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SUMMARY

Chromatin factors that regulate neurogenesis in
the central nervous system remain to be explored.
Here, we demonstrate that the chromatin remod-
eler chromodomain-helicase-DNA-binding protein 7
(CHD7), a protein frequently mutated in human
CHARGE syndrome, is a master regulator of neuro-
genesis in mammalian brain. CHD7 is selectively ex-
pressed in actively dividing neural stem cells (NSCs)
and progenitors. Genetic inactivation of CHD7 in
NSCs leads to a reduction of neuronal differentiation
and aberrant dendritic development of newborn neu-
rons. Strikingly, physical exercise can rescue the
CHD7 mutant phenotype in the adult hippocampal
dentate gyrus. We further show that in NSCs, CHD7
stimulates the expression of Sox4 and Sox11 genes
via remodeling their promoters to an open chromatin
state. Our study demonstrates an essential role of
CHD7 in activation of the neuronal differentiation
program in NSCs, thus providing insights into epige-
netic regulation of stem cell differentiation and
molecular mechanism of human CHARGE syndrome.

INTRODUCTION

Epigenetic regulations are essential for the maintenance of cell

identity and the guidance of stepwise cell differentiation. Muta-

tions in epigenetic regulators are linked to many human dis-

eases, including cancer and mental retardation (Berdasco and

Esteller, 2010; Jakovcevski and Akbarian 2012). As one family

of chromatin regulators, ATP-dependent chromatin remodelers

utilize the energy from ATP hydrolysis to slide nucleosomes,

dissociate core histones, or relocate the entire histone octamers

(Li et al., 2007). The dynamic change of nucleosome occupancy

at gene promoters provides temporal control of transcrip-

tion. Chromodomain-helicase-DNA-binding protein 7 (CHD7)

belongs to the CHD family of chromatin remodelers. CHD pro-

teins are involved in the regulation of multiple biological pro-
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cesses, including chromatin structure reorganization and gene

expression (Hall and Georgel, 2007). Importantly, de novo het-

erozygous mutations of the CHD7 gene are the major cause of

the human CHARGE syndrome, a genetic disease characterized

by a complex constellation of birth defects (coloboma of the eye,

heart defects, atresia of the choanae, severe retardation of

growth and development, genital abnormalities, and ear abnor-

malities) (Vissers et al., 2004). It has been shown that CHD7

cooperates with another chromatin remodeling complex PBAF

(polybromo- and BRG1-associated factor-containing complex)

to regulate neural crest migration, implicating its role in the

peripheral system (Bajpai et al., 2010). Interestingly, most of

the CHARGE patients have mental retardation and olfactory

anomalies ranging from absence to hypoplasia of the olfactory

bulbs (OBs) (Blustajn et al., 2008; Vissers et al., 2004), suggest-

ing that the corresponding neurogenic systems are impaired in

those patients. A recent study identified CHD7 as a transcrip-

tional cofactor of the essential NSC regulator Sox2 in NSCs using

both proteomic and genomic approaches (Engelen et al., 2011),

suggesting a role of CHD7 in neurogenesis. However, the func-

tion of CHD7 in mammalian neurogenesis and the molecular

mechanism underlying its role in the human CHARGE syndrome

remains largely unknown.

The subventricular zone (SVZ) of the lateral ventricle (LV) and

the subgranular zone (SGZ) of the dentate gyrus (DG) in the hip-

pocampus are the major germinal zones of active neurogenesis

during adulthood in the mammalian central nervous system

(CNS) (Alvarez-Buylla and Garcia-Verdugo, 2002; Gage, 2000).

Astrocyte-like type B cells in the adult SVZ aremultipotent neural

stem cells (NSCs) (Doetsch et al., 1999). These cells give rise to

transit amplifying type C cells, which in turn differentiate into type

A cells (neuroblasts) that migrate to the OB through the rostral

migratory stream (RMS) (Alvarez-Buylla and Garcia-Verdugo,

2002). NSCs in the SGZ are also astrocyte-like cells with their

cell bodies residing in the SGZ and their radial processes

extending into the granular layer (GL) of the DG (Ming and

Song, 2005). The SGZ NSCs mainly give rise to newborn granule

cells that are integrated into GL. The adult neurogenic system

has been used to study many human neurological-disease-

related genes, in particular their roles in regulating NSC self-

renewal, differentiation, and maturation of newborn neurons

(Zhao et al., 2008). Molecularly, adult neurogenesis represents
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a robust process involving sequential regulation of crucial tran-

scription factors important for cell-fate commitment (Suh et al.,

2009). Epigenetic regulation is proposed to be actively involved

in regulation of this process (Ma et al., 2010). As a group of

important epigenetic regulators, the roles of chromatin remodel-

ers in adult neurogenesis remain largely unknown.

To gain insights into the mechanism of chromatin remodelers

in regulating adult NSCs, we investigated the function of CHD7

using mouse genetic approaches. Here, we demonstrate that

CHD7 expression is specifically enriched in active NSCs and

progenitors in the SVZ and SGZ. A NSC-specific inactivation of

CHD7 in adult mice leads to a dramatic decrease of neurogene-

sis. Strikingly, physical exercise can rescue the hippocampal

neurogenesis defect in CHD7 mutants. We further show that

loss of CHD7 in NSCs represses the expression of Sox4 and

Sox11 genes by inducing chromatin condensation of their pro-

moters. And, forced expression of Sox4 and Sox11 in CHD7

mutant NSCs can rescue the neuronal differentiation defect. In

summary, our study reveals that the CHARGE syndrome protein

CHD7 is amaster regulator of governing the neurogenic potential

of NSCs. Rescue of the CHD7 mutant phenotype via physical

exercise indicates an alternative pathway to overcome CHD7

deficiency, demonstrating the advantage of using adult NSCs

to study human brain disease causing genes. These results pro-

vide significant insights into the molecular mechanism of chro-

matin regulation of NSCs fate commitment, which also provide

implication to molecular pathogenesis of CHARGE syndrome.

RESULTS

CHD7 Expression Is Enriched In Neurogenic Niches
of the Adult Mouse Brain
We first examined the expression of CHD7 in adult mouse brain,

particularly in adult NSCs, which to our knowledge has not been

reported yet. Data from the Allen Brain Atlas show that the

messenger RNA (mRNA) of the CHD7 gene is highly expressed

in adult neurogenic regions of the mouse brain, i.e., in the SVZ,

RMS, and SGZ (Figure S1A available online). Consistent with

the expression of the mRNA, immunostaining assays show

that CHD7 protein is present in both the SVZ and SGZ cells

(Figures S1B and S1C). To identify the CHD7-expressing cell

population in the above-mentioned regions, we performed coim-

munostainings of CHD7 with various cellular markers. Glial fibril-

lary acidic protein (GFAP) is a marker for astrocyte-like type B

cells, namely, the NSCs in the SVZ (Doetsch et al., 1997),

whereas Mash1 and DCX (doublecortin), respectively, mark

type C cells, i.e., the transit amplifying cells (Parras et al.,

2004), and type A cells, the neuroblasts. We found that some

of the GFAP-positive cells express CHD7 (Figure 1A), indicating

that CHD7 is expressed in a subpopulation of SVZNSCs.Most of

Mash1-positive or DCX-positive cells express CHD7 (Figures 1B

and 1C), demonstrating that CHD7 is expressed in most of type

C and A cells. We next analyzed the proliferation state of CHD7-

expressing cells by costaining of CHD7 with a proliferation

markerMCM2 (minichromosomemaintenance complex compo-

nent 2). In both the SVZ and SGZ, CHD7 colabels with MCM2 in

most of the cells (Figures 1D and 1E), demonstrating that CHD7

is expressed in most fast-dividing cells. To further determine the

expression of CHD7 in the adult NSCs, we made use of a trans-
genic mouse in which GFP expression is under the control of the

Tlx BAC-based promoter. Tlx has been shown to be specifically

expressed in NSCs, i.e., type B cells in the SVZ and type 1 cells in

the SGZ (Liu et al., 2008; Niu et al., 2011). Our analyses demon-

strate that the expression of Tlx-GFP recapitulates endogenous

Tlx expression (Figures S1D–S1F). Adult Tlx-GFP mice were

injected with bromodeoxyuridine (BrdU) 30 min before sacrifice

in order to visualize dividing cells in neurogenic regions. Interest-

ingly, most of Tlx-GFPhigh cells in both the SVZ and SGZ were

negative for BrdU (Figures 1F and 1G, white arrows), suggesting

that they are in a quiescent state. In support of this finding, we

observed that Tlx-GFPhigh cells express NSC markers Nestin

and GFAP, but not proliferation markers Ki67 and MCM2

(Figures S1G–S1I, arrows). Costaining of CHD7 with GFP and

BrdU in these animals shows that some Tlx-GFP-positive cells

express CHD7, and many of these colabeled cells were BrdU

positive (Figures 1F and 1G, yellow arrows; Figure 1H). In

contrast, most Tlx-GFPhigh cells did not express CHD7 (Figures

1F and 1G, white arrows). Moreover, CHD7 is coexpressed

with Nestin and Sox2 in both cultured neurospheres and mono-

layer NSCs (Figures 1I and 1J). These data reveal that NSCs start

to express CHD7 upon exiting the quiescent state, and the

expression of CHD7 persists in neural progenitors and neuro-

blasts (Figure 1K). This intriguingly selective expression pattern

of this chromatin remodeler suggests that CHD7 is probably

involved in a temporal regulatory programduring NSCactivation,

lineage commitment, and progression.

Loss of CHD7 Leads to Reduction of Neurogenesis
in the Adult SVZ
To investigate the function of CHD7 in adult neurogenesis,

a CHD7 conditional knockout (KO) mouse line (CHD7fl/fl) was

established in which the exon 3 is flanked by two loxP sites (Fig-

ure S2A). We have previously generated a Tlx-CreERT2 mouse

line using a BAC-mediated transgenic approach, where the

Cre recombinase is only expressed in type B cells of the adult

SVZ (Liu et al., 2008). The CHD7fl/fl mice were crossed with

Tlx-CreERT2mice to achieve a tamoxifen (TMX)-inducible muta-

tion of CHD7 in adult SVZ NSCs and their derivatives. Twoweeks

post-TMX induction (2 wpi), CHD7 was completely removed

from the adult mouse SVZ as shown by immunohistochemistry

(IHC) assay using a CHD7 antibody (Figure S2B). NSCs in the

SVZ mainly give rise to neuroblasts that migrate to the OB and

differentiate into mature neurons. To investigate the role of

CHD7 in these processes, TMX-treated mice (Tlx-CreERT2;

CHD7fl/fl and the littermate control) were injected with BrdU

and traced for 4 weeks. As shown in Figure 2A, there was a

dramatic decrease of BrdU-positive cells in the OB of CHD7

mutants. The number of newborn neurons, as shown by costain-

ing of BrdU and a mature neuronal marker NeuN, was signifi-

cantly decreased (Figure 2B). Consistently, there were less

DCX-positive neuroblasts in the OB of CHD7mutants compared

to the control (Figure 2C). Moreover, the CHD7fl/fl mice were

mated to another NSC-specific cre line, Nestin-CreERT2. As

shown in Figure S2C, CHD7 is efficiently depleted in Nestin-

CreERT2; CHD7fl/fl mice upon TMX treatment. By applying the

same BrdU tracing approach as illustrated in Figure 2A, we

observed a similar mutant phenotype in these animals as in

the Tlx-CreERT2; CHD7fl/fl mice (data not shown). It has been
Cell Stem Cell 13, 62–72, July 3, 2013 ª2013 Elsevier Inc. 63



Figure 1. CHD7 Is Highly Expressed in the SVZ and the SGZ of the Adult Mouse Brain

(A) Confocal images of the mouse subventricular zone (SVZ) sections coimmunostained for CHD7 and GFAP. DNA is stained with DAPI (DAPI staining is in blue if

not indicated). Arrows mark the CHD7 and GFAP double-positive cells. The scale bar represents 20 mm. (LV, lateral ventricle.)

(B and C) Coimmunostaining of CHD7 and Mash1 (B) or DCX (C) in the SVZ. Scale bar: 20 mm.

(D and E) Coimmunostaining of CHD7 and MCM2 in the SVZ (D) and the subgranule zone (SGZ) (E). Scale bar: 20 mm. (GL, granule layer.)

(F and G) Adult Tlx-GFP mice were injected with BrdU 30 min before being sacrificed. The SVZ (F) and SGZ (G) sections were coimmunostained for CHD7, GFP,

and BrdU. Yellow and blue arrows mark Tlx-GFP+/CHD7+ and Tlx-GFP+/BrdU+ cells, respectively, whereas white arrows mark the GFP-high cells that are

negative for both CHD7 and BrdU. Scale bar: 20 mm.

(H) Proportion of CHD7-positive cells among Tlx-GFP-, BrdU- (30 min pulse labeling), and DCX-positive cells. At least 1,000 cells were analyzed for each

population in the SVZ and SGZ, respectively.

(I) Neurospheres were costained for CHD7 and Nestin. Note that only the Nestin-positive cells that are on the surface of neurospheres express CHD7. Scale bar:

20 mm.

(J) Monolayered NSCs were coimmunostained for CHD7 and Nestin (left panel), or Sox2 (right panel). Scale bar: 20 mm.

(K) A schematic illustration of CHD7 expression in adult neurogenic niches.

See also Figure S1.
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proposed that SVZ NSCs are already predetermined to generate

a certain subtype of neurons in the OB (Merkle et al., 2007). To

analyze whether the decrease of neurogenesis is restricted to

certain types of neurons, we performed BrdU costaining with

markers (calretinin [CR], tyrosine hydroxylase [TH], and calbindin

[CB]) representing different subtypes of interneurons in the OB.

As shown in Figure 2D, no preferential loss of certain types of
64 Cell Stem Cell 13, 62–72, July 3, 2013 ª2013 Elsevier Inc.
neurons was found in CHD7 mutants, indicating that there is a

panneuronal phenotype. We thus assessed whether the self-

renewal of NSCs is affected upon CHD7 inactivation. Immuno-

staining assays did not show any major change in expression

of two NSC markers Nestin and Sox2 in the SVZ of CHD7

mutants (Figure S2D), suggesting that the number of NSCs

was not altered. We then analyzed the cell proliferation in the



Figure 2. Loss of CHD7 Leads to a Decrease of Neurogenesis in the Adult SVZ

(A) A schematic diagram of the experimental design for experiments shown in (A), (B), (D), and the immunostaining of BrdU in the olfactory bulb (OB). Scale bar:

20 mm. Tamoxifen (TMX)-treated mice (Tlx-CreERT2; CHD7fl/fl and the littermate control) were injected with BrdU once per day for 5 consecutive days.

(B) Costaining of BrdU and NeuN in the OB. Scale bar: 20 mm. The right panel shows the quantification data of the number of BrdU/NeuN double-positive cells.

Data are represented as mean ± SD (n = 5; * p < 0.01, Student’s t test).

(C) DCX staining of the OB sections from the control and CHD7mutants (Nestin-CreERT2; CHD7fl/fl and the littermate control, 1 month post-TMX injection). Scale

bar: 20 mm.

(D) The OB sections were coimmunostained with BrdU and markers (Calretinin [CR], Tyrosine Hydroxylase [TH], and Calbindin [CB]) representing different

subtypes of interneurons in theOB. Arrowsmark double-positive cells. Scale bar: 20 mm.Quantification result is shown in the right panel. Value representsmean ±

SD (n = 3, * p < 0.05; Student’s t test).

(E) BrdU staining of the SVZ from the control and CHD7mutant mice (Tlx-CreERT2; CHD7fl/fl and the littermate control, 1month post-TMX injection) sacrificed 2 hr

after BrdU injection. Quantification data are shown in the right panel. Value represents mean ± SD (n = 5).

(F) The SVZ cells (Tlx-CreERT2; CHD7fl/fl and the littermate control, 1 month post-TMX injection) were isolated for neurosphere assays. For the primary neu-

rosphere formation assay, cells from one mouse were plated in four wells of one 24-well plate. For the secondary neurosphere formation, 200 cells dissociated

from the primary neurosphereswere seeded in a single well of one 96-well plate. The number of neurosphereswas counted 7 days after seeding. Value represents

mean ± SD (n = 4).

(G) Primary neurospheres obtained from (F) were passaged three times. Then 500 disassociated cells were plated into a single well of one 96-well plate and

numbers of neurospheres were counted 7 days later. Value represents mean ± SD (n = 4).

See also Figure S2.
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SVZ using a 2 hr BrdU-pulse labeling assay. As shown in Fig-

ure 2E, there was no significant difference of BrdU incorporation

in the control and CHD7 mutants. Analysis with the proliferation

marker Ki67 showed similar results (Figure S2E). We next moni-
tored the self-renewal of NSCs using neurosphere formation

assay. The number of primary, secondary, and long-term

passaged neurospheres formed from the SVZ-derived cells

did not significantly differ between the control and CHD7
Cell Stem Cell 13, 62–72, July 3, 2013 ª2013 Elsevier Inc. 65



Figure 3. Loss of CHD7 in the Adult SGZ Leads to a Decrease of Hippocampal Neurogenesis

(A) The scheme of BrdU tracing experiment and the dentate gyrus (DG) sections were coimmunostained with BrdU and NeuN. Mice (Nestin-CreERT2; CHD7fl/fl

and the littermate control) were injected with BrdU once per day for 10 consecutive days. Scale bar: 20 mm. The number of BrdU+ cells in the GLwas quantified as

shown in the right panel. Value represents mean ± SD (n = 3, * p < 0.05; Student’s t test).

(B) Confocal images of DCX staining in the GL of the control and CHD7 mutant mice (Nestin-CreERT2; CHD7fl/fl and the littermate control; 1 month post-TMX

injection). Scale bar: 20 mm.

(C) Quantification of Ki67-postitive cells in the SGZ of the control and CHD7 mutants (Nestin-CreERT2; CHD7fl/fl and the littermate control; 1 month post-TMX

injection). Value represents mean ± SD (n = 3, * p < 0.05; Student’s t test).

See also Figure S3.
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mutants (Figures 2F and 2G). Thus, loss of CHD7 impairs neuro-

genesis in the SVZ-OB without affecting the self-renewal of

NSCs, which indicates that CHD7 is specifically required for

the neuronal differentiation of NSCs. Indeed, the number of

transit amplifying cells marked by Mash1 was slightly increased

in CHD7 mutants (Figure S2E), indicating a possible blockage of

these cells for further neuronal differentiation. Moreover, DCX

immunostaining showed that the chain-like structure of

migrating neuroblasts was not affected (Figure S2F), ruling out

a major defect in the migration of neuroblasts. To further confirm

the phenotype of CHD7 mutated NSCs observed in vivo, we

established a SVZ NSC culture and tested the neuronal differen-

tiation capacity of control and CHD7 mutant cells. In agreement

with the in vivo finding, CHD7 mutant cells, both adult and fetal

NSCs, generated significantly less Tuj1-positive neurons upon

induction of differentiation (Figure S2G), which demonstrates

an indispensable role of CHD7 during neuronal differentiation.

In the SVZ, the majority of NSCs differentiate into neuronal

lineage. The selective expression pattern of CHD7 in adult

SVZ and the neuronal differentiation defect in CHD7 mutants

suggest that CHD7, as a chromatin remodeler, plays a specific

role for initiating the neuronal differentiation program on the

chromatin level. These results also help to understand the olfac-

tion defect that is frequently associated in the human CHARGE

patient.

Loss of CHD7 Leads to Impairment of Neurogenesis
in the Adult SGZ
The adult hippocampal neurogenic system has often been used

to study functions of neurological disease genes linked to

learning disability (Zhao et al., 2008). Many CHARGE patients

have a learning disability (Bergman et al., 2011). The specific

expression pattern of CHD7 in the adult SGZ suggests a poten-

tial role in regulating the hippocampal neurogenesis. We gener-

ated a Nestin-CreERT2; CHD7fl/fl mouse line, which allows us to

ablate CHD7 in the SGZ NSCs upon TMX induction (Figure S3A).

NSCs in the SGZ generate neuroblasts that give rise to granule

cells in the GL. Using the same BrdU tracing approach as used

for the SVZ-OB system, we observed that loss of CHD7 in the
66 Cell Stem Cell 13, 62–72, July 3, 2013 ª2013 Elsevier Inc.
SGZ NSCs results in a significant reduction of the number of

BrdU-positive newborn neurons in the GL (Figure 3A). Moreover,

DCX-positive neuroblasts in CHD7 mutants have shorter and

less branched dendrites compared to the control (Figure 3B),

suggesting a possible defect of dendritic development of

newborn neurons. Both Sox2 and CCND2 have been shown to

be essential for the maintenance of the SGZ NSCs (Favaro

et al., 2009; Ferri et al., 2004; Suh et al., 2007). By analyzing

the RNA extracted from the microdissected hippocampus, we

did not observe significant alteration in the expression Sox2

and CCND2 genes in CHD7 mutants as compared to the control

(Figure S3B). Intriguingly, we observed a slight increase of Ki67-

positive cells and Tbr2-positive transit amplifying cells in the

SGZ of CHD7 mutants (Figures 3C and S3C). The accumulation

of these cells could be due to a possible blockage of further

neuronal differentiation. Thus, like in the SVZ-OB system, deple-

tion of CHD7 in the SGZ NSCs leads to reduction of adult hippo-

campal neurogenesis.

Ablating CHD7 in NSCs of the two adult neurogenic regions

results in similar phenotype of neuronal differentiation defect,

suggesting a general role of CHD7 in regulating neurogenesis.

In support of this, we observed a similar phenotype by ablating

CHD7 in radial glial cells during embryonic brain development

(Figures S3D and S3E). Moreover, we analyzed whether loss of

CHD7 in NSCs leads to an alternative fate of their progeny. There

was no significant change of glial differentiation in all systems

analyzed (SVZ, SGZ, and embryonic brain development) (Figures

S3F–S3H). Interestingly, we observed an increase of cell death of

newborn CHD7 mutant cells (Figures S3I and S3J), suggesting

that CHD7 mutant cells may undergo apoptosis if they cannot

be properly differentiated.

Physical Exercise Rescues the Defect of Neurogenesis
in the SGZ of CHD7 Mutants
Epigenetic regulators are considered to be essential players of

regulating cell responses to environmental stimuli (Ma et al.,

2010). Interestingly, environmental stimuli can greatly affect

the proliferation and survival of newborn cells in the adult

CNS. For example, exposure of rodents to an enriched



Figure 4. Voluntary Running Rescues the Hippocampal Neurogenesis Defect of CHD7 Mutants

(A) A schematic diagram of the experimental design and IHC staining of BrdU in the GL. Mice (Nestin-CreERT2; CHD7fl/fl and the littermate control) were kept in

running cages (only for the runners) and were injected with BrdU once per day for the first 12 consecutive days. Scale bar: 100 mm. The quantification of the

number of BrdU+ cells is shown in the right panel. Value represents mean ± SD (nonrunners: n = 4; runners: n = 5, * p < 0.05; Student’s t test).

(B) A schematic diagram of the experimental design and the representative images of reconstructed newborn neurons in GL with retrovirus-mediated expression

of GFP. Scale bar: 20 mm.

(C) Summaries of dendrite properties of newborn neurons. The cumulative distribution plots of total dendrite length (left) and branch numbers (right) are shown.

Each symbol represents a single GFP+ neuron (4–5 mice per group; the number of traced neurons: control: n = 23; mutant: n = 23; control runners: n = 28; mutant

runners: n = 29. * p < 0.05, Kolmogorov-Smirnov test).

(D) Sholl analysis of the dendritic complexity of GFP+ neurons. The data represent mean ± SEM (same groups of cells as (C) were analyzed; * p < 0.01, Student’s

t test).

See also Figure S4.
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environment increases the survival of newborn neurons in the

SGZ without affecting SVZ neurogenesis (Kempermann et al.,

1997). Physical exercise, such as voluntary running, promotes

SGZ neurogenesis by increasing cell proliferation and survival

of the newborn granule neurons (van Praag et al., 1999). Given

that CHD7 is expressed in active, but not quiescent, NSCs, and

the chromatin remodeler identity of CHD7, we anticipated that

CHD7 is maybe involved in regulating exercise-induced hippo-

campal neurogenesis. To test this, we divided the control and

CHD7 mutant mice into nonrunner and runner groups. Running

was performed as a voluntary exercise in a running wheel and

newborn neurons were labeled with BrdU as illustrated in Fig-
ure 4A. First, we confirmed the reduction of BrdU-positive cells

in the GL of CHD7 mutant nonrunners as compared to the con-

trol nonrunners (Figure 4A). As expected, one month of running

significantly increased the number of BrdU-positive cells in the

GL of the control runners as compared to the control nonrun-

ners (Figure 4A). To our surprise, after running, numbers of

BrdU-positive cells in CHD7 mutants were not significantly

different from the control runners (Figure 4A). Similar results

were obtained when older mice were used for this assay (Fig-

ure S4A). Moreover, there was no significant difference in the

number of Ki67-positive cells between the control and mutant

runners (Figure S4B), indicating that running attenuates the
Cell Stem Cell 13, 62–72, July 3, 2013 ª2013 Elsevier Inc. 67
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accumulation of proliferating cells in CHD7 mutants (compared

to Figure 3C).

The observation that CHD7-mutated neuroblasts have shorter

and less branched dendrites indicates a defect of dendritic

development (Figure 3B). We therefore monitored the dendritic

development of newborn neurons in the control and CHD7

mutants. For this, retroviruses expressing GFP were stereotacti-

cally injected into the DG to label newborn cells. The animals

were analyzed 4weeks postretroviral injection, andGFP-positive

newborn neurons were traced. Intriguingly, the total dendritic

length of GFP-positive newborn neurons in the GL of CHD7

mutants was significantly shorter compared to the control (Fig-

ures 4B, 4C, and S4C). Although not statistically significant,

GFP-positive neurons in CHD7 mutants have less total dendrite

branch numbers as compared to the control (Figures 4B, 4C,

and S4C). Sholl analysis further demonstrated a decrease in

the dendritic complexity of CHD7 mutant neurons (Figure 4D).

Thus, loss of CHD7 in the SGZ NSCs not only reduces the num-

ber of newborn neurons but also leads to the dendritic abnormal-

ity in newborn neurons. To test whether running can have any

effect on the dendritic abnormality in CHD7 mutant neurons,

we applied the same retroviral-labeling approach to control

and CHD7 mutant running mice. Strikingly, all of these above-

mentioned defects of dendritic development in newborn neurons

of CHD7mutants were completely rescued after running (Figures

4B–4D; Figure S4C). Together, these results suggest that phys-

ical exercise is capable of overcoming the neurogenic defect in

the DG of CHD7 mutants, including both the number and the

dendritic development of newborn neurons. Our data demon-

strate that exercise-induced neurogenesis does not depend on

CHD7, which suggests an alternative pathway can guide the

neuronal differentiation in the absence of CHD7.

Sox4 and Sox11 Are Direct Target Genes of CHD7
All of our above-mentioned results suggest that CHD7 is impor-

tant for activation of a neuronal differentiation program in NSCs.

Next, we aimed to identify the direct target genes of CHD7 in

NSCs that are responsible for its function in neurogenesis. For

this, we took a computational approach by analyzing the expres-

sion profiling data from the Cancer GenomeAtlas Project (TCGA)

(Network, 2008) because we observed a heterogeneous expres-

sion of CHD7 in human brain tumors (data not shown). Because

CHD7 occupancy at genes is correlated with active gene expres-

sion (Engelen et al., 2011; Schnetz et al., 2009), we focused on

genes that are most positively correlated with CHD7 expression

in the database. Interestingly, Sox4 and Sox11, two group C

genes of the Sox gene family (Kuhlbrodt et al., 1998), are on

top of the list of genes correlated most with CHD7 expression

(Figure 5A). Several studies have shown that Sox4 and Sox11

are essential for neuronal property determination (Bergsland

et al., 2006; Mu et al., 2012) The data from the Allen Brain Atlas

demonstrate that the mRNAs of Sox4 and Sox11 genes are

enriched in the two neurogenic regions of the adult mouse brain

(Figure S5A). Thus, Sox4 and Sox11 genes could be candidate

genes that are regulated by CHD7 during neurogenesis. Immu-

nostaining results showed that the expression of Sox4 and

Sox11 is indeed reduced in both the SVZ and SGZ of CHD7

mutants (Figures 5B and 5C). Consistently, the mRNAs of both

Sox4 and Sox11 in the hippocampus were significantly downre-
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gulated in CHD7 mutants (Figure 5D). Thus, loss of CHD7 results

in downregulation of two essential neurogenic fate determinants

Sox4 and Sox11.

To further test whetherSox4 andSox11 are direct target genes

of CHD7, we used monolayer cultured NSCs, in which CHD7 is

homogenously expressed (Figure 1J). We performed chromatin

immunoprecipitation (ChIP) assays to monitor the binding of

CHD7 to Sox4 and Sox11 genes. The results in Figure 5E show

that CHD7 is associated with the promoters but not with the 30

coding regions of the Sox4 and Sox11 genes. To unravel the

mechanism of how CHD7 regulates the Sox4 and Sox11 genes,

NSCs derived fromCHD7fl/fl mice were infectedwith retroviruses

encoding the Cre recombinase. As shown in Figure S5B, the

mRNA of CHD7 is completely depleted 7 days postinfection.

Given the fact that CHD7 is an active ATP-dependent nucleo-

some remodeler (Bouazoune and Kingston, 2012), wemonitored

the nucleosome occupancy at Sox4 and Sox11 promoters in the

control and CHD7 mutant NSCs. The chromatin was extensively

digested with micrococcal nuclease (MNase) to obtain mainly

mononucleosome (Figure S5C); DNA was precipitated and

quantified using primers encompassing various gene promoters.

For the normalization, DNA was amplified with a primer flanking

an intergenic region on the mouse chromosome 8, where CHD7

does not bind (Figure 5E). Importantly, quantitative real-time

PCR analysis revealed that there were 2-fold more DNA of

Sox4 and Sox11 promoters existing in the mononucleosomal

form in CHD7mutant NSCs as compared to the control, whereas

promoters of several genes required for neurogenesis, including

Pten, p21, Dlx1, and Nestin, were not affected (Figure 5F). These

data suggest that depletion of CHD7 in NSCs leads to a com-

pacted nucleosome organization at promoters of Sox4 and

Sox11, which is refractory for gene expression. A recent study

demonstrated that the genome-wide binding of CHD7 coordi-

nates with H3K4 methylation and that the chromodomains of

CHD7 recognizes H3K4 methylation (Schnetz et al. 2009). We

thus performed ChIP assays to examine whether loss of CHD7

leads to changes of H3K4 methylation on promoters of the

Sox4 and Sox11 genes. Consistent with the downregulation of

Sox4 and Sox11 gene expression, the level of the active histone

mark H3K4me3 on promoters of both Sox4 and Sox11 genes

was decreased in CHD7 mutant NSCs, whereas the level of a

repressive mark H3K27me3 was not changed (Figure S5D).

Together, these results demonstrate that the association of

CHD7 to the promoters of Sox4 and Sox 11 genes is essential

for keeping these regions as open chromatin structure.

We next investigate whether downregulation of Sox4 and

Sox11 is responsible for the neuronal differentiation defect in

CHD7 mutants. For this, CHD7 mutant cells were infected

with retroviruses encoding Sox4 and Sox11 together with GFP

or GFP alone (Figure S5E), and 24 hr later, the cells were induced

to differentiation. Importantly, overexpression of Sox4 or Sox11

in CHD7 mutant NSCs significantly increased the number of

Tuj1-positive neurons among GFP-positive cells as compared

to the transfection ofGFPalone (Figure 5G), suggesting that over-

expression of Sox4 or Sox11 was able to largely rescue the

neuronal differentiation defect of CHD7 mutant NSCs. These

data strongly support that Sox4 and Sox11 are important target

genes of CHD7 in adult neurogenesis. A recent study showed

that inactivation of Sox4 and Sox11 in adult mouse DG results



Figure 5. CHD7 Directly Regulates the Expression of Sox4 and Sox11

(A) List of the most positively correlated genes with CHD7 expression in 540 human GBMs from TCGA database.

(B and C) The SVZ and SGZ sections from mice (Nestin-CreERT2; CHD7fl/fl and the littermate control, 1 month post-TMX injection) were stained for Sox4 (B) or

Sox11 (C). Scale bar: 20 mm.

(D) Quantitative PCR analysis of Sox4 and Sox11 expression in microdissected hippocampus tissue from mice (Nestin-CreERT2; CHD7fl/fl and the littermate

control, 1 month post-TMX injection). Value represents mean ± SD (n = 4, * p < 0.05; Student’s t test).

(E) ChIP analyses show enriched occupancy of CHD7 protein on promoter regions of Sox4 and Sox11 genes. As a negative control, no CHD7 occupancy was

detected in one intergenic region on mouse chromosome 8. Value represents mean ± SD. Data were summarized from three independent experiments.

(F) The control and CHD7mutant NSCswere digested withMNase tomostly mononucleosome. Ten nanograms of extracted DNAwere amplified with primers for

the individual promoter and normalized to the amount of DNA amplified from a primer for an intergenic region onmouse chromosome 8. Value represents mean ±

SD. Data were summarized from three independent experiments.

(G) The control and CHD7mutant NSCs were infected with retroviruses encoding GFP, Sox4-IRES-GFP, or Sox11-IRES-GFP and then induced to differentiation

for 2 weeks. The cells were stained with antibodies against GFP and Tuj1. Scale bar: 20 mm. The numbers of Tuj1+ cells among the total GFP+ cells were counted,

and the quantification data are shown on the right panel. Value represents mean ± SD (n = 5, * p < 0.05; Student’s t test).

See also Figure S5.
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in a similar phenotype as the CHD7 mutant, i.e., reduced neuro-

genesis due to the blockage of neuronal differentiation (Mu et al.,

2012). These authors showed that Sox4 and Sox11 proteins are

expressed in DCX-positive neuroblasts in the DG, but not in

NSCs. Interestingly, both of Sox4 and Sox11 genes have been

shown to be transcribed, but not translated, in adult NSCs (Beck-

ervordersandforth et al., 2010). Our data showed that CHD7 is

immediately expressed when NSCs become activated, which

may be involved in the initiation of transcription of Sox4 and

Sox11 genes in these cells. Taken together, our data suggest

that in NSCs, CHD7 associates with promoters of the Sox4 and

Sox11 genes to keep them as an open chromatin structure for

permissive transcription, which is important for the activation of

Sox4 and Sox11-dependent neuronal differentiation program.

DISCUSSION

There are two unique features of stem cells: long-term self-

renewal and multiple lineage differentiation potential. For this,

the expression of genes in stem cells should not only allow

them to be kept in an undifferentiated status, but also allow

them to continuously generate new progenies. Epigenetic regu-

lations have been shown to be critical for stem cells to keep the

differentiation program in a poised state. For instance in embry-

onic stem cells, promoters of many developmentally important

transcription factors are modified as bivalent chromatin domain,

which keeps them at low transcriptional level while leaving these

genes poised for activation upon differentiation (Bernstein et al.,

2006). In line with this, inactivation of epigenetic regulators often

leads to aberrant differentiation of stem cell without affecting

self-renewal. For example, loss of the H3K4 methyltransferase

Mll1 or DNAmethyltransferase DNMT3a in NSCs leads to reduc-

tion of postnatal neurogenesis, without affecting NSC prolifera-

tion (Lim et al., 2009; Wu et al., 2010). Multiple lineage specific

genes expression was considered to be a hallmark of hemato-

poietic stem cells and epigenetic priming was shown to be

important for this process (Walter et al., 2008). The lineage

priming in NSCs was reported by Beckervordersandforth et al.

(2010), when they discovered genes that are important for

neuronal differentiaton like Sox4 and Sox11 are already tran-

scribed at low level in NSCs. The mechanism behind the activa-

tion of Sox4 and Sox11 in NSCs was unclear. The CHD7/Sox4/

Sox11 pathway we identified here provides an epigenetic mech-

anism of lineage priming in adult neurogenesis. CHD7 expres-

sion is associated with neurogenic cells that are undergoing

lineage commitment, and inducible inactivation of CHD7 in the

adult neurogenic niches lead to impaired neuronal differentia-

tion. In the adult mammalian brain, NSCs can generate neurons

very efficiently, both in the SVZ-OB andDG. The quiescent NSCs

are uncommitted and they are negative for CHD7 expression;

CHD7 expression appears upon NSC entering cell cycle, where

it targets promoters of Sox4 and Sox11 to keep them as a tran-

scriptional-permissive open chromatin state. This explains the

low level expression of Sox4 and Sox11 in NSCs and neural

progenitors (Beckervordersandforth et al., 2010). The protein

expression of CHD7 and Sox4 and Sox11 overlaps in neuro-

blasts, indicating that CHD7 is probably required for the main-

tenance of Sox4 and Sox11 expression in these cells. The

activation of Sox4 and Sox11 leads to sequential activation of
70 Cell Stem Cell 13, 62–72, July 3, 2013 ª2013 Elsevier Inc.
the downstream neuronal differentiation and maturation path-

way controlled by these factors (Bergsland et al., 2011). Notably,

the Sox4 and Sox11 double KO mice showed developmental

defects in many organs that are also affected in CHARGE

patients (Schilham et al., 1996; Sock et al., 2004), suggesting

the CHD7/Sox4/Sox11 regulation mechanism is probably a

general pathway beyond the nervous system. Two very recent

reports showed that several cell-cycle effectors regulate NSCs

by controlling the expression of Sox2, suggesting a general regu-

lation mechanism by targeting Sox factors in NSCs (Julian et al.,

2013; Marqués-Torrejón et al., 2013).

The neuronal differentiation defect we observed in the CHD7

mutant provides insights into understanding human CHARGE

syndrome. It was known that around 80% of the CHARGE

patients have olfaction deficit, and most of them had anomalies

of the OBs (Blustajn et al., 2008; Bergman et al., 2011). The

mutant phenotype in mice observed in our study provides a

cellular mechanism for this clinical syndrome, which is that the

SVZ NSCs lacking CHD7 cannot efficiently differentiate into

neurons. The impaired neuronal differentiation and dendritic

development of newborn neurons in the hippocampus of adult

CHD7 mutant provides a possible cellular mechanism of the

learning and intellectual disability of 75% human CHARGE

patients (Bergman et al., 2011). It is striking that running exercise

leads to the rescue of neuronal differentiation defects in the DG

of CHD7 mutants. These data suggest that exercise-induced

neurogenesis is probably CHD7-independent, indicating an

alternative pathway that can sufficiently drive neuronal differen-

tiation in the absence of CHD7. On the other hand, this finding

implicates that exercise might be beneficial for CHARGE pa-

tients, in particular, for the recovery of the hippocampal-related

learning ability. However, whether newborn neurons in the GL

of CHD7 mutants can be functionally integrated into the pre-

existing circuit needs to be further investigated. Our study dem-

onstrates the potential of using mouse adult NSCs to study

human brain disease-related gene mutations, which will not

only help to unravel the molecular mechanism of different

diseases but also provide possible treatment strategies.

Intriguingly, mutations of CHD8, which can interact with CHD7

biochemically (Batsukh et al., 2010), were recently identified as

one of the major genetic lesions in human autism patients (Neale

et al., 2012; O’Roak et al., 2012; Talkowski et al., 2012). Human

CHARGE patients also have autistic-like behavior (Hartshorne

et al., 2005); thus, the function of CHD7 in the CNS identified in

this study, in particular, the defect of dendritic development,

may also provide insights into the understanding of the molecu-

lar basis of autism. Moreover, we observed that CHD7 is widely

expressed in many tissues in the adult mouse, particularly in tis-

sue-specific stem cell niches like hair follicles and bronchioles in

the adult lung (data not shown). This suggests that CHD7 might

be required for cell lineage commitment in many different tis-

sues, although this needs to be further tested in different tissues

using animal models.
EXPERIMENTAL PROCEDURES

Animals

Mice were housed according to standard conditions, and all animal experi-

ments were conformed to the local and international guidelines for the use
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of experimental animals. Tlx-CreERT2 mice have been described before (Liu

et al., 2008, 2010). CHD7fl/fl mice were obtained from EUCOMM, and the

neomycin selection cassette was removed by crossing with Flp deleter

mice. Nestin-CreERT2 animals were generated as described elsewhere (Cor-

sini et al., 2009). The Tlx-GFP reporter animal was obtained from the GENSAT

project.

Immuonostaining, Confocal Imaging, and Analysis

Mice were perfused with 4% paraformaldehyde, and brains were postfixed

overnight at 4�C. Coronal sections (7 mm for paraffin or 40 mm for vibratome)

were prepared using a Microtome or Vibratome (Leica), respectively. Sections

were blocked and peameablized in 5% normal swine serum in PBST

(PBS+0.2% Triton X-100) for 1 hr before being incubated overnight at 4�C
with primary antibodies. For immunohistochemistry, sections were incubated

with biotinylated secondary antibodies (Vector Laboratories), amplified by a

horseradish peroxidase system (ABC Kit, Vector Laboratories) and visualized

using DAB staining (Sigma-Aldrich). Fluorescent images were captured using

confocal laser-scanning microscopes (LSM780, LSM700, Zeiss; Leica SP5).

To compare the control and CHD7 mutants, a series of sections containing

at least 15 sections through the OB, SVZ, or DG were analyzed from each

mouse. All experiments were carried out in a blind fashion to experimental

conditions.

GFP-positive newborn granule cells were imaged with z stacks scanning

with a 0.5 mm interval using a Leica SP5 confocal microscope. To analyze

the dendritic structure of newborn neurons, reconstructions of the dendritic

processes were made from the z stacks. The projection images were semiau-

tomatically traced with National Institutes of Health ImageJ software using the

NeuronJ plugin. The total dendritic length and branch number of each GFP-

positive neuron were subsequently analyzed. The Sholl analysis for dendritic

complexity was carried out by counting the number of traced dendrites that

cross a series of concentric circles with 10 mm intervals from the cell soma.

Voluntary Running

Three to four tamoxifen-injected, age-matchedmice were housed in a rat cage

with one running wheel. During the first 12 days, animals were injected with

BrdU once per day. The animals were sacrificed 18 days after the last BrdU

injection.

Retroviral Preparation and Stereotactic Injection

The following retroviral vectors were used in this study: CAG-GFP; CAG-Sox4-

IRES-GFP and CAG-Sox11-IRES-GFP. Mouse complementary DNAs of Sox4

and Sox11 (Life Technologies) were cloned into the vector CAG-IRES-GFP.

High titers of retroviruses were generated by cotransfection of retroviral

vectors and vectors expressing gal-pol and vsvg into HEK293T cells followed

by ultracentrifugation of viral supernatant. To infect monolayer cultured NSCs,

1 ml of 1:20 diluted retroviruses were used to infect cells in a single well of one

24-well plate. For the stereotactic injection, mice were anesthetized and

injected with 2 ml of CAG-GFP retroviruses into the left and right dentate gyrus.

The coordinates from bregma were (in mm) �1.9 anterior/posterior, ±1.6

medial/lateral, and �1.9 dorsal/ventral from dura. For the runner groups,

injectedmice rested for 1 day before being put into the running cages. Animals

were sacrificed 4 weeks postinjection. The brains were cut into 40 mm thick

sections and stained with antibody against GFP.

Statistics

Statistical significance was determined by either two-tailed Student’s t test or

Kolmogorov-Smirnov test as indicated.
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