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1. DIFFERENT MODELS OF VLSI COMPUTATION 

Sorting has been one of the central problems of computation in the last 
100 years. In 1880 the census data of the U.S.A. could not be evaluated. 
Motivated by this Hermann Hollerith developed a sorting machine. One 
hundred of such machines were able to evaluate 1890 census data (Knuth, 
1973). 

Sorting is also a theoretically interesting problem with significant prac- 
tical relevance. Around 1960 this led to the development of a series of fast 
sorting algorithms for sequential machines. Around 1970 more than a 
quarter of the world computer capacity was involved in sorting. 

Today, due to the fast growing use of data bases, the need for fast 
sorting algorithms has become even stronger. The development of VLSI 
technology allows for the realization of a new class of sorting algorithms 
that are by several magnitudes faster than those algorithms designed for 
sequential machines. This in turn started around 1980 the development of 
a new series of sorting algorithms that exploit the parallelism allowed for 
by the new technology (Bilardi, 1984; Thompson, 1983). 

The practical use of these new algorithms will depend heavily on tech- 
nological development. Similarly their theoretical evaluation depends 
heavily on the underlying hardware model (Thompson, 1983; Chazelle 
and Monier, 1981; Kung, 1982). 

A VLSI chip can be viewed as a computation graph whose vertices are 
information processing devices and whose arcs are wires, that is, electri- 
cal connections responsible for information transfer as well as for power 
supply and distribution of timing waveforms. A given computation graph 
is to be laid out in conformity with the rules dictated by technology 
(Bilardi, 1984). 
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The main difference of the hardware models is the way they model 
signal propagation time. Most authors evaluate VLSI algorithm under the 
constant or logarithmic model, i.e., the signal propagation time is as- 
sumed to be at most proportional to the logarithm of the wire length. 
Some authors postulate that the linear model should be used at least for 
future technology (Chazelle and Monier, 1981; Vitanyi, 1984a,b), since it 
is predicted that signal propagation time increases dramatically in relation 
to gate switching time (Mangir, 1983; Thompson and Raghavan, 1984). In 
the linear model signal propagation time is assumed to be proportional to 
the wire length. 

In this paper we investigate the impact of basing evaluation of VLSI 
sorting algorithms on the linear model. In Section 2 basic notations are 
introduced and the constant and linear models are defined. 

In Section 3 the known lower bounds for VLSI sorting under the con- 
stant model are cited and the impact of the linear model on lower and 
upper bounds for AT* and AP2 is investigated. Here new AT* and AP* 
optimal sorting algorithms are introduced. These are based on a compari- 
son exchange cell that processes keys of length k as V% x fl bit ma- 
trices. It is shown that the execution time of all AT* optimal sorting 
algorithms is proportional to 6 (n is the number of keys and k is their 
length). 

In Section 4 chip-external sorting algorithms are introduced. Algo- 
rithms of this kind have been presented by several authors (Kim et al., 
1984; Todd, 1978; Bonuccelli et al., 1984; Ja’Ja and Owens, 1985). The 
chip-external sorting algorithms presented here fit the linear model. They 
do not use a bus system and addressable memory. They use shift memory 
and are systolic in their nature. The data is circulated in a continuous flow 
several times through a VLSI sorting chip that performs a sort-split opera- 
tion on blocks of data. It is shown that the throughput of the sorting chip 
determines the asymptotic time complexity of the chip-external sorting 
algorithm. Furthermore it is shown that this throughput is maximal for 
AT* or AP2 optimal sorting algorithms. 

2. THE BASIS OF EVALUATION 

In this section the basic definitions needed for complexity analysis are 
given and the hardware model the complexity analysis is based on is 
defined. The hardware model reflects the restrictions of parallelism that 
are enforced by the technology to be used. 

2.1. Basic Definitions of Asymptotic Analysis 

In this paper the symbols i, j, k, m, n, no, ns are used for nonnegative 
integers. The symbols n, no, ns , and N represent numbers of keys and k is 
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used for the length of a key. The symbols c, cl, ~2, p, q, r, s, and x 
represent real numbers. 

DEFINITION 2.1. Letf = f(n), g = g(n), h = h(n) be functions of n. 

f(n) = O(g(n)) e 32, no : Vn > n&z) 5 c . g(n) 

f(n) = SL(g(n)) e 3c, no : Vn > nof(n) Z c . g(n) 

f(n) = @k(n)) eff(n) = Ok(n)) A&d = W(n)) 

f(n) E [R(g(n)), O(h(n))l G.f(n) = fKg(n)) Af(n) = O(h(n)). 

The mappings 0, CI, and 0 introduce classes of functions of similar 
complexity ignoring constant factors. The term asymptotic analysis is 
used throughout this paper to denote the evaluation of complexity func- 
tions by means of the above mappings. 

DEFINITION 2.2. f(n) = @(g(n)) e VE. > 0 : f(n) E [Cl(n~ . g(n)), 
O(n& * gw1. 

Definition 2.2 introduces a new classification of complexity functions 
which is characterized by the following lemmas. 

LEMMA 2.1. f(n) = @(g(n)) e lim,,, (logf(n) - log g(n))llog n) = 0. 

LEMMA 2.2. f(n) = @(g(n)) +f(n) = @(g(n)). 

Since the proofs of these lemmas are straightforward they are omitted 
here. The inverse of Lemma 2.2 is not true, thus 0 is a true refinement of 
@. While 0 ignores only constant factors, @ also ignores logarithmic 
factors. In a similar way other classifications of complexity functions can 
be given ignoring factors of different complexity. 

In this paper we mainly use 0, R. 0. Q, is needed in Section 4.3. 

2.2. The VLSI Hardware Model 

There are several levels of abstraction to look at a VLSI chip. Here we 
deal with two of these levels. 

On the upper level the VLSI chip can be viewed as a computation graph 
whose vertices are information processing devices and whose arcs are 
wires, that are electrical connections used for information transfer, power 
supply, or distribution of clock pulses. Throughout this paper we assume 
that there is a global clock synchronizing the actions of the information 
processing devices. 

On the lower level of abstraction we look at an embedding of the com- 
putation graph in the Euclidean plane. Here information processing de- 
vices and wires are represented as areas in the Euclidean plain. Wires are 
represented as connected sets of rectangular areas, each of them is called 
a wire segment. Information processing units are called gates or nodes 
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below. The computation graph is to be laid out in conformity with the 
rules dictated by technology. These rules whose justification is sometimes 
based on a rather delicate and subtle analysis (Bilardi, 1984) will be given 
below. 

The hardware model introduced here has been taken from Bilardi (1984) 
and Thompson (1983), omitting those rules that have no effect on the 
asymptotic behavior of the analyzed design. 

Assumption 1: The area. 

(a) Wire segments have minimal width X > 0 and a length 1 2 A. 
(b) The length of a wire is the sum of the lengths of its wire seg- 

ments. 
(c) Each point of the Euclidian plain is in at most v Z 2 wire seg- 

ments. (This assumption refers to the bounded number of layers on a 
chip.) 

(d) The area assigned to a node has O(1) units of area (the unit of 
area A*). Each node area is connected to (overlaps with) O(1) wire areas 
(bounded degree of nodes). 

(e) Areas assigned to nodes do not overlap. 
(f) The area of a VLSI circuit is the number of units of area in- 

cluded in the smallest rectangular containing the embedding of its compu- 
tation graph in the Euclidean plain. 

Assumption 2: The time. 

(a) In each clock period each wire carries at most one l-bit signal 
(unit bandwidth). This assumption restricts the use of wires for storage 
purposes. 

(b) Gates have a switching time of O(1) time units. 
(c) A bit requires O(1) units of time to propagate along a wire of 

arbitrary length. Under this assumption the model will be called the con- 
stant model. 

(c’) A bit needs O(f) to propagate along a wire of length 1. Under 
this assumption the model is called the linear model. 

(d) The computation time of an algorithm is the maximal number of 
units of time between the beginning and the end of a computation. 

(e) The period of an algorithm is the number of units of time be- 
tween the beginning of the input of one problem instance and the begin- 
ning of the input of the next problem instance. 

We assume that all gates are synchronized by a global clock. The clock 
period has O(1) time units under the constant model and O(d) time units 
under the linear model, where d is the maximal wire length of the ana- 
lyzed design. 

The use of the linear model for asymptotical analysis is equivalent to 
the use of the constant model with the additional protocol assumption that 
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only local communication is allowed. An algorithm satisfies this local 
communication assumption if there is a VLSI technical realization such 
that the length of the wires is bounded by some constant, which is inde- 
pendent of the problem size. 

Assumption 3: The node functions. 

(a) Each node function can be described by a finite state machine 
(of type Moore automata). The state of the Moore automata is repre- 
sented as bit vector with O(1) state bits. These state bits are newly deter- 
mined at each clock pulse depending on the old current state and on the 
input signals. The output signals depend on the state only. According to 
this characterization by finite state machine we split up the ports of a gate 
into input and output ports and assign directions to the arcs (wires). 

(b) If output from more than one gate is sent to the same input port, 
then these signals have to be identical at any time. 

Assumption 4: The protocol. 

(a) Each bit of the input data can be read only once (semelectiue). 
(b) Input and output of data are available at prespecified (instance 

independent) time (when-oblivious). 
(b’) The order of input and output of data is prespecified (instance 

independent). Condition (b’) is an alternative to (b) and is a weaker condi- 
tion (see below). 

(c) Input and output of data are available at prespecified (instance 
independent) ports (where-oblivious). 

(d) All input and output ports are at the boundary of the layout 
region. 

(e) All bits of a given input word enter the chip at the same input 
port (word-local protocol). 

Whenever the protocol assumption “when-oblivious” is asked for it 
should be checked whether the weaker condition (b’) would be sufficient. 
Condition (b’) has the advantage that for example in the case of sorting 
algorithms it would allow one to have the sorting time dependent on the 
instance. Thus almost sorted data could be processed faster than random 
data. 

Protocol condition (d) seems to be too strong for some upcoming tech- 
nologies and therefore might be dropped. 

Protocol condition (e) might not always be adequate but it seems rea- 
sonable especially when the data is supplied by some external storage 
according to this protocol assumption. 

Assumption 5: The sorting problem. 

(a) A problem instance of a VLSI sorting chip ,S consists of ns keys 
of length k (keys are binary numbers). 
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(b) LetX=(XI,XZ,. . . , X,,) be the input and Y = (Y, , Yz, 
Y,,) be the output of the sorting problem. Then Y is a permutation 

bf’x \;ith Y; I Y,,, (i E (1, 2, . . , 4 - 11). 

Since most of the analysis on sorting algorithms that can be found in the 
literature has been done using the constant model, in this paper some of 
the results stated for the constant model are reevaluated under the linear 
model. 

The linear model is equivalent to the constant model with the additional 
local communication assumption. Therefore lower bounds that are valid 
under the constant model are also valid under the linear model, and upper 
bounds presented in this paper for the linear model are also valid under 
the constant model. 

3. LOWERAND UPPERBOUNDS FORTHEASYMPTOTIC BEHAVIOROF 
VLSI SORTING ALGORITHMS 

In this section the lower bounds that are valid under the constant model 
are given (Bilardi, 1984). Then it is shown how these bounds change, 
when the linear model is applied. Then upper bounds are developed for 
the linear model, which show that the lower bounds cannot be improved 
any further. 

All analysis done in this paper refers to medium or large key length 
(Bilardi, 1984), i.e., k - log n = O(log n). Thus it is achieved that all keys 
of a given sorting problem can be different. 

3.1. Lower Bounds 

Bilardi gives lower and upper bounds for sorting algorithms on the 
measures of complexity A, T, and AT?: 

For k - log n = fl(log n) 

(a) A = f2(n log n)--this lower bound is gained computing the stor- 
age space needed to store the unsorted data. 

(b) T = R(log n)-the bounded degree assumption (Id) is used to 
prove this lower bound. 

(c) AT* = C&z* log* n) for T E [LR(log n), O(m)]-this lower 
bound is gained calculating flow of information across cuts of VLSI de- 
signs. 

The measure of complexity AT* is justified by the lower bound (c). In 
Section 4.3 there will be another justification for it. 

Since these lower bounds given by Bilardi are based on the constant 
model, they are also valid under the linear model as is explained in Sec- 
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tion 2. It can be shown however that the lower bounds for AT2 can be 
improved under the linear model. 

THEOREM 3.1. Under the linear model all realizations of sorting algo- 
rithms satisfy T = 0(m). 

Proof. Since in sorting every output bit depends on every input bit 
(Duris et al., 1985), we know that all input and output bits are within a 
circle of radius O(T). Furthermore all information that has any influence 
on the output must be within a radius of O(T) around the corresponding 
output port. Thus the whole area used for sorting is limited by A = O(T*). 
Using A = fi(n log n) and AT2 = LR(n* log* n) the theorem follows immedi- 
ately. n 

So under the linear model AT* optimal sorting algorithms can only exist 
for A = O(n log n) and T = O(m). 

For the LSSS-sorter (Lang et al., 1985) there are realizations such that 
A = O(nk) and T = 0(&k). In Section 3.2 it is shown that the LSSS- 
sorter can be modified such that it becomes AT2 and AP* optimal. 

So the asymptotic area and time complexity of all other sorting algo- 
rithms is greater or equal to that of LSSS sort. 

3.2. AT* Optimal Sorters under the Linear Model 

In Lang et al. (1985) the LSSS sorting algorithm is presented with A = 
O(nk) and T = O(fik). It uses local communication only. The compara- 
tor-exchange cell suggested for its realization consists of a bit serial com- 
parator and two k bit shift registers. It executes a comparison of two k bit 
numbers in time TV = O(k) using an area Av = O(k). The total area for the 
realization of this sorting algorithm is O(nAv) and its execution time is 
O(6Tv). 

Replacing in a realization of the LSSS-sorter all k bit shift registers by 
V% x fi matrices and all bit serial comparators by matrix comparators 
M with TMC = 0(X&) and A MC = O(k) results in a sorting algorithm with A 
= O(nk), T = O(V%), and AT? = O(n*k*). 

For the resulting algorithm the input and output forms a square matrix 
each component of which is a square matrix too. Therefore it is called the 
M-M-sorter. The design of the matrix comparator needed for its realiza- 
tion is given below. 

The matrix comparator is a systolic architecture somewhat similar to 
the bit serial comparator. The keys are stored as bit matrices and are 
pumped through the architecture’s most significant columns first. While 
they move through the comparator, each of their bit positions is com- 
pared. As long as there are no differences the columns can be output 
unchanged. As soon as the most significant position where the two pro- 
cessed numbers differ is found, the corresponding information has to be 
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spread to all bit positions of less significance, so that those columns can 
be exchanged if necessary. A floorplan for such an architecture is shown 
in Fig. 3.1. 

Each operation executed by the cells of this design consists of two 
phases. In the first place of each clock period each cell puts the informa- 
tion available to its input ports into its registers: B = b, b2 and C = cl c2. C 
and B can carry the values 00, 1 1 , 01, and 10. C = e denotes C = 00 or C = 
11. The contents of the registers B are shifted unchanged to the right 
neighbors, so that the structure of the matrices X and Y stays unchanged. 

The second phase of each clock period serves to spread the result of the 
comparison. The comparator cells C execute in this phase the following 
operation (Let C’ be the succeeding state of C), 

E ifE#e (**a:) 

S if E = e A S # e (*) 
(-;ci = C’ := 

N ifE=S=C=e (**,I 

C otherwise, 

where E, S, and N denote the east, south, and north neighbors of register 
C. The connections of the C cells to their north and south neighbors are 
not represented in Fig. 3.1. In the left column the contents of the C and B 
registers are identical right after the first place. Each of them contains a 
bit of X and a bit of Y with identical significance. 

The cells denoted by R execute the exchange operation corresponding 
to the result of the comparison (R’ is the succeeding state of R): 

b2bI if cIc? = 10 
rirS = R’ := 

hb2 otherwise. 

Proof of correctness of the matrix comparator. Let C(i, t) be the 
matrix of the C registers of the leftmost column at time t at the end of the 
first phase: 

C(i, t) = xir~ryir~t with t = 0, 1, . . . , w and w = V% - 1. 

Let j, p be the index of the most significant position where C(j, p) = 
a # e. Let C’(i, t) be the matrix of the C registers of column w at time t + 
w at the end of phase two (see Fig. 3.2). 

The value a has to be distributed at least to all C cells that belong to less 
significant positions of the binary numbers X and Y than C(j, p). Row (*) 
guarantees that the value a is distributed to all cells on top of it in its 
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of I/O ports 

FIG. 3. I. A matrix comparator 

column. Row (**) achieves that u is sent to all positions below in its 
column. So at most fi - I clock pulses after C(j, p) is generated, so in 
time before C(j, p) reaches an R cell F have C(i, p) = a for i = 0, . . . , IV. 
Row (***) guarantees that in the following time units all columns with a 
smaller column index than p receive the value a. So the R cells output the 
matrices X and Y according to a. n 

The VLSI technical realization of the architecture presented here con- 
sumes a larger than necessary area. Easy thoughts show what we can do 
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FIGURE 3.2 
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with k/2 comparators (CP) (see Fig. 3.3). All the ceils named B, SC, and 
SR in Fig. 3.3 are just shift registers. The R cells are identical to the R 
cells of Fig. 3.1. 

In the leftmost X&/2 columns of this design pairs of bits of identical 
significance are moved to the middle of the columns through the registers 
SC to the comparators CP. 

The comparator cell has a two bit state (referred to as c, initialized as c 
= cl c2 = 00). The successive state depends on the actual state of its three 
pairs of bits that CP receives as input. The top pair and bottom pair 
contain bits of identical significance of the numbers to be compared (they 
are denoted as t and b). The middle pair (denoted by m) is the state of its 
left neighbor. 

For the leftmost comparator the middle input is set to m = 00 (not 
shown in Fig. 3.3). These four bit pairs have different priorities reflecting 
the significance of the bit positions they represent: c > b > m > t. If none 
of these bit pairs is equal to e then the successive state of the cell will 
become 00. Otherwise it receives the value of the bit pair with highest 
priority among those which are unequal to e. Thus 

c c ifcfe 

b ifc=eAbie 
c;c; ZY C’ 11 

m ifc=b=eAmfe 

t otherwise. 

FIG. 3.3. A variation of the matrix comparator. 
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In the V%2 right columns the result of the comparison is handed 
through the registers SR to the R cells. The contents of the B registers is 
just moved to the right so that it can be output by the R cells according to 
the result of the comparison. 

Though this variant of the matrix comparator has the same asymptoti- 
cal area complexity as the first design, its real area consumption is signifi- 
cantly less since the comparator cells are much less area consumptive 
than one bit shift registers. (Here we assume that the size and speed of the 
comparator cells of the two different designs are similar, otherwise our 
statement would hold only for large k.) Such observations are of no signifi- 
cance as long as like here we just want to use the design to prove an upper 
bound. They are important though in case VLSI technical realizations of 
such comparators are planned. 

The matrix comparator above is designed for square matrices. This 
design can be generalized to arbitrary Y x s matrices: Their area require- 
ment is AMMC = O(G), their execution time is TMc = O(r + s), and their 
period is PMMc = O(s). Here the storage area for the data matrices is not 
included in the area requirements. 

In many cases, for example, if the matrix comparator is used in the M- 
M-sorter and s > r, two storage areas of size I’ x (s - r) are needed in 
front of each comparator. This would add up to an area requirement of 
@(t-s) for a comparator cell with two registers. 

The area-time complexity for an M-M sorter using r X s matrices to 
store the numbers is 

AT2 = O(n . AMC * n . T&) Edith AMc = O(r2 + max{r(s - I-),0}) and 

TMC = O(r + s). Sofur s 2 r : AT’ = O(n2rs3) andfor 

s < r : AT? = O(n2r4). 

With rs = k and r = @(V%) we have AT’ = O(n2k’). 

If r and s differ from O(d) then the resulting M-M-sorter is not AT? 
optimal anymore. There are AP? optimal EA-parallel sorting algorithms 
using the r X s comparator for any choice of r and s. Their realizations do 
not need the storage matrices in front of the comparator cells. These are 
presented in Section 3.3. 

Rearranging the input. Bilardi (1984) gives the protocol assumption, 
that all bits of a key are input to the same input node (word-local protocol, 
see Section 2). The M-M-sorter violates this protocol assumption, since it 
needs the keys as a x fi matrices. Algorithm SEMA (serial + matrix) 
does the transformation from bit serial to X& bit parallel in k steps. It is 
described below. 
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V% keys 

k bit 

I”““““““! I 

I I I 

I I I 

I I I 

I I I 

I 
I 1 I 
I I / 

Id (b) 

FIG. 3.4. Input (a) and output (b) of algorithm SEMA. 

‘hi keys 

fi bit 
- 

For didactical reasons algorithm SEMA is described as a static rather 
than as a systolic version. As shown in Fig. 3.4a it reads IZ k-bit numbers in 
a bit serial fashion into a V% x V% matrix of processors and generates 
a fi x 6 matrix each component of which is a V% x V’% matrix and 
represents a key (see Fig. 3.4b). 

Algorithm SEMA consists of the iterative application of algorithm 
TOSI (two matrices positioned on top of one another are transformed into 
two matrices positioned side by side). TOSI transforms in an 2r x s array 
of processors two r x s keys into two 2r x s/2 keys (KS = k). 

Algorithm TOSZ(r, s). Each of the 2rs processors has two one bit 
registers A and B (see Fig. 3.5). 

After input of the data all bits of the numbers X = x0 . . . x,,-, and Y = 
Yo . * - yrsPl are stored in the A registers (see Fig. 3.6a). 

A H B 

FIG. 3.5. A processing element with two registers 
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Step 1. The rs processors in the left half of the 2r x s processor 
array copy the contents of the A registers into the B registers (Fig. 3.6b). 

Step 2. In the r upper rows of processors the contents of the B 
registers are shifted from the left half to the right half. In the r rows below 
the contents of the A registers are shifted from the right half to the left half 
(Fig. 3.6~). 

Step 3. In the left half the bits are shifted upward and in the right 
half they are shifted downward until all bits are located in the A registers 
(Fig. 3.6d). 

(b) 

Cd) 

FIG. 3.6. Transforming two 2 x 8 bit numbers into two 4 x 4 bit numbers. 
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The time complexity of algorithm SEMA. Algorithm TOSI(r, s) needs 
1 + 2r + s/2 units of time. So Algorithm SEMA needs 

TsEMA = ; log k + 2 . 
Ii? log(h- I) 1 log h 

c 
2i + 2 . ;=I/2 log!,+ I) 2’ 

c 
I=0 

log@- I) 

= ;logk+1’22i2’+ c 2’=;logk+ti+k-2=0(k) 
i= I I= II? log h 

units of time. 
The time complexity of the M-M-sorter is WV’&). Thus fork = O(n) 

the transformation executed by SEMA can be incorporated into it, with- 
out changing its asymptotic area or time complexity. Thus we gain the 
following result: 

THEOREM 3.3. There are sorters which, evaluated under the linear 
model, have area complexity A = O(nk) and time complexity T = 
O(a). 

Thus we have shown that under the protocol assumption of local com- 
munication the lower bound AT* = R(n’k’) for sorting medium sized keys 
cannot be improved. 

There are also systolic realizations for the sorting algorithms presented 
by Thompson and Kung (1977) and Kumar and Hirschberg (1983) and 
Nassimi and Sahni (1979). These could also make use of the matrix com- 
parator achieving the same asymptotic area and time complexity as the 
M-M-sorter. Their real area and time complexity differ from those of the 
M-M-sorter only by small constant factors. 

3.3. AP* Optimal Sorters 

For many applications it is more important to have sorting algorithms 
with a small period than sorting algorithms with short execution time. 
Under the constant model AP* = fI(n*k*) holds for medium sized keys. 
This can be proved in evaluating information flow across bisections in the 
same way the AT2 lower bound is proved (Bilardi, 1984), taking into 
account that the flow of information necessary for the solution of a sorting 
problem is identical to the flow of information per period summed up over 
all problems that are under progress in a period. 

To show that this lower bound cannot be improved, variations of real- 
izations of odd-even transposition sort and of the M-M-sorter are used. 

The odd-even transposition sort as presented by Thompson (1983) is 
AP* optimal for P = k. Replacing in its realization the bit-serial compara- 
tor by an r x s matrix comparator results in an AP* optimal sorter with P 
= s. Since s can be picked arbitrarily out of [ 1, k] (sl k) we get Lemma 3.4. 
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LEMMA 3.4. Under the linear model there are AP2 optimal sorters for 
all P E [WI), O(k)]. 

The M-M-sorter for 6 x X& matrices can be used to sort r x fi 
matrices (riV%) with period P = O(rV%). The area is A = @(n/c) and AP2 
= O(r2nk2) = O(N2k2) with N = r&. 

Since r E [l, V?z] can be chosen arbitrarily with r(V% we get Lemma 
3.5. 

LEMMA 3.5. Under the linear model there are AP2 optimal sorting 
algorithms for all P E [a(%%), O(a)]. 

Putting these two lemmas together we get Theorem 3.4. 

THEOREM 3.4. Under the linear model there are AP* optimal sorters 
for all P E [a(l), 0(X&&)]. 

While under the linear model there are AT2 optimal sorters only for T = 
O(m) there are AP* optimal sorters for a large range for P. All upper 
bounds presented here can also be used under the constant model. 

4. CHIP-EXTERNAL SORTING 

The complexity measure AT2 represents a tradeoff for sorting algo- 
rithms. This tradeoff carries through to their realizations; i.e., there are 
sorting chips allowing for large problem sizes that are relatively slow, and 
there are sorting chips with small problem sizes that are relatively fast. 
The characteristic data of a sorting chip S that we are going to take into 
account are its maximal problem size it can handle ns, its sorting time to 
sort ns keys ts, and its period ps. 

Of course it depends on the set of sorting problems that have to be 
solved which of these parameters is most important. If the throughput of 
sorting problems is most important, we would want a small period. We 
also might need a small sorting time, or the size of the sorting problems 
might force us to use one of the relatively slow sorting chips, since they 
have a higher capacity. 

When the problem size exceeds the chip capacity the sorting chip can 
be used in a chip-external sorting algorithm. There are several external 
sorting algorithms presented in the literature, having similarities to the 
designs presented here. 

W. Kim et al. (1984) have presented an external sorting algorithm based 
on the two-way merge algorithm, which is similar to one of the designs 
presented in this paper, using the same external sorting scheme and 
achieving the same performance. The internal sorting algorithm they use 
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is tailored toward its use in a query processor and thus not optimal in 
general. 

S. Todd (1978) uses log n processors to sort n numbers in time O(n) 
using O(log n) queues of variable length. This makes their design more 
complex than the designs presented here. Furthermore is the number of 
processors used in their design dependent on n, while we can use any 
constant number of processors. 

M. A. Bonuccelli et al. (1984) use a mesh of trees to sort blocks of data 
and a RAM to store the data. Thus they need long distance communica- 
tion. Evaluated under the linear model such designs would be ruled out, 
since signal propagation time then leads asymptotically to unacceptable 
low performance. 

J. Ja’Ja’ and R. M. Owens (1985) use p processors to sort n numbers in 
time O(nlfi + n2/p2). They do stress the advantage of using serial mem- 
ory. Their designs are outperformed by the algorithms of this paper under 
the assumption that only a constant number of processors is used. 

Here we present two such external sorting algorithms that can be real- 
ized on a single board and use a sorting chip S to perform a sort split 
operation on blocks of data. 

Both algorithms are based on a similar hardware structure (see Fig. 
4.1). CZ is the input control unit and CO is the output control unit. All the 
other building blocks (MOO-Ml 1) in Fig. 4.1 consist of data chips. These 
data chips are huge shift registers. The main idea behind this structure is 
that it is systolic and can be realized using local communication only. So 
the evaluation of these algorithms will also be valid under the linear 
model. There is no bus system and no addressable memory. The data is 

MO1 

FIG. 4.1. A one board chip-external sorter. 
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continuously pumped through the data chips and the sorting chip directed 
by the control units. 

The input control unit CZ determines the shift memory from which to 
read. The output control unit determines where the sorted blocks of data 
go. The sorting chip S sorts two blocks of data of size ns/2 into one sorted 
block of size ns . 

Since the data chips consist of shift registers only and shift registers are 
usually part of the sorting chips, it can be assumed that the data chips can 
be driven at the same clock frequency as the sorting chip. Therefore the 
time complexity of such a design is totally determined by the parameters 
Q, ts , and ps of S and the problem size N. 

The number of pins needed for the data chips is less than or equal to the 
number of pins of the sorting chip. So the whole construction seems 
technically feasible whenever the sorting chip is technically feasible. 

If addressable memory and bus systems are used instead, as suggested 
by Miranker et al. (1983), the access time to the memory could determine 
the time complexity of the whole construction. 

A significant problem using VLSI sorting chips might be the data rates 
that the chip has to be supplied with. In case the data rates needed by the 
sorting chip are higher than the environment can supply, the construction 
suggested here can balance the chip data rates with those achievable by 
the environment. The data can be read using the low data rate and can be 
sorted at a high data rate. In order to do this it is suitable to introduce a 
third pair of shift registers, that can be used to handle input and output 
while the other two pairs are involved in sorting. 

Both sorting algorithms presented here start in a situation where 2’” 
blocks of unsorted data of ns/2 keys each are located in the shift memories 
MOO and Mol. The shift memories Ml0 and Ml 1 are empty. 

4.1. A Systolic Realization of Batcher’s Bitonic Sorter on 
Blocks of Data 

Batcher’s bitonic sorting algorithm sorts 2’” keys in (m - I)/2 stages. In 
each of these stages each of the 2” keys is involved in a comparison 
exchange operation. The algorithm does iterative merging of bitonic se- 
quences and each stage is realized by an algorithm of the “descend” class 
(Preparata and Vuillemin, 1981). Batchers bitonic sort on blocks of data 
(BBB(S)) is a systolic realization of Batchers bitonic sorting algorithm. 
Each of its stages is realized shifting the whole set of data through the 
sorting chip S. The sorting chip S sorts all pairs of blocks that are in 
corresponding positions in the two shift registers used as input memory. 

Executing part B of algorithm BBB(S) once does the sort-split opera- 
tion on all 2”-’ pairs of neighboring data blocks and is the realization of 
one stage of delay of the bitonic sorting net (Knuth, 1973). It needs 2”-’ . 
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ps + ts - ps units of time. Afterward MqO and Mql and S are empty and 
all the data are contained in MifO and Mql. So after input and output 
memory has been swapped (q : = 4) part B can be executed again. Part B 
is executed (m2 + m)/2 times. Thus the time complexity of algorithm 
BBB(S) is 

TBBB(S)(N) = (,“-I . ps + ts - ps) . (m? + m)/2. 

bit,(i) determines where the sorted blocks go and changes every 2” steps 
while the counter i runs from 0 to 2’“--’ - 1, so that each execution of part 
B involves the “perfect shuffle operation” (PS in Fig. 4.2) on groups of 2” 
blocks. 

ALGORITHM BBB(S) 

begin 
p := 0; q := 0 
forj:=Otom - 1 do 

/fork:= Otojdo 
begin 

ifk=jtbenp:=j 
(for i := 0 to 2’“-’ do 

begin 
Read one block each 

from MqO and Mql . 

A’BI 
Sort the ns keys 

in ascending order if bitj(i) = 0, 
in descending order otherwise. 

Shift the two resulting blocks 
to SPqr with r = bit,(i). 

\ end 
q := l?j 

\ end 
end 

The sequences of blocks denoted by L,! , R,! in Fig. 4.2 are the results of 
applying the “sort-split operation” to the sequences of blocks Li, R;. 

The positions of the blocks in the shift memory are denoted as shown in 
Fig. 4.3. 

The perfect shuffle operation moves a block from position Z to position 
Z’, where the binary number Z’ results from the binary number Z rotating 
the rightmostj + 1 bits of Z by one position to the right (Knuth, 1973). 

For k = 0 the indices of neighboring blocks differ only at bitj. So their 
difference is 2j. Each execution of part B decreases this difference by the 
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PS(L;.R;) 
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P.S(Li, R;) 

WL;.R;) 

MCYjl 

FIG. 4.2. The execution of one merge step. 

factor 2. For k = j it becomes I. Thus part A of algorithm BBB(S) is an 
algorithm of the “descent class” (Preparata and Vuillemin, 1981) and 
BBB(S) is a realization of the bitonic sorting algorithm. In Fig. 4.4 the 
block positions and the values of the variablesj, k, i, p, q are given for all 
points of time immediately before and after each execution of part B of 
algorithm BBB(S) for m = 3. Under the assumption 2” > tslps the time 
complexity of algorithm BBB(S) is 

TBBBcS, = O(m2 * 2’” .Pd=o(;.Ps. ). log2 $ 

For N = fl((n#) with a > 1 we get 

000 001 

010 011 

100 101 

110 111 

Md’ Mql 

FIG. 4.3. indices of block positions. 
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FIG. 4.4. The values of the variables during execution of BBB(S). 

So the time complexity of BBB(S) is inversely proportional to the 
throughput ds := nslps of the sorting chip used. 

So ds becomes the evaluation criterion for sorting chips if they are used 
in this chip-external sorting scheme. 

For two reasons BBB(S) is especially attractive for a VLSI technical 
implementation. On the one hand, it takes advantage of the short period 
of systolic sorting algorithms S. On the other hand the technical realiza- 
tion of its control units is very simple. The input control unit just consists 
of “or” gates and the output control unit does not need more than three 
counters for its realization. 

In spite of that there is a significant disadvantage of this algorithm: The 
whole set of data has to be pumped fl(log* N) times through the sorting 
chip, which is the number of stages of delay of the corresponding sorting 
net (Knuth, 1973). As shown in Section 4.2 there are chip-external sor- 
ting algorithms that only need to pump the set of keys @log N) times 
through S. 

4.2. A Systolic Realization of Two-Way Merge on Blocks of Data 

In comparison to BBB(S) two-way merge on blocks of data (TWB(S)) 
presented below seems less elegant. Its control structure is more complex 
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and is data dependent. Its time complexity is determined by ts and not by 
ps, so that it does not take advantage of short periods of systolic sorting 
algorithms S. 

The main advantage of TWB(S) is that the whole set of data has to be 
shifted through S only O(log N) times. Mehlhorn (1984) shows that the 
number of comparison exchange operations of two-way merge is minimal. 
Therefore the time complexity of TWB(S) is asymptotically optimal. 

The hardware structure for TWB(S) differs from that of BBB(S) only 
slightly. The control units CZ and CO perform more complex operations 
and after each sort-split operation one block of the sorted result is kept in 

ALGORITHM TWB(S) 

begin 
q := 1 ;p := 0; 
forj := 1 tom do 
begin 

B 

repeat 2”7-j times 
begin 

r := 0; no := 0; n( := I; 
D 

i 

Shift one block B from Mpl to S; 
max := largest key of B; 
repeat 2.’ - 1 times 
begin 
’ shift one block B’ from Mpr to S; 

nr ’ .= n, + 1; 
if maximal key of B’ > max 
A ni f 2-i-l v n,. = 21-l then 
begin 

C ( max : = maximal key of B’; 
r:= J 

end; 
sort in S; 
shift the block containing 

\ the smaller keys to Mpq 
end; 

1 

shift the last block 
E out of S to Mpq; 

q := 4 
end; 

F{ p:=j? 
end 

end. 
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the sorting chip S and is involved in the subsequent sort-split operation. If 
the sorting is done in ascending order, then it is the block containing the 
larger keys. 

Depending on the block of data read last the control unit CZ determines 
from which input memory the next block of data is obtained. The control 
unit CO alternates between the two output memories to store the sorted 
sequences of blocks. 

The algorithm starts with 2’” = 2Nlns blocks of unsorted data in MOO 
and Mol. 

Whenever part D is executed S is empty and the whole set of data is 
located in MpO and Mp 1. It consists of sequences of blocks of length 2j-I 
(Only forj = 1 the data inside the blocks is unsorted). Part D initializes the 
merge of two neighboring block sequences, shifting the top most block 
from Mpl into S and resetting the counters no and nl which count for both 
block sequences the number of blocks that have been processed. The 
input memory to be read from next is denoted by r. This is opposite to the 
source of the maximal key that has been read so far. 

In each of the 2’ - 1 repetitions of part C one block of data is read, max 
and r are determined, S sorts two blocks, and the block containing the 
smaller keys is shifted to the output memory. Each execution of part E 
completes the merge of two sequences of blocks of length 2j-’ to one 
sequence of length 2-i. The next sorted sequence will be shifted into the 
other output memory. 

Each execution of part B merges 2 m-j+1 sorted sequences of blocks of 
length 2~-’ into 2’“-j sequences of length 2~. Then part F switches input 
and output memory so that the next step of the iterative merge algorithm 
can start with doubled length of the block sequences. 

The time complexity of TWB(S) is 

TTWB(S) = ((m - 1) . 2’” + 1) * ts = 0 (log g .z, . ts. 

Under the assumption N > (ns)” for an a > 1 we get 

gs := nslts refers to the throughput of S as it is achieved when used in 
TWB. This need not be the maximal possible throughput for S if it is used 
in a different environment. In the following gs will be called the speed 
OfS. 
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4.3. Speedup of Chip-External Sorting Algorithms 

In this section we analyze the functional dependency between chip 
capacity and speed or throughput. 

To simplify the following analysis we neglect logarithmic factors in the 
complexity of the sorting algorithms classifying the complexities by @ 
(see Section 2.1). 

Let S be a VLSI sorting algorithm with area requirement As(n) = @(n’) 
and time complexity Ts(n) = @(nf’). Thus AsTz = @(nr+2P) with r + 2p 1 
2andrr 1. 

The chip capacity C (the number of units of area that are available for 
the realization of the sorting algorithm) is treated as a variable. This 
reflects the possibility of spreading the realization of a sorting algorithm 
over several chips on a single board, or of using only part of the available 
chip area. It also reflects the development of the VLSI technology, which 
leads to a dramatic increase in chip capacity. Thus C = As(ns) = @((ns)‘), 
i.e., C = C(ns) is the chip capacity needed to realize S with problem 
size ns . 

THEOREM 4.1. Let gs be the speed of the sorting algorithm S with As 
= @(n’) and Ts = @(nP). Then 

gs zz @(C”-/q 

Proof. 

C = @((ns)‘) with r 2 1 j ns = @(Clir). 

ns aqc “r) @(C “r) -= 
gs = Ts(ns) WhP) = @((@(C”‘)P) 

= qqC”W’). 

For AT* optimal sorting algorithms r + 2p = 2 j (1 - p)lr = $3 gs = 
@(C’“). 

Assume S is a suboptimal sorting algorithm: As Ti = Wz2+x) with x 2 0, 
(I thusr+2p=2+x+gs=@(C - x)‘2r). The function (v - x)/2r reaches its 

maximum for AT* optimal algorithms (X = 0). For x = r, gs = @(no) (see 
Thompson, 1983; Shin et al., 1983; Bilardi, 1984, for examples). For x > r 
the speed decreases with increasing chip capacity. Thus such algorithms 
are not suitable for any VLSI technical realization. 

THEOREM 4.2. Let S be a sorting algorithm with A = @(nr) and T = 
+(n”) and r + 2p = 2 + x with x 1 0. Then 

Proof. r + 2p = 2 + x j 1 - p = (r - x)/2 3 (1 - p)/r = $ - xi2r. n 
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Replacing T by P and gs by ds in Theorems 4.1 and 4.2 results in 

ds = @(c(IWr) = q,,(cw2-~/2r)) 

So speed (throughput) is maximal for AT2 (AP2) optimal algorithms. An 
increase in the chip capacity by a factor of b results in the case of AT2 
(AP2) optimal algorithms in a speedup SO = @(fib). Suboptimal algo- 
rithms get a speedup SS = SOI(@(bX’2r)). 

Thus, Theorem 4.2 is another justification for the measure of complex- 
ity AF for VLSI sorting algorithms. 

5. SUMMARY 

There are several different models of computation used on which to 
base evaluations of VLSI sorting algorithms and there are different mea- 
sures of complexity. This paper revises complexity results under the lin- 
ear model that have been gained under the constant model. This approach 
is due to expected technological development (see Mangir, 1983; Thomp- 
son and Raghavan, 1984; Vitanyi, 1984a, 1984b). 

For the constant model we know that for medium sized keys there are 
AT2 and AP2 optimal sorting algorithms with T ranging from R(log n) to 
O(a) and P ranging from n(l) to O(V%) (Bilardi, 1984). The main 
results of asymptotic analysis of sorting algorithms under the linear model 
are that the lower bounds allow AT2 optimal sorting algorithms only for T 
= O(V’&) but allow AP2 algorithms in the same range as under the 
constant model. Furthermore the sorting algorithms presented in this pa- 
per meet these lower bounds. This proves that these bounds cannot be 
improved for k = @(log n). The building block for the realization of these 
sorting algorithms is a comparison exchange module that compares r x s 
bit matrices in time TC = O(r + s) on an area AC = O(r2) (not including the 
storage area for the keys). 

For problem sizes that exceed realistic chip capacities, chip-external 
sorting algorithms can be used. In this paper two different chip-external 
sorting algorithms (BBB(S) and TWB(S)) are presented. They are de- 
signed to be implemented on a single board. They use a sorting chip S to 
perform the sort-split operation on blocks of data BBB(S) and TWB(S) 
are systolic algorithms using local communication only so that their evalu- 
ation does not depend on whether the constant or the linear model is used. 
Furthermore it seems obvious that their design is technically feasible 
whenever the sorting chip S is technically feasible. 

TWB has optimal asymptotic time complexity, so its existence proves 
that under the linear model external sorting can be done asymptotically as 
fast as under the constant model. The time complexity of TWB(S) is 
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linearly dependent on the speed gs = nslts. It is shown that the speed if 
looked at as a function of the chip capacity C is asymptotically maximal 
for AT2 optimal sorting algorithms. Thus S should be a sorting algorithm 
similar to the M-M-sorter presented in this paper. A major disadvantage 
of TWB(S) is that it cannot exploit the maximal throughput ds = ns/ps of a 
systolic sorting algorithm S. 

Therefore algorithm BBB(S) is introduced. The time complexity of 
BBB(S) is linearly dependent on ds. It is shown that the throughput is 
maximal for AP2 optimal algorithms. There is a wide range of such sorting 
algorithms including algorithms that can be realized in a way that is inde- 
pendent of the length of the keys. For example, BBB(S) with S being a 
highly parallel version of odd-even transposition sort has this kind of 
flexibility. A disadvantage of BBB(S) is that it is asymptotically slower 
than TWB(S). 
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