are novel and they are enriched in regions of low-complexity repeats
[110,111]. However, the sequencing technologies of long read lengths
as 454/Roche pyrosequencing are about to be discontinued. To resolve
this limitation many bionfomatic programs have been developed to an-
alyze viruses from short sequence reads [27]. The initial analysis of the
sequences obtained after DNA sequencing of VPs also involves the
data quality filtering like the one in the 16S rRNA profiling and
metegenomic sections. However, the majority (usually, 60–99%) of se-
quences in viromes from any environment have no significant similarity
to other sequences in databases or have higher homology to prokaryotic
or eukaryotic genes [112,103,113–116], therefore, the filtering of bad
quality sequences and the decontamination of 16S rRNA, 18S rRNA
and human sequences bymapping is still important in viromic analysis.
The resulting sequences are compared against individual viral genomes
using several mapping algorithms or using programs as BLASTX or
USEARCH (as were previously described in the metagenomic section),
to analyze the taxonomic composition of viral community.

Although viral sequence databases have considerably expanded due
to the start of the viromics era, the number of deposited genomes is far
less than the expected number of virotypes [117] and most of the new
sequences are poorly annotated [118]. Furthermore, the percentage of
sequence reads with similarity to known viral sequences depends on
how well the sequences have been filtered and the database that is
used, however, it is generally less than 0.01% [119–121]. Although, the
number of sequence reads with similarity against databases of viral ge-
nomes depends on how well the sequences have been filtered and the
database that is used for comparison. There are several databases fo-
cused on taxonomical virus classification, such as the Classification of
Mobile Genetic Elements (ACLAME) [122] and Phage SEED [123]. How-
ever, is important to note that ACLAME database has not been updated
in the last years. After taxonomic and functional assignments a viral
community profile characterizing the diversity in the sample is created.
However, given that most of the available viral metagenomic data lacks
similarity to sequences in the databases, similarity-independent
methods have been developed to better understand viral community
structure. One example of that is Phage Communities from Contig
Spectrum (PHACS), which is a bioinformatic tool to assess the biodiver-
sity of uncultured viral communities. PHACS was designed to quantify
virotypes [112,124] based on the assumption that if a virotype is present
in high abundance in a VP sample it ismore likely to be assembled into a
large contig. Another alternative for identifying shared viruses among
different samples is crass [125], an algorithm that allows the simulta-
neous cross-assembly of all the samples in a data set as opposed to the
pairwise assemblies used inMaxiPhi [114], which is based on contig as-
semblies generated from the pooled VP viromes. The chimeras are a
common problemwithmost assemblers, althoughmost occur between
viruses and not so much between virus and bacteria. In this regard, the
overlap–layout–consensus (OLC) algorithms have showed efficiency in
the viral genomes assembly. One of the most popular of these assem-
blers is Newbler which has been extensively used in viral and bacterial
shotgun metagenomic projects [6,95,126–131]. However, it remains to
be determined if Newbler will be discontinued with the 454/Roche in
2016. Additionally, two other new OLC assemblers were developed
and tested on viral metagenomics data: Minimo, designed for the as-
sembly of small datasets [132] and used for virome analyzes [95,133];
and VICUNA, an assembler specialized in de novo assembly of data
from heterogeneous viral populations [134]. De Brujin graph assem-
blers, as MetaVelvet [72], are an alternative strategy to the OLC assem-
blers and have also been used on the assembly of viral metagenomes
[135]. Other popular metagenome assemblers for viromes are IBDA
[136] and RayMeta [77]. The RNA viruses in the human gutmicrobiome
are mostly influenced by RNA from ingested plants of the food [89],
therefore, the sequencing of total RNA viruses is impractical. However,
it remains to be seen whether they represent stable members of the
gut virome or are transiently present as a result of plant consumption
[89]. Finally, in the Table 1 are summarized the most common high
throughput sequencing technologies used in 16S rRNA profiling and
shotgun approaches.
3. Characteristics of oral and gut microbiomes

The oral and gut microbiomes represent the two best-studied
human microbiomes to date. The human gastrointestinal tract in-
volves an extremely complex and dynamic microbial community,
that includes archaea, bacteria, viruses and eukaryote [3]. However,
most of the microorganisms that inhabit the gastrointestinal tract
are bacteria and 70% of them inhabit the colon [137]. The gut micro-
bial community plays an important role in protecting the host
against pathogenic microbes [138,139], modulating immunity [140,
141] and regulating metabolic processes [142,143]. Also, the
human gut has been considered as a neglected endocrine organ
[144]. In the gut microbiome, bacteria can interact with each other
while they must also compete with each other and phages are ex-
pected to have a significant role in driving the biodiversity of this
complex ecosystem. Even if the role of human gut microbiome has
been well reviewed at a metagenomic level [145–147], its integra-
tion with viromic and metatranscriptomic analyses has been little
studied yet.

The human oral cavity is the second most important niche of the
human body, due to the enormous amount of microorganisms that in-
habit it like viruses, fungi, protozoa, archaea and bacteria. Themost rep-
resentative microorganisms at the oral cavity are the bacteria and
viruses and their different abundances and composition have been asso-
ciated with several dental diseases [148]. The bacterial diversity in the
oral microbiome is approximately of 1000 species where the most rep-
resentative phyla are Firmicutes, Bacteriodetes, Proteobacteria,
Actinobacteria, Spirochaetes and Fusobacteria.
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3.1. Metagenomic and 16S rRNA profiling combined with
viromic analyses

Over the past decade, an increasing number of studies have indicat-
ed that changes in bacterial abundance and/or composition are associat-
ed with the presence of several human diseases [1,16,137]. Bacteria are
the most enriched microbes inhabiting human body sites and their vi-
ruses (bacteriophages) are significantlymore prevalent than eukaryotic
viruses [103,149]. The bacteriophages (phages) are a natural antibacte-
rial able to regulate bacterial populations due to the induction of bacte-
rial lysis or by providing functional advantages to their host [150]
(Fig. 4a). According to this, the application of phages to the treatment
of chronic bacterial infections has proved their potential role in
human health by taking advantage of their capacity to destroy patho-
gens [150,151]. However, there are very few examples studying the in-
teraction between phages and their microbial hosts in human
microbiome combining viromics andmetagenomics. In this regard, Nor-
man et al. used 16S rRNA gene profiling and virome sequencing to sug-
gest that decreased diversity of enteric bacterial community observed in
patients with Crohn's disease and ulcerative colitis was associated with
an abnormal virome composition [24]. In particular, the bacteria family
Bacteroidaceae showed a reduction in their relative abundance that was
correlated with an increase in several Caudovirales bacteriophages in
Crohn's disease (CD) [24]. In contrast, the families Enterobacteriaceae
and Pasteurellaceae were increased in their relative abundance in pa-
tientswith CD [24]. Although other studies based only on 16S rRNA pro-
filing or metagenomic analyses [152–154] also showed a low bacterial
diversity in inflammatory bowel disease, the Norman et al. study dem-
onstrated that bacteriophages may have a role in this disease through
interactions with the bacterial community of the microbiome [24].
This study shows how powerful it is to combine the viromics with 16S
rRNA profiling for a better comprehension of the human microbiome.

Other studies in the gut and oral microbiomes through the integra-
tion of metagenomics and viromics have shown that virus diversity
b Metagenomics-Metatranscriptomics Anal

Metagenomics-Metat
combin
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Fig. 3. Molecular interactions explored using metagenomics–viromics and metagenomics–m
microbiome can be better studied combining omics analysis. (a) In this panel is illustrated h
and thus promoting homeostasis or disbyosis [179,24]. This type of interaction can be explored
pothetical bacteria can be different depending on the used analysis (metagenomics or metagen
when metagenomics is combined with metatranscriptomics is important because the metatra
expressed transcriptomes.
correlates with their microbial host counterparts [21,95,100,127,
155–158]. For example, the analysis of all publicly available fecal
metagenomes showed that the new bacteriophage crAssphage was
the predominant phage in all samples [21]. Dutilh et al. predicted that
the crAssphage host belongs to Bacteroidetes phylum and they found
that this virus comprises up to 90% and 22% of all sequence reads in
viral particle derived metagenomes and total community
metagenomes, respectively [21]. Interestingly, the 90% of the human
gut microbiome comprises some combination of Bacteroidetes and
Firmicutes, hence Dutilh et al. suggested, that a high amount of
crAssphage can be due to the high proportion of their host in the
human gut microbiome [21]. Another study that also showed a strong
correlation between the bacterial diversity (measured by 16 s rRNA se-
quencing) and viral diversity (measured by VPs sequencing) in gut
microbiome is the one published by Minot et al. [100]. The study
showed that correlation on diversity is maintained over time (1–
8 days), suggesting that the observed stability in bacterial diversity is
also reflected in their host viruses through time [100]. Interestingly,
the functional potential reflected by the 16S rRNA gene profiling was
different to the one observed by VPs sequencing of the same sample.
However, whether the changes in phage abundance are a result of
changes in abundance of their hosts, or whether additional mechanisms
(as lysogenic induction) are involved will require further work combin-
ing metagenomics with viromics data (Fig. 3a).

Interestingly, it was demonstrated that phages can accelerate the ge-
nomic evolution of its bacterial host in the microbiome [159,160] and
these genomic changes can lead to functional adaptations of host's bac-
terial community [156]. In this regard, it has been demonstrated that
gut and oral viromes are dominated by temperate phages integrated
into the genome of their hosts, therefore this integration may alter
host-bacterial phenotype by lysogenic conversion [95,100,161,162].
An example of that functional interaction was recently demonstrated
in an animal model, where a prophage was liberated from its host cell
after that cell was exposed to a fecal community [95]. The authors
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omics combinedwithmetatranscriptomics) [171]. The data integration and normalization
nscriptomics data can correspond to different species abundance and/or to differentially



Fig. 4. Towards a systems level understanding of humanmicrobiome. The use of only one analysis to study the humanmicrobiome (viromics, metagenomics ormetatranscriptomics) pro-
vides a partial view of the complete ecological system. In a combined approach, themetagenomic analysis can give us a view of themicroorganism's abundance and functions available in
themicrobiome, while themetatranscriptomic analyses combined with metagenomics can show uswhich of thesemicroorganisms and functions are actually active. Finally, the integra-
tion of viromics analysiswith the other omics data can provide information about the role that viruses playwithin themicrobiome. The combined analyses can offer a better understanding
of the role that external factors like diet, immune system and probiotics are playing in shaping the human microbiome abundance and composition. Thus, an integrated systems analysis
(orange circle) seems necessary to have a better understanding of molecular mechanisms and their interactions in human microbiome.
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determined that after two weeks of colonization of gnotobiotic mice
with two bacteria containing prophages those were differentially acti-
vated in cecal and fecal samples [95]. Moreover, a differential prophage
induction was also observed in human fecal samples [100] by compar-
ing metagenomic with viromic sequences [100]. The later study also
suggests that viruses are a reservoir for functions that can be used by
their host under specific biological conditions, like stress or diet
(Fig. 3a). There are multiple ways in which a prophage offers evolution-
ary advantages to their hosts through genetic diversity [163]. In this
regard, a recent study demonstrated that activation of the compos-
ite phage (0 V1/7) in E. faecalis is controlled by the nutrient avail-
ability in the mouse intestine [156]. This study suggests that
prophages can impact the dynamics of bacterial abundance in the
mammalian gut after the exposition to nutrient availability [156].
Furthermore, the phage-encoded proteins can increase virulence ei-
ther indirectly by aiding bacterial adaptation to the niche and/or
directly through expression of toxins and other virulence factors
[164–166]. For example, in oral microbiome the virulence of Coryne-
bacterium diphtheria was associated with a small region of a puta-
tive prophage [167].

The articles discussed above demonstrated that microbial abun-
dance and composition in the gut and oral microbiomes are also influ-
enced by phage members and that virus activation can be triggered by
the human diet and habits. This suggests that virus–bacteria interaction
could be present in complex diseases, like obesity and diabetes.
However, the genetic regulation that bacteria offer against the viruses
is also important. For example, the CRISPRs (Clustered Regularly
Interspaced Short Palindromic Repeats) which are spacer sequences
that interfere with viral replication have been detected in human
microbiome [168,169]. This suggests that CRISPRs mechanism contrib-
ute to the interaction between bacteria and viruses in the human
microbiome. Hence, the interactions between phages and their hosts
are of great interest for understanding their impact in shaping the
abundance and composition of the humanmicrobiome [158]. However,
further studies are required to understand if the interaction between
metagenomes and viromes play a significant role in the progression or
impediment of human diseased states associated with changes in
microbiome abundance and composition.

The most common microorganism used as a probiotic is Bifido-
bacteria. However, in themajority of Bifidobaterial genomes the existence
of prophage sequences has been confirmed, suggesting that also these in-
testinal commensals are targeted by phage predation [170]. Interestingly,
in probiotics trials there are always subsets of individuals who do not re-
spond to probiotics interventions, leading us to think about the role that
the interaction of phages–bacteria and/or the inter-individual differences
in bacterial composition are playing in shaping themicrobial populations
under probiotics treatments. However,more detailed investigation on the
interactions between phage, bacteria and probiotics are necessary [170].
For example, determining the virome combined with metagonome be-
fore and after probiotic treatment may be an effective method to study
the dynamics of gut microbial community.

3.2. Metagenomic combined with metatranscriptomic analyses

Themetatranscriptomics is becoming increasingly practical as a tool
to analyze the regulation and dynamics of transcriptionally active mi-
crobial community. The application of metatranscriptomic combined
with metagenomic analysis has showed that gut microbiome contains
distinctive sets of active microorganisms between individuals [19,171]
(Fig. 4b). Interestingly, the induction of microbial genes as a response
to host targeted exposure of xenobiotics has been observed using
metagenomic combined with metatranscriptomic analysis of the gut
microbiome [172]. The later study also shows that the level ofmetabolic
activity can define the gut microbiote members [172]. However more
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studies are necessary to understand how metabolic activity can influ-
ence bacterial fitness and how external factors like diet are implicated
in their expression (Figs. 3a and 4). The potential of combining
metatranscriptomic with metagenomic analysis is clearly observed in
the Franzosa study [19]. This study showed that a substantial fraction
(59%) of microbial transcripts was differentially regulated relative to
their genomic abundances. The study also demonstrated that several
gene families that are less abundant at the metagenomic level can be
very active at themetatranscriptomic level and vice versa [19], suggest-
ing that performingmetagenomic analyses alone, could overestimate or
underestimate the functional relevance of the encoded genes in
metagenomes [19]. The authors also suggest that functional diversity
at transcriptional level shows a pattern of subject-specific metagenome
regulation; this is measured by the function of the top 10 gene families
of each analyzed individual [19]. Interestingly, the metatranscriptomics
profiles were significantly more individualized than DNA-level func-
tional profiles, suggesting a subject-specific whole-community regula-
tion. Additionally, the Franzosa study also demonstrates that the gut
microbiome seems to be more stable between samples at a functional
level independently of the microorganisms that are producing them.
Another recent study performed by Gosalbes et al. [173], sequenced
the total RNA of 10 fecal samples from healthy volunteers and the rela-
tive abundance at family level of the 16S rRNA sequences indicated that
phylogenetic composition is not uniformly distributed among individ-
uals. Contrarily, the functional analysis of putative mRNAs against COG
database showed and increased homogeneity distribution of the func-
tional COG categories between the samples [173]. Interestingly,
Gosalbes et al. suggest a health related functional profile showing
some differences with those indicated by the potential functions of pre-
dicted genes in DNA-based surveys. In another work on oral
microbiome, the relative abundance of bacterial genera with
metagenomic data was also different to that obtained with
metatranscriptomic data [171].

The studies discussed in this section suggest that metatranscripomic
combined with metagenomic analyses allow a deep understanding on
microbial interactions within human microbiome. Furthermore, these
combined omics analyses provide useful insights about themicroorgan-
isms that have relevant functions and at the same time it allows know-
ing the active genes and pathways that can be related to a diseased
phenotype (Fig. 4). Furthermore, the interactions between prophages
and bacteria within the human microbiome can also be explored
through the identification of the expressed genes from the prophages
under particular ambient conditions (Fig. 4). Applying such approach
to study the expression of phage genes in the gut microbiome can indi-
cate the role of encoded prophage genes in microbial physiology and
determine the dynamics that exist between active phages and their
microbial host.

4. Perspectives and future trends of the human
microbiome analyses

The study of human microbiome through the combination of
metagenomic, metatranscriptomic and viromic analyses allows a deep
understanding of molecular interactions within microorganisms and
their role in human health and disease (Fig. 4). Of these combined anal-
yses the identification of potential genes, pathways and viruses that can
be associated with health and disease is also possible. These driver
genes and pathways could be explored as a potential pharmacological
target to treat diseases that are associated with a microbiome dysbiosis.
Although bacteria have been directly associated with human diseases,
the role of the virome in the microbial community should be explored.
However, the lack of a conserved region in virus genomes (like the
16S rRNA gene of bacteria), make the study of viruses more difficult to
analyze in large cohorts. Hence, the development of novel experimental
and bioinformatic strategies for a better comprehension of the role that
viruses play in the microbial dysbiosis is necessary.
Probiotics can profoundly alter the human microbial community
[170–175], opening the possibility to use them for the treatment of dis-
eases associated with microbial dysbiosis. However, the reestablish-
ment of microbial diversity has not been observed in all individuals
subjected to probiotic therapy trials [170]. [176,177]. Therefore, the
combination of metagenomics, metatranscriptomics and viromics is an
important approach to investigate the role that the interaction between
viruses and bacteria play in probiotic therapies. The systems level study
of human microbiome opens the opportunity to identify novel molecu-
lar targets for the treatment of microbial dysbiosis associated to human
diseases.
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