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Orthogonality properties of the Hermite and related polynomials
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Abstract

The authors present a general method of operational nature with a view to investigating the orthogonality properties
of several different families of the Hermite and related polynomials. In particular, the classical Hermite polynomials
and some of their higher-order and multi-index generalizations are considered here.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction, definitions and preliminaries

The so-called Hermite–Kampé de Fériet (HKdF) polynomials (or, alternatively, thetwo-variable
Hermite polynomials)[1, p. 341, Eq. (23)]:

Hn(x, y) := n!
[n/2]∑
r=0

xn−2ryr

(n − 2r)!r! (1)
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can be defined by means of the following operational rule (cf.[2]):

Hn(x, y) = exp

(
y

�2

�x2

)
{xn}, (2)

which was applied by Dattoliet al. [3] in order to reconsider the orthogonality property of the classical
Hermite polynomials from a different point of view. It was indeed shown there[3] that such properties
can be derived from fairly straightforward identities, in a direct way, by employing a few elementary
properties of the exponential operators.

In terms of the classical Hermite polynomialsHn(x) or Hen(x), it is easily seen from the definition (1)
that

Hn(2x, −1) = Hn(x) and Hn(x, −1
2) = Hen(x). (3)

Furthermore, even though there exists the following close relationship[1, p. 341, Eq. (21)]:

Hn(x, y) = (−i)n yn/2 Hn

(
ix

2
√

y

)
= in(2y)n/2 Hen

(
x

i
√

2y

)
(4)

with the classical Hermite polynomials, yet the usage of asecondvariable (parameter)y in the Hermite–
Kampé de Fériet polynomialsHn(x, y) is found to be convenient from the viewpoint of their applications.
Indeed, from an entirely different viewpoint and considerations, Hermite polynomials ofseveralvariables
are introduced and investigated by Erdélyiet al. [5, p. 283et seq.].

Limiting ourselves to negative values of the variabley, which is treated in the present context as a
parameter, we consider the following polynomial expansion:

F(x) =
∞∑

n=0

an Hn(x, −|y|). (5)

Then our goal will be that of specifying the coefficientsan by the use of the operational representation
(2) and of the formalism associated with the aforementioned operators. It is easily seen from Eq. (2) that

exp

(
|y| �2

�x2

)
{F (x)} =

∞∑
n=0

an xn. (6)

Our problem has, therefore, been reduced to that of finding the Taylor expansion of the function

�(x) = exp

(
|y| �2

�x2

)
{F(x)}, (7)

which, in view of the well-known Gauss–Weierstrass transform, can be written in the following form:

�(x) = 1

2
√

�|y|
∫ ∞

−∞
exp

(
−(x − �)2

4|y|

)
F(�) d�. (8)

By recalling that the polynomialsHn(x, y) are specified by means of the generating function:

∞∑
n=0

tn

n! Hn(x, y) = exp(xt + yt2), (9)
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we find that

�(x) = 1

2
√

�|y|
∞∑

n=0

xn

n!
∫ ∞

−∞
Hn

(
�

2|y| , −
1

4|y|
)

exp

(
− �2

4|y|
)

F(�) d�, (10)

which, when compared with Eq. (6), yields

an = 1

2 · n!√�|y|
∫ ∞

−∞
Hn

(
�

2|y| , −
1

4|y|
)

exp

(
− �2

4|y|
)

F(�) d�. (11)

This last identity (11) can be suitably exploited to conclude that the functions

�n(x) = 1

2 · n!√�|y| Hn

(
x

2|y| , −
1

4|y|
)

exp

(
− x2

4|y|
)

(12)

arebiorthogonalto the polynomialsHn(x, −|y|).
The corresponding expansion in series of the classical Hermite polynomialsHn(x) is easily obtained

from the above results by setting|y| = 1
2.

In these introductory remarks, we have shown how the use of operational tools has allowed the derivation
of the orthogonality properties of the Hermite polynomials in a fairly direct way. In the following sections,
we will show that the method developed here can be extended appropriately to more involved families of
Hermite polynomials as well.

2. Multi-index Hermite polynomials and associated biorthogonal functions

Multi-variable and multi-index Hermite polynomials were introduced by Charles Hermite (1822–1901)
himself in his memoirs dated 1864 in which he also investigated the relevant orthogonality properties
(cf., e.g.,[1, p. 331et seq.]). In this section, we will not follow the original treatment also exploited in
[1], but the operational formalism of[2], which will provide a fairly direct understanding of the problem.

According to the operational definition, the two-variable and two-index Hermite polynomials can be
defined as follows:

Hm,n(x, �; y, �|�) = exp

(
�

�2

�x2 + �
�2

�x�y
+ �

�2

�y2

)
{xm yn}, (13)

which provides the relevant series expansion:

Hm,n(x, �; y, �|�) = m! n!
min(m,n)∑

s=0

�s

s!(m − s)!(n − s)! Hm−s(x, �)Hn−s(y, �) (14)

and the generating function

∞∑
m,n=0

um

m!
vn

n! Hm,n(x, �; y, �|�) = exp(xu + �u2 + yv + �v2 + �uv). (15)
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Let us now consider atwo-variablefunctionF(x, y) with the following expansion:

F(x, y) =
∞∑

m,n=0

am,n Hm,n(x, −|�|; y, −|�|
∣∣∣−|�|). (16)

We will evaluate the coefficientsam,n of expansion (16) by following the same procedure as before.
Indeed, by using the operational representation (13), we get

�(x, y) = exp

(
|�| �2

�x2 + |�| �2

�x�y
+ |�| �2

�y2

)
{F(x, y)}

=
∞∑

m,n=0

am,n xm yn. (17)

The problem now is that of specifying the action of the exponential operator:

Ê = exp

(
|�| �2

�x2 + |�| �2

�x�y
+ |�| �2

�y2

)
. (18)

Thus we must look for a generalized version of the Gauss–Weierstrass transform used in the derivation
of (8) above. By tacitly assuming, for convenience, that

min(�, �, �) > 0,

we can omit absolute values and rewrite the exponential operatorÊ in (18) as follows:

Ê = exp

(
�

(
�

�x
+ 1

2

�

�

�

�y

)2

+ �

�

�2

�y2

) (
� = y� − �2

4

)
. (19)

By using the following integral formula:

exp(	ĉ2) = 1√
�

∫ ∞

−∞
exp

(
−�2 + 2�

√
	 ĉ
)

d�, (20)

we find from (19) that

Ê := 1

�

∫ ∞

−∞
d


∫ ∞

−∞
d� exp

(
−
[

2 + �2 − 2

√
� 


(
�

�x
+ 1

2

�

�

�

�y

)
− 2�

√
�

�

�

�y

])
. (21)

Now the action of the exponential operatorÊ on the functionF(x, y) is easily derived by the use of the
well-known identity

exp

(
a

�

�x
+ b

�

�y

)
{F(x, y)} = F(x + a, y + b), (22)

which, along with the definition (21), yields

ÊF (x, y) = 1

�

∫ ∞

−∞
d


∫ ∞

−∞
d� exp

(
− (
2 + �2))F

(
x + 2

√
� 
, y + �√

�

 + 2

√
�

�
�

)
. (23)
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Finally, upon performing the change of variables given by

x + 2
√

� 
 = � and y + �√
�


 + 2

√
�

�
� = �, (24)

we obtain thetwo-variableextension of the Gauss–Weierstrass transform as follows:

ÊF (x, y) = 1

4�
√

�

∫ ∞

−∞
d�

∫ ∞

−∞
d�

· exp

(
− 1

4�

[
�(x − �)2 − �(x − �)(y − �) + �(y − �)2

])
F(�, �). (25)

Consequently, the use of the generating function (15) leads us to the following explicit expression for the
coefficientsam,n in (16):

am,n = 1

4�
√

�

1

m! n!
∫ ∞

−∞
d


∫ ∞

−∞
d� Hm,n

(
�
 − �

2�

2�
, − �

4�
; �� − �

2


2�
, − a

4�

∣∣∣∣∣− �

4�

)

· exp

(
− 1

4�

(
�
2 − �
� + ��2

))
F(
, �), (26)

which, while generalizing the previous result, allows us to conclude that the functions

�m,n(x, y) = 1

4� · m! n!√�
Hm,n

(
�x − �

2y

2�
, − �

4�
; �y − �

2x

2�
, − �

4�

∣∣∣∣∣ �

4�

)

· exp

(
− 1

4�

(
�x2 − �xy + �y2

))
(27)

arebiorthogonalto the polynomials

Hm,n(x, −|�|; y, −|�|
∣∣∣−|�|).

In the above case, too, the statement relevant to the orthogonality has been obtained, in a fairly direct
way, by using the formalism associated with the exponential operator algebra.

3. Higher-order Hermite polynomials

In this section, we will discuss further generalizations of the orthogonality properties investigated in
the preceding sections.

The higher-order Hermite polynomialsH(m)
n (x, y) (or, equivalently, the Gould–Hopper polynomials

gm
n (x, y) [9, p. 76, Eq. 1.9 (6)]) are given explicitly in[6, p. 58, Eq. (6.2)]

H(m)
n (x, y) := n!

[n/m]∑
r=0

xn−mr yr

(n − mr)! r! =: gm
n (x, y), (28)
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wherem is the order of the polynomial. The alternative operational definition:

H(m)
n (x, y) := exp

(
y

�m

�xm

)
{xn} (29)

is particularly useful in (for example) deriving the following generating function:

∞∑
n=0

tn

n! H(m)
n (x, y) = exp(xt + ytm). (30)

It is easily observed from the definition (28) that

H(1)
n (x, y) = (x + y)n and H(2)

n (x, y) = Hn(x, y), (31)

whereHn(x, y) denotes the Hermite–Kampé de Fériet polynomials defined by (1). Indeed, just as it was
pointed out by Srivastava and Manocha[9, pp. 76–77]in connection with the Gould–Hopper polynomials
gm

n (x, y), many obvious variations and special cases of thehigher-orderHermite polynomialsH(m)
n (x, y)

have been rediscovered in several different contexts, not only in the mathematical and statistical sciences,
but also in the physical and engineering sciences (see also[2,7,8]).

The family of functions biorthogonal to this last family of polynomialsH
(m)
n (x, y) have already been

studied in[7,8], and subsequently (with a different technique) in[4]. Here we will address the problem
by following the technique developed in the preceding sections. Therefore, our starting point will be the
assumption that the following expansion formula exists (see, for details[7,8]):

F(x) =
∞∑

n=0

an H
(2q)
n

(
x, (−1)q |y|

)
, (32)

which, forq = 1, corresponds obviously to the polynomial expansion (5) above.
We will now determine the expansion coefficientsan in (32) from the identity:

�(x|q) = exp

(
(−1)q+1|y| �2q

�x2q

)
{F(x)}

=
∞∑

n=0

an xn, (33)

where we have made use of the operational definition (29) withm = 2q andy replaced by(−1)q |y|. The
existence of the analogue of the Gauss–Weierstrass transform, which is needed in this case, is ensured by
the following integral formula (cf.[4,7,8]):

exp

(
(−1)q+1 	ĉ2q

)
=
∫ ∞

−∞
exp(−ĉ
)Sq(
, 	) d
, (34)

where, for convenience,

Sq(
, 	) = 1

2�

∫ ∞

−∞
exp

(
−	u2q + iu


)
du = Sq(−
, 	).
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Thus, in view of (34), Eq. (33) readily yields

�(x|q) =
∫ ∞

−∞
Sq(
, |y|)F (x − 
) d
. (35)

By performing the change of variables given by

x − 
 = �,

we find from (35) that

�(x|q) = −
∫ ∞

−∞
Sq(� − x, |y|)F (�) d�

= −
∞∑

n=0

(−x)n

n!
∫ ∞

−∞
S(n)

q (�, |y|)F (�) d�, (36)

where the superscriptn denotes thenth-order derivative ofSq(
, |y|) with respect to
.
By comparing (32) with (36), it is clear that the functions

�n(x|q) = (−1)n+1

n! S(n)
q (x, |y|) (37)

arebiorthogonalto the polynomials

H
(2q)
n

(
x, (−1)q |y|

)
.

This result is in agreement with the analogous conclusions of[4,7,8], which were obtained within a
different framework.

4. Concluding remarks and observations

In the preceding sections, we have exploited a general procedure to deal with the orthogonality prop-
erties of a large body of Hermite polynomial families. The obtained results and the fairly straightforward
underlying formalism are elements proving the usefulness and the generality of the method which can
easily be extended to other families of polynomials. The two-variablesimpleLaguerre polynomials can
indeed be defined by means of the following operational identity (cf.[2]):

Ln(x, y) := exp

(
−y

�

�x
x

�

�x

){
(−x)n

n!
}

= n!
n∑

r=0

(−x)r yn−r

(n − r)!(r!)2 = ynLn

(
x

y

)
, (38)

which can, in turn, be used to state the relevant orthogonality properties by applying a procedure analogous
to that outlined here for the Hermite case. Here, as usual,

Ln(x) := L(0)
n (x) = y−n Ln(xy, y) = Ln(x, 1)

denotes the classical Laguerre polynomial of order 0 and degreen in x.
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The extension of the above-detailed method to more involved forms of Hermite polynomials withn
variables andn indices, such as those defined below:

H{n}({x}, {�}
∣∣∣{�}) = exp

 n∑
j=1

�j

�2

�x2
j

+
n∑

l<j

�l,j

�2

�xj �xl

+
n∑

j=1

�j

�2

�x2
j

{ n∏
k=1

x
nk

k

}
({x} = x1, . . . , xn; {�} = �1, . . . , �n; {n} = n1, . . . , nn) (39)

can be accomplished with some minor algebraic complication, butwithoutany further conceptual impli-
cation.

In a forthcoming paper, we will consider the problem of a unified approach to the theory of orthogonal
polynomials by following the technique discussed in this paper.
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