
JOURNAL OF COMPLEXITY 4, 330-355 (1988)

VLSI-Sorting Evaluated under the Linear Model

H. SCHRODER

Computer Science Laborutory, Australian Nationul University,
Canberru, ACT 2601, Australia

1. DIFFERENT MODELS OF VLSI COMPUTATION

Sorting has been one of the central problems of computation in the last
100 years. In 1880 the census data of the U.S.A. could not be evaluated.
Motivated by this Hermann Hollerith developed a sorting machine. One
hundred of such machines were able to evaluate 1890 census data (Knuth,
1973).

Sorting is also a theoretically interesting problem with significant prac-
tical relevance. Around 1960 this led to the development of a series of fast
sorting algorithms for sequential machines. Around 1970 more than a
quarter of the world computer capacity was involved in sorting.

Today, due to the fast growing use of data bases, the need for fast
sorting algorithms has become even stronger. The development of VLSI
technology allows for the realization of a new class of sorting algorithms
that are by several magnitudes faster than those algorithms designed for
sequential machines. This in turn started around 1980 the development of
a new series of sorting algorithms that exploit the parallelism allowed for
by the new technology (Bilardi, 1984; Thompson, 1983).

The practical use of these new algorithms will depend heavily on tech-
nological development. Similarly their theoretical evaluation depends
heavily on the underlying hardware model (Thompson, 1983; Chazelle
and Monier, 1981; Kung, 1982).

A VLSI chip can be viewed as a computation graph whose vertices are
information processing devices and whose arcs are wires, that is, electri-
cal connections responsible for information transfer as well as for power
supply and distribution of timing waveforms. A given computation graph
is to be laid out in conformity with the rules dictated by technology
(Bilardi, 1984).

330
0885-064X/88 $3 .oo
Copyright 0 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82220301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VLSI-SORTING 331

The main difference of the hardware models is the way they model
signal propagation time. Most authors evaluate VLSI algorithm under the
constant or logarithmic model, i.e., the signal propagation time is as-
sumed to be at most proportional to the logarithm of the wire length.
Some authors postulate that the linear model should be used at least for
future technology (Chazelle and Monier, 1981; Vitanyi, 1984a,b), since it
is predicted that signal propagation time increases dramatically in relation
to gate switching time (Mangir, 1983; Thompson and Raghavan, 1984). In
the linear model signal propagation time is assumed to be proportional to
the wire length.

In this paper we investigate the impact of basing evaluation of VLSI
sorting algorithms on the linear model. In Section 2 basic notations are
introduced and the constant and linear models are defined.

In Section 3 the known lower bounds for VLSI sorting under the con-
stant model are cited and the impact of the linear model on lower and
upper bounds for AT* and AP2 is investigated. Here new AT* and AP*
optimal sorting algorithms are introduced. These are based on a compari-
son exchange cell that processes keys of length k as V% x fl bit ma-
trices. It is shown that the execution time of all AT* optimal sorting
algorithms is proportional to 6 (n is the number of keys and k is their
length).

In Section 4 chip-external sorting algorithms are introduced. Algo-
rithms of this kind have been presented by several authors (Kim et al.,
1984; Todd, 1978; Bonuccelli et al., 1984; Ja’Ja and Owens, 1985). The
chip-external sorting algorithms presented here fit the linear model. They
do not use a bus system and addressable memory. They use shift memory
and are systolic in their nature. The data is circulated in a continuous flow
several times through a VLSI sorting chip that performs a sort-split opera-
tion on blocks of data. It is shown that the throughput of the sorting chip
determines the asymptotic time complexity of the chip-external sorting
algorithm. Furthermore it is shown that this throughput is maximal for
AT* or AP2 optimal sorting algorithms.

2. THE BASIS OF EVALUATION

In this section the basic definitions needed for complexity analysis are
given and the hardware model the complexity analysis is based on is
defined. The hardware model reflects the restrictions of parallelism that
are enforced by the technology to be used.

2.1. Basic Definitions of Asymptotic Analysis

In this paper the symbols i, j, k, m, n, no, ns are used for nonnegative
integers. The symbols n, no, ns , and N represent numbers of keys and k is

332 H. SCHRijDER

used for the length of a key. The symbols c, cl, ~2, p, q, r, s, and x
represent real numbers.

DEFINITION 2.1. Letf = f(n), g = g(n), h = h(n) be functions of n.

f(n) = O(g(n)) e 32, no : Vn > n&z) 5 c . g(n)

f(n) = SL(g(n)) e 3c, no : Vn > nof(n) Z c . g(n)

f(n) = @k(n)) eff(n) = Ok(n)) A&d = W(n))

f(n) E [R(g(n)), O(h(n))l G.f(n) = fKg(n)) Af(n) = O(h(n)).

The mappings 0, CI, and 0 introduce classes of functions of similar
complexity ignoring constant factors. The term asymptotic analysis is
used throughout this paper to denote the evaluation of complexity func-
tions by means of the above mappings.

DEFINITION 2.2. f(n) = @(g(n)) e VE. > 0 : f(n) E [Cl(n~ . g(n)),
O(n& * gw1.

Definition 2.2 introduces a new classification of complexity functions
which is characterized by the following lemmas.

LEMMA 2.1. f(n) = @(g(n)) e lim,,, (logf(n) - log g(n))llog n) = 0.

LEMMA 2.2. f(n) = @(g(n)) +f(n) = @(g(n)).

Since the proofs of these lemmas are straightforward they are omitted
here. The inverse of Lemma 2.2 is not true, thus 0 is a true refinement of
@. While 0 ignores only constant factors, @ also ignores logarithmic
factors. In a similar way other classifications of complexity functions can
be given ignoring factors of different complexity.

In this paper we mainly use 0, R. 0. Q, is needed in Section 4.3.

2.2. The VLSI Hardware Model

There are several levels of abstraction to look at a VLSI chip. Here we
deal with two of these levels.

On the upper level the VLSI chip can be viewed as a computation graph
whose vertices are information processing devices and whose arcs are
wires, that are electrical connections used for information transfer, power
supply, or distribution of clock pulses. Throughout this paper we assume
that there is a global clock synchronizing the actions of the information
processing devices.

On the lower level of abstraction we look at an embedding of the com-
putation graph in the Euclidean plane. Here information processing de-
vices and wires are represented as areas in the Euclidean plain. Wires are
represented as connected sets of rectangular areas, each of them is called
a wire segment. Information processing units are called gates or nodes

VLSI-SORTING 333

below. The computation graph is to be laid out in conformity with the
rules dictated by technology. These rules whose justification is sometimes
based on a rather delicate and subtle analysis (Bilardi, 1984) will be given
below.

The hardware model introduced here has been taken from Bilardi (1984)
and Thompson (1983), omitting those rules that have no effect on the
asymptotic behavior of the analyzed design.

Assumption 1: The area.

(a) Wire segments have minimal width X > 0 and a length 1 2 A.
(b) The length of a wire is the sum of the lengths of its wire seg-

ments.
(c) Each point of the Euclidian plain is in at most v Z 2 wire seg-

ments. (This assumption refers to the bounded number of layers on a
chip.)

(d) The area assigned to a node has O(1) units of area (the unit of
area A*). Each node area is connected to (overlaps with) O(1) wire areas
(bounded degree of nodes).

(e) Areas assigned to nodes do not overlap.
(f) The area of a VLSI circuit is the number of units of area in-

cluded in the smallest rectangular containing the embedding of its compu-
tation graph in the Euclidean plain.

Assumption 2: The time.

(a) In each clock period each wire carries at most one l-bit signal
(unit bandwidth). This assumption restricts the use of wires for storage
purposes.

(b) Gates have a switching time of O(1) time units.
(c) A bit requires O(1) units of time to propagate along a wire of

arbitrary length. Under this assumption the model will be called the con-
stant model.

(c’) A bit needs O(f) to propagate along a wire of length 1. Under
this assumption the model is called the linear model.

(d) The computation time of an algorithm is the maximal number of
units of time between the beginning and the end of a computation.

(e) The period of an algorithm is the number of units of time be-
tween the beginning of the input of one problem instance and the begin-
ning of the input of the next problem instance.

We assume that all gates are synchronized by a global clock. The clock
period has O(1) time units under the constant model and O(d) time units
under the linear model, where d is the maximal wire length of the ana-
lyzed design.

The use of the linear model for asymptotical analysis is equivalent to
the use of the constant model with the additional protocol assumption that

334 H. SCHRiiDER

only local communication is allowed. An algorithm satisfies this local
communication assumption if there is a VLSI technical realization such
that the length of the wires is bounded by some constant, which is inde-
pendent of the problem size.

Assumption 3: The node functions.

(a) Each node function can be described by a finite state machine
(of type Moore automata). The state of the Moore automata is repre-
sented as bit vector with O(1) state bits. These state bits are newly deter-
mined at each clock pulse depending on the old current state and on the
input signals. The output signals depend on the state only. According to
this characterization by finite state machine we split up the ports of a gate
into input and output ports and assign directions to the arcs (wires).

(b) If output from more than one gate is sent to the same input port,
then these signals have to be identical at any time.

Assumption 4: The protocol.

(a) Each bit of the input data can be read only once (semelectiue).
(b) Input and output of data are available at prespecified (instance

independent) time (when-oblivious).
(b’) The order of input and output of data is prespecified (instance

independent). Condition (b’) is an alternative to (b) and is a weaker condi-
tion (see below).

(c) Input and output of data are available at prespecified (instance
independent) ports (where-oblivious).

(d) All input and output ports are at the boundary of the layout
region.

(e) All bits of a given input word enter the chip at the same input
port (word-local protocol).

Whenever the protocol assumption “when-oblivious” is asked for it
should be checked whether the weaker condition (b’) would be sufficient.
Condition (b’) has the advantage that for example in the case of sorting
algorithms it would allow one to have the sorting time dependent on the
instance. Thus almost sorted data could be processed faster than random
data.

Protocol condition (d) seems to be too strong for some upcoming tech-
nologies and therefore might be dropped.

Protocol condition (e) might not always be adequate but it seems rea-
sonable especially when the data is supplied by some external storage
according to this protocol assumption.

Assumption 5: The sorting problem.

(a) A problem instance of a VLSI sorting chip ,S consists of ns keys
of length k (keys are binary numbers).

VLSI-SORTING 335

(b) LetX=(XI,XZ,. . . , X,,) be the input and Y = (Y, , Yz,
Y,,) be the output of the sorting problem. Then Y is a permutation

bf’x \;ith Y; I Y,,, (i E (1, 2, . . , 4 - 11).

Since most of the analysis on sorting algorithms that can be found in the
literature has been done using the constant model, in this paper some of
the results stated for the constant model are reevaluated under the linear
model.

The linear model is equivalent to the constant model with the additional
local communication assumption. Therefore lower bounds that are valid
under the constant model are also valid under the linear model, and upper
bounds presented in this paper for the linear model are also valid under
the constant model.

3. LOWERAND UPPERBOUNDS FORTHEASYMPTOTIC BEHAVIOROF
VLSI SORTING ALGORITHMS

In this section the lower bounds that are valid under the constant model
are given (Bilardi, 1984). Then it is shown how these bounds change,
when the linear model is applied. Then upper bounds are developed for
the linear model, which show that the lower bounds cannot be improved
any further.

All analysis done in this paper refers to medium or large key length
(Bilardi, 1984), i.e., k - log n = O(log n). Thus it is achieved that all keys
of a given sorting problem can be different.

3.1. Lower Bounds

Bilardi gives lower and upper bounds for sorting algorithms on the
measures of complexity A, T, and AT?:

For k - log n = fl(log n)

(a) A = f2(n log n)--this lower bound is gained computing the stor-
age space needed to store the unsorted data.

(b) T = R(log n)-the bounded degree assumption (Id) is used to
prove this lower bound.

(c) AT* = C&z* log* n) for T E [LR(log n), O(m)]-this lower
bound is gained calculating flow of information across cuts of VLSI de-
signs.

The measure of complexity AT* is justified by the lower bound (c). In
Section 4.3 there will be another justification for it.

Since these lower bounds given by Bilardi are based on the constant
model, they are also valid under the linear model as is explained in Sec-

336 H.SCHRijDER

tion 2. It can be shown however that the lower bounds for AT2 can be
improved under the linear model.

THEOREM 3.1. Under the linear model all realizations of sorting algo-
rithms satisfy T = 0(m).

Proof. Since in sorting every output bit depends on every input bit
(Duris et al., 1985), we know that all input and output bits are within a
circle of radius O(T). Furthermore all information that has any influence
on the output must be within a radius of O(T) around the corresponding
output port. Thus the whole area used for sorting is limited by A = O(T*).
Using A = fi(n log n) and AT2 = LR(n* log* n) the theorem follows immedi-
ately. n

So under the linear model AT* optimal sorting algorithms can only exist
for A = O(n log n) and T = O(m).

For the LSSS-sorter (Lang et al., 1985) there are realizations such that
A = O(nk) and T = 0(&k). In Section 3.2 it is shown that the LSSS-
sorter can be modified such that it becomes AT2 and AP* optimal.

So the asymptotic area and time complexity of all other sorting algo-
rithms is greater or equal to that of LSSS sort.

3.2. AT* Optimal Sorters under the Linear Model

In Lang et al. (1985) the LSSS sorting algorithm is presented with A =
O(nk) and T = O(fik). It uses local communication only. The compara-
tor-exchange cell suggested for its realization consists of a bit serial com-
parator and two k bit shift registers. It executes a comparison of two k bit
numbers in time TV = O(k) using an area Av = O(k). The total area for the
realization of this sorting algorithm is O(nAv) and its execution time is
O(6Tv).

Replacing in a realization of the LSSS-sorter all k bit shift registers by
V% x fi matrices and all bit serial comparators by matrix comparators
M with TMC = 0(X&) and A MC = O(k) results in a sorting algorithm with A
= O(nk), T = O(V%), and AT? = O(n*k*).

For the resulting algorithm the input and output forms a square matrix
each component of which is a square matrix too. Therefore it is called the
M-M-sorter. The design of the matrix comparator needed for its realiza-
tion is given below.

The matrix comparator is a systolic architecture somewhat similar to
the bit serial comparator. The keys are stored as bit matrices and are
pumped through the architecture’s most significant columns first. While
they move through the comparator, each of their bit positions is com-
pared. As long as there are no differences the columns can be output
unchanged. As soon as the most significant position where the two pro-
cessed numbers differ is found, the corresponding information has to be

VLSI-SORTING 337

spread to all bit positions of less significance, so that those columns can
be exchanged if necessary. A floorplan for such an architecture is shown
in Fig. 3.1.

Each operation executed by the cells of this design consists of two
phases. In the first place of each clock period each cell puts the informa-
tion available to its input ports into its registers: B = b, b2 and C = cl c2. C
and B can carry the values 00, 1 1 , 01, and 10. C = e denotes C = 00 or C =
11. The contents of the registers B are shifted unchanged to the right
neighbors, so that the structure of the matrices X and Y stays unchanged.

The second phase of each clock period serves to spread the result of the
comparison. The comparator cells C execute in this phase the following
operation (Let C’ be the succeeding state of C),

E ifE#e (**a:)

S if E = e A S # e (*)
(-;ci = C’ :=

N ifE=S=C=e (**,I

C otherwise,

where E, S, and N denote the east, south, and north neighbors of register
C. The connections of the C cells to their north and south neighbors are
not represented in Fig. 3.1. In the left column the contents of the C and B
registers are identical right after the first place. Each of them contains a
bit of X and a bit of Y with identical significance.

The cells denoted by R execute the exchange operation corresponding
to the result of the comparison (R’ is the succeeding state of R):

b2bI if cIc? = 10
rirS = R’ :=

hb2 otherwise.

Proof of correctness of the matrix comparator. Let C(i, t) be the
matrix of the C registers of the leftmost column at time t at the end of the
first phase:

C(i, t) = xir~ryir~t with t = 0, 1, . . . , w and w = V% - 1.

Let j, p be the index of the most significant position where C(j, p) =
a # e. Let C’(i, t) be the matrix of the C registers of column w at time t +
w at the end of phase two (see Fig. 3.2).

The value a has to be distributed at least to all C cells that belong to less
significant positions of the binary numbers X and Y than C(j, p). Row (*)
guarantees that the value a is distributed to all cells on top of it in its

338 H. SCHRijDER

20 24 2s x12

Xl 25 29 213

22 26 X10 214

23 27 211 215

Yo Y4 YS YlZ

Yl Y5 3/s Yl3

YZ YS YlO Yl4

Y3 Y7 Yll Yl5

x$ x; 2; xi2
4 4 Xb d3

x4 2: 40 2;4

4 4 41 45

d Y; Y;i YL

Y; Y; Y;, Y:3

Y; YA Ylo Yi4

Yi YS Yil Yi5

denotations

of I/O ports

FIG. 3. I. A matrix comparator

column. Row (**) achieves that u is sent to all positions below in its
column. So at most fi - I clock pulses after C(j, p) is generated, so in
time before C(j, p) reaches an R cell F have C(i, p) = a for i = 0, . . . , IV.
Row (***) guarantees that in the following time units all columns with a
smaller column index than p receive the value a. So the R cells output the
matrices X and Y according to a. n

The VLSI technical realization of the architecture presented here con-
sumes a larger than necessary area. Easy thoughts show what we can do

x x

J’+ X x

x x

x x

x x

P
1
I e

u c

e e

e e

r e

ai, 2)

P

i

e a 0 a e (’

e a N LI e r

e cl ‘, CI e e

e (1 (1 a e e

C’(i, 2)

FIGURE 3.2

VLSI-SORTING 339

with k/2 comparators (CP) (see Fig. 3.3). All the ceils named B, SC, and
SR in Fig. 3.3 are just shift registers. The R cells are identical to the R
cells of Fig. 3.1.

In the leftmost X&/2 columns of this design pairs of bits of identical
significance are moved to the middle of the columns through the registers
SC to the comparators CP.

The comparator cell has a two bit state (referred to as c, initialized as c
= cl c2 = 00). The successive state depends on the actual state of its three
pairs of bits that CP receives as input. The top pair and bottom pair
contain bits of identical significance of the numbers to be compared (they
are denoted as t and b). The middle pair (denoted by m) is the state of its
left neighbor.

For the leftmost comparator the middle input is set to m = 00 (not
shown in Fig. 3.3). These four bit pairs have different priorities reflecting
the significance of the bit positions they represent: c > b > m > t. If none
of these bit pairs is equal to e then the successive state of the cell will
become 00. Otherwise it receives the value of the bit pair with highest
priority among those which are unequal to e. Thus

c c ifcfe

b ifc=eAbie
c;c; ZY C’ 11

m ifc=b=eAmfe

t otherwise.

FIG. 3.3. A variation of the matrix comparator.

340 H. SCHRiiDER

In the V%2 right columns the result of the comparison is handed
through the registers SR to the R cells. The contents of the B registers is
just moved to the right so that it can be output by the R cells according to
the result of the comparison.

Though this variant of the matrix comparator has the same asymptoti-
cal area complexity as the first design, its real area consumption is signifi-
cantly less since the comparator cells are much less area consumptive
than one bit shift registers. (Here we assume that the size and speed of the
comparator cells of the two different designs are similar, otherwise our
statement would hold only for large k.) Such observations are of no signifi-
cance as long as like here we just want to use the design to prove an upper
bound. They are important though in case VLSI technical realizations of
such comparators are planned.

The matrix comparator above is designed for square matrices. This
design can be generalized to arbitrary Y x s matrices: Their area require-
ment is AMMC = O(G), their execution time is TMc = O(r + s), and their
period is PMMc = O(s). Here the storage area for the data matrices is not
included in the area requirements.

In many cases, for example, if the matrix comparator is used in the M-
M-sorter and s > r, two storage areas of size I’ x (s - r) are needed in
front of each comparator. This would add up to an area requirement of
@(t-s) for a comparator cell with two registers.

The area-time complexity for an M-M sorter using r X s matrices to
store the numbers is

AT2 = O(n . AMC * n . T&) Edith AMc = O(r2 + max{r(s - I-),0}) and

TMC = O(r + s). Sofur s 2 r : AT’ = O(n2rs3) andfor

s < r : AT? = O(n2r4).

With rs = k and r = @(V%) we have AT’ = O(n2k’).

If r and s differ from O(d) then the resulting M-M-sorter is not AT?
optimal anymore. There are AP? optimal EA-parallel sorting algorithms
using the r X s comparator for any choice of r and s. Their realizations do
not need the storage matrices in front of the comparator cells. These are
presented in Section 3.3.

Rearranging the input. Bilardi (1984) gives the protocol assumption,
that all bits of a key are input to the same input node (word-local protocol,
see Section 2). The M-M-sorter violates this protocol assumption, since it
needs the keys as a x fi matrices. Algorithm SEMA (serial + matrix)
does the transformation from bit serial to X& bit parallel in k steps. It is
described below.

VLSI-SORTING 341

V% keys

k bit

I”““““““! I

I I I

I I I

I I I

I I I

I
I 1 I
I I /

Id (b)

FIG. 3.4. Input (a) and output (b) of algorithm SEMA.

‘hi keys

fi bit
-

For didactical reasons algorithm SEMA is described as a static rather
than as a systolic version. As shown in Fig. 3.4a it reads IZ k-bit numbers in
a bit serial fashion into a V% x V% matrix of processors and generates
a fi x 6 matrix each component of which is a V% x V’% matrix and
represents a key (see Fig. 3.4b).

Algorithm SEMA consists of the iterative application of algorithm
TOSI (two matrices positioned on top of one another are transformed into
two matrices positioned side by side). TOSI transforms in an 2r x s array
of processors two r x s keys into two 2r x s/2 keys (KS = k).

Algorithm TOSZ(r, s). Each of the 2rs processors has two one bit
registers A and B (see Fig. 3.5).

After input of the data all bits of the numbers X = x0 . . . x,,-, and Y =
Yo . * - yrsPl are stored in the A registers (see Fig. 3.6a).

A H B

FIG. 3.5. A processing element with two registers

342 H. SCHRijDER

Step 1. The rs processors in the left half of the 2r x s processor
array copy the contents of the A registers into the B registers (Fig. 3.6b).

Step 2. In the r upper rows of processors the contents of the B
registers are shifted from the left half to the right half. In the r rows below
the contents of the A registers are shifted from the right half to the left half
(Fig. 3.6~).

Step 3. In the left half the bits are shifted upward and in the right
half they are shifted downward until all bits are located in the A registers
(Fig. 3.6d).

(b)

Cd)

FIG. 3.6. Transforming two 2 x 8 bit numbers into two 4 x 4 bit numbers.

VLSI-SORTING 343

The time complexity of algorithm SEMA. Algorithm TOSI(r, s) needs
1 + 2r + s/2 units of time. So Algorithm SEMA needs

TsEMA = ; log k + 2 .
Ii? log(h- I) 1 log h

c
2i + 2 . ;=I/2 log!,+ I) 2’

c
I=0

log@- I)

= ;logk+1’22i2’+ c 2’=;logk+ti+k-2=0(k)
i= I I= II? log h

units of time.
The time complexity of the M-M-sorter is WV’&). Thus fork = O(n)

the transformation executed by SEMA can be incorporated into it, with-
out changing its asymptotic area or time complexity. Thus we gain the
following result:

THEOREM 3.3. There are sorters which, evaluated under the linear
model, have area complexity A = O(nk) and time complexity T =
O(a).

Thus we have shown that under the protocol assumption of local com-
munication the lower bound AT* = R(n’k’) for sorting medium sized keys
cannot be improved.

There are also systolic realizations for the sorting algorithms presented
by Thompson and Kung (1977) and Kumar and Hirschberg (1983) and
Nassimi and Sahni (1979). These could also make use of the matrix com-
parator achieving the same asymptotic area and time complexity as the
M-M-sorter. Their real area and time complexity differ from those of the
M-M-sorter only by small constant factors.

3.3. AP* Optimal Sorters

For many applications it is more important to have sorting algorithms
with a small period than sorting algorithms with short execution time.
Under the constant model AP* = fI(n*k*) holds for medium sized keys.
This can be proved in evaluating information flow across bisections in the
same way the AT2 lower bound is proved (Bilardi, 1984), taking into
account that the flow of information necessary for the solution of a sorting
problem is identical to the flow of information per period summed up over
all problems that are under progress in a period.

To show that this lower bound cannot be improved, variations of real-
izations of odd-even transposition sort and of the M-M-sorter are used.

The odd-even transposition sort as presented by Thompson (1983) is
AP* optimal for P = k. Replacing in its realization the bit-serial compara-
tor by an r x s matrix comparator results in an AP* optimal sorter with P
= s. Since s can be picked arbitrarily out of [1, k] (sl k) we get Lemma 3.4.

344 H. SCHRGDER

LEMMA 3.4. Under the linear model there are AP2 optimal sorters for
all P E [WI), O(k)].

The M-M-sorter for 6 x X& matrices can be used to sort r x fi
matrices (riV%) with period P = O(rV%). The area is A = @(n/c) and AP2
= O(r2nk2) = O(N2k2) with N = r&.

Since r E [l, V?z] can be chosen arbitrarily with r(V% we get Lemma
3.5.

LEMMA 3.5. Under the linear model there are AP2 optimal sorting
algorithms for all P E [a(%%), O(a)].

Putting these two lemmas together we get Theorem 3.4.

THEOREM 3.4. Under the linear model there are AP* optimal sorters
for all P E [a(l), 0(X&&)].

While under the linear model there are AT2 optimal sorters only for T =
O(m) there are AP* optimal sorters for a large range for P. All upper
bounds presented here can also be used under the constant model.

4. CHIP-EXTERNAL SORTING

The complexity measure AT2 represents a tradeoff for sorting algo-
rithms. This tradeoff carries through to their realizations; i.e., there are
sorting chips allowing for large problem sizes that are relatively slow, and
there are sorting chips with small problem sizes that are relatively fast.
The characteristic data of a sorting chip S that we are going to take into
account are its maximal problem size it can handle ns, its sorting time to
sort ns keys ts, and its period ps.

Of course it depends on the set of sorting problems that have to be
solved which of these parameters is most important. If the throughput of
sorting problems is most important, we would want a small period. We
also might need a small sorting time, or the size of the sorting problems
might force us to use one of the relatively slow sorting chips, since they
have a higher capacity.

When the problem size exceeds the chip capacity the sorting chip can
be used in a chip-external sorting algorithm. There are several external
sorting algorithms presented in the literature, having similarities to the
designs presented here.

W. Kim et al. (1984) have presented an external sorting algorithm based
on the two-way merge algorithm, which is similar to one of the designs
presented in this paper, using the same external sorting scheme and
achieving the same performance. The internal sorting algorithm they use

VLSI-SORTING 345

is tailored toward its use in a query processor and thus not optimal in
general.

S. Todd (1978) uses log n processors to sort n numbers in time O(n)
using O(log n) queues of variable length. This makes their design more
complex than the designs presented here. Furthermore is the number of
processors used in their design dependent on n, while we can use any
constant number of processors.

M. A. Bonuccelli et al. (1984) use a mesh of trees to sort blocks of data
and a RAM to store the data. Thus they need long distance communica-
tion. Evaluated under the linear model such designs would be ruled out,
since signal propagation time then leads asymptotically to unacceptable
low performance.

J. Ja’Ja’ and R. M. Owens (1985) use p processors to sort n numbers in
time O(nlfi + n2/p2). They do stress the advantage of using serial mem-
ory. Their designs are outperformed by the algorithms of this paper under
the assumption that only a constant number of processors is used.

Here we present two such external sorting algorithms that can be real-
ized on a single board and use a sorting chip S to perform a sort split
operation on blocks of data.

Both algorithms are based on a similar hardware structure (see Fig.
4.1). CZ is the input control unit and CO is the output control unit. All the
other building blocks (MOO-Ml 1) in Fig. 4.1 consist of data chips. These
data chips are huge shift registers. The main idea behind this structure is
that it is systolic and can be realized using local communication only. So
the evaluation of these algorithms will also be valid under the linear
model. There is no bus system and no addressable memory. The data is

MO1

FIG. 4.1. A one board chip-external sorter.

346 H. SCHRijDER

continuously pumped through the data chips and the sorting chip directed
by the control units.

The input control unit CZ determines the shift memory from which to
read. The output control unit determines where the sorted blocks of data
go. The sorting chip S sorts two blocks of data of size ns/2 into one sorted
block of size ns .

Since the data chips consist of shift registers only and shift registers are
usually part of the sorting chips, it can be assumed that the data chips can
be driven at the same clock frequency as the sorting chip. Therefore the
time complexity of such a design is totally determined by the parameters
Q, ts , and ps of S and the problem size N.

The number of pins needed for the data chips is less than or equal to the
number of pins of the sorting chip. So the whole construction seems
technically feasible whenever the sorting chip is technically feasible.

If addressable memory and bus systems are used instead, as suggested
by Miranker et al. (1983), the access time to the memory could determine
the time complexity of the whole construction.

A significant problem using VLSI sorting chips might be the data rates
that the chip has to be supplied with. In case the data rates needed by the
sorting chip are higher than the environment can supply, the construction
suggested here can balance the chip data rates with those achievable by
the environment. The data can be read using the low data rate and can be
sorted at a high data rate. In order to do this it is suitable to introduce a
third pair of shift registers, that can be used to handle input and output
while the other two pairs are involved in sorting.

Both sorting algorithms presented here start in a situation where 2’”
blocks of unsorted data of ns/2 keys each are located in the shift memories
MOO and Mol. The shift memories Ml0 and Ml 1 are empty.

4.1. A Systolic Realization of Batcher’s Bitonic Sorter on
Blocks of Data

Batcher’s bitonic sorting algorithm sorts 2’” keys in (m - I)/2 stages. In
each of these stages each of the 2” keys is involved in a comparison
exchange operation. The algorithm does iterative merging of bitonic se-
quences and each stage is realized by an algorithm of the “descend” class
(Preparata and Vuillemin, 1981). Batchers bitonic sort on blocks of data
(BBB(S)) is a systolic realization of Batchers bitonic sorting algorithm.
Each of its stages is realized shifting the whole set of data through the
sorting chip S. The sorting chip S sorts all pairs of blocks that are in
corresponding positions in the two shift registers used as input memory.

Executing part B of algorithm BBB(S) once does the sort-split opera-
tion on all 2”-’ pairs of neighboring data blocks and is the realization of
one stage of delay of the bitonic sorting net (Knuth, 1973). It needs 2”-’ .

VLSI-SORTING 347

ps + ts - ps units of time. Afterward MqO and Mql and S are empty and
all the data are contained in MifO and Mql. So after input and output
memory has been swapped (q : = 4) part B can be executed again. Part B
is executed (m2 + m)/2 times. Thus the time complexity of algorithm
BBB(S) is

TBBB(S)(N) = (,“-I . ps + ts - ps) . (m? + m)/2.

bit,(i) determines where the sorted blocks go and changes every 2” steps
while the counter i runs from 0 to 2’“--’ - 1, so that each execution of part
B involves the “perfect shuffle operation” (PS in Fig. 4.2) on groups of 2”
blocks.

ALGORITHM BBB(S)

begin
p := 0; q := 0
forj:=Otom - 1 do

/fork:= Otojdo
begin

ifk=jtbenp:=j
(for i := 0 to 2’“-’ do

begin
Read one block each

from MqO and Mql .

A’BI
Sort the ns keys

in ascending order if bitj(i) = 0,
in descending order otherwise.

Shift the two resulting blocks
to SPqr with r = bit,(i).

\ end
q := l?j

\ end
end

The sequences of blocks denoted by L,! , R,! in Fig. 4.2 are the results of
applying the “sort-split operation” to the sequences of blocks Li, R;.

The positions of the blocks in the shift memory are denoted as shown in
Fig. 4.3.

The perfect shuffle operation moves a block from position Z to position
Z’, where the binary number Z’ results from the binary number Z rotating
the rightmostj + 1 bits of Z by one position to the right (Knuth, 1973).

For k = 0 the indices of neighboring blocks differ only at bitj. So their
difference is 2j. Each execution of part B decreases this difference by the

348

2p

20

2p
I

2p I
i

MqO

H. SCHRiiDER

part B of BBBCS)

PS(L;.R;)

P.S(L;,R;)

MqO

P.S(Li, R;)

WL;.R;)

MCYjl

FIG. 4.2. The execution of one merge step.

factor 2. For k = j it becomes I. Thus part A of algorithm BBB(S) is an
algorithm of the “descent class” (Preparata and Vuillemin, 1981) and
BBB(S) is a realization of the bitonic sorting algorithm. In Fig. 4.4 the
block positions and the values of the variablesj, k, i, p, q are given for all
points of time immediately before and after each execution of part B of
algorithm BBB(S) for m = 3. Under the assumption 2” > tslps the time
complexity of algorithm BBB(S) is

TBBBcS, = O(m2 * 2’” .Pd=o(;.Ps.). log2 $

For N = fl((n#) with a > 1 we get

000 001

010 011

100 101

110 111

Md’ Mql

FIG. 4.3. indices of block positions.

VLSI-SORTING 349

blocknr

ooo
001 + + +

010 + I -1. I

011 f + 4

100 1

101 1 t t T 1

110 1 i I

111 t t t +

i
000

001

010

011

T
bitO(i)

j=O j= 1 j= 1 j=2 j=2 j=2

k=O k=O k=l k=O k=l k=2

p=o p=o p=l p=l p=l p=2

000 001
010 011

II
100 101

110 Ill II
-
000

001

010

011 -

-II 100
101

IL 110

111

-
Do0

100

001

101 -

MqO Mql

FIG. 4.4. The values of the variables during execution of BBB(S).

So the time complexity of BBB(S) is inversely proportional to the
throughput ds := nslps of the sorting chip used.

So ds becomes the evaluation criterion for sorting chips if they are used
in this chip-external sorting scheme.

For two reasons BBB(S) is especially attractive for a VLSI technical
implementation. On the one hand, it takes advantage of the short period
of systolic sorting algorithms S. On the other hand the technical realiza-
tion of its control units is very simple. The input control unit just consists
of “or” gates and the output control unit does not need more than three
counters for its realization.

In spite of that there is a significant disadvantage of this algorithm: The
whole set of data has to be pumped fl(log* N) times through the sorting
chip, which is the number of stages of delay of the corresponding sorting
net (Knuth, 1973). As shown in Section 4.2 there are chip-external sor-
ting algorithms that only need to pump the set of keys @log N) times
through S.

4.2. A Systolic Realization of Two-Way Merge on Blocks of Data

In comparison to BBB(S) two-way merge on blocks of data (TWB(S))
presented below seems less elegant. Its control structure is more complex

350 H. SCHRODER

and is data dependent. Its time complexity is determined by ts and not by
ps, so that it does not take advantage of short periods of systolic sorting
algorithms S.

The main advantage of TWB(S) is that the whole set of data has to be
shifted through S only O(log N) times. Mehlhorn (1984) shows that the
number of comparison exchange operations of two-way merge is minimal.
Therefore the time complexity of TWB(S) is asymptotically optimal.

The hardware structure for TWB(S) differs from that of BBB(S) only
slightly. The control units CZ and CO perform more complex operations
and after each sort-split operation one block of the sorted result is kept in

ALGORITHM TWB(S)

begin
q := 1 ;p := 0;
forj := 1 tom do
begin

B

repeat 2”7-j times
begin

r := 0; no := 0; n(:= I;
D

i

Shift one block B from Mpl to S;
max := largest key of B;
repeat 2.’ - 1 times
begin
’ shift one block B’ from Mpr to S;

nr ’ .= n, + 1;
if maximal key of B’ > max
A ni f 2-i-l v n,. = 21-l then
begin

C (max : = maximal key of B’;
r:= J

end;
sort in S;
shift the block containing

\ the smaller keys to Mpq
end;

1

shift the last block
E out of S to Mpq;

q := 4
end;

F{ p:=j?
end

end.

VLSI-SORTING 351

the sorting chip S and is involved in the subsequent sort-split operation. If
the sorting is done in ascending order, then it is the block containing the
larger keys.

Depending on the block of data read last the control unit CZ determines
from which input memory the next block of data is obtained. The control
unit CO alternates between the two output memories to store the sorted
sequences of blocks.

The algorithm starts with 2’” = 2Nlns blocks of unsorted data in MOO
and Mol.

Whenever part D is executed S is empty and the whole set of data is
located in MpO and Mp 1. It consists of sequences of blocks of length 2j-I
(Only forj = 1 the data inside the blocks is unsorted). Part D initializes the
merge of two neighboring block sequences, shifting the top most block
from Mpl into S and resetting the counters no and nl which count for both
block sequences the number of blocks that have been processed. The
input memory to be read from next is denoted by r. This is opposite to the
source of the maximal key that has been read so far.

In each of the 2’ - 1 repetitions of part C one block of data is read, max
and r are determined, S sorts two blocks, and the block containing the
smaller keys is shifted to the output memory. Each execution of part E
completes the merge of two sequences of blocks of length 2j-’ to one
sequence of length 2-i. The next sorted sequence will be shifted into the
other output memory.

Each execution of part B merges 2 m-j+1 sorted sequences of blocks of
length 2~-’ into 2’“-j sequences of length 2~. Then part F switches input
and output memory so that the next step of the iterative merge algorithm
can start with doubled length of the block sequences.

The time complexity of TWB(S) is

TTWB(S) = ((m - 1) . 2’” + 1) * ts = 0 (log g .z, . ts.

Under the assumption N > (ns)” for an a > 1 we get

gs := nslts refers to the throughput of S as it is achieved when used in
TWB. This need not be the maximal possible throughput for S if it is used
in a different environment. In the following gs will be called the speed
OfS.

352 H. SCHRijDER

4.3. Speedup of Chip-External Sorting Algorithms

In this section we analyze the functional dependency between chip
capacity and speed or throughput.

To simplify the following analysis we neglect logarithmic factors in the
complexity of the sorting algorithms classifying the complexities by @
(see Section 2.1).

Let S be a VLSI sorting algorithm with area requirement As(n) = @(n’)
and time complexity Ts(n) = @(nf’). Thus AsTz = @(nr+2P) with r + 2p 1
2andrr 1.

The chip capacity C (the number of units of area that are available for
the realization of the sorting algorithm) is treated as a variable. This
reflects the possibility of spreading the realization of a sorting algorithm
over several chips on a single board, or of using only part of the available
chip area. It also reflects the development of the VLSI technology, which
leads to a dramatic increase in chip capacity. Thus C = As(ns) = @((ns)‘),
i.e., C = C(ns) is the chip capacity needed to realize S with problem
size ns .

THEOREM 4.1. Let gs be the speed of the sorting algorithm S with As
= @(n’) and Ts = @(nP). Then

gs zz @(C”-/q

Proof.

C = @((ns)‘) with r 2 1 j ns = @(Clir).

ns aqc “r) @(C “r) -=
gs = Ts(ns) WhP) = @((@(C”‘)P)

= qqC”W’).

For AT* optimal sorting algorithms r + 2p = 2 j (1 - p)lr = $3 gs =
@(C’“).

Assume S is a suboptimal sorting algorithm: As Ti = Wz2+x) with x 2 0,
(I thusr+2p=2+x+gs=@(C - x)‘2r). The function (v - x)/2r reaches its

maximum for AT* optimal algorithms (X = 0). For x = r, gs = @(no) (see
Thompson, 1983; Shin et al., 1983; Bilardi, 1984, for examples). For x > r
the speed decreases with increasing chip capacity. Thus such algorithms
are not suitable for any VLSI technical realization.

THEOREM 4.2. Let S be a sorting algorithm with A = @(nr) and T =
+(n”) and r + 2p = 2 + x with x 1 0. Then

Proof. r + 2p = 2 + x j 1 - p = (r - x)/2 3 (1 - p)/r = $ - xi2r. n

VLSI-SORTING 353

Replacing T by P and gs by ds in Theorems 4.1 and 4.2 results in

ds = @(c(IWr) = q,,(cw2-~/2r))

So speed (throughput) is maximal for AT2 (AP2) optimal algorithms. An
increase in the chip capacity by a factor of b results in the case of AT2
(AP2) optimal algorithms in a speedup SO = @(fib). Suboptimal algo-
rithms get a speedup SS = SOI(@(bX’2r)).

Thus, Theorem 4.2 is another justification for the measure of complex-
ity AF for VLSI sorting algorithms.

5. SUMMARY

There are several different models of computation used on which to
base evaluations of VLSI sorting algorithms and there are different mea-
sures of complexity. This paper revises complexity results under the lin-
ear model that have been gained under the constant model. This approach
is due to expected technological development (see Mangir, 1983; Thomp-
son and Raghavan, 1984; Vitanyi, 1984a, 1984b).

For the constant model we know that for medium sized keys there are
AT2 and AP2 optimal sorting algorithms with T ranging from R(log n) to
O(a) and P ranging from n(l) to O(V%) (Bilardi, 1984). The main
results of asymptotic analysis of sorting algorithms under the linear model
are that the lower bounds allow AT2 optimal sorting algorithms only for T
= O(V’&) but allow AP2 algorithms in the same range as under the
constant model. Furthermore the sorting algorithms presented in this pa-
per meet these lower bounds. This proves that these bounds cannot be
improved for k = @(log n). The building block for the realization of these
sorting algorithms is a comparison exchange module that compares r x s
bit matrices in time TC = O(r + s) on an area AC = O(r2) (not including the
storage area for the keys).

For problem sizes that exceed realistic chip capacities, chip-external
sorting algorithms can be used. In this paper two different chip-external
sorting algorithms (BBB(S) and TWB(S)) are presented. They are de-
signed to be implemented on a single board. They use a sorting chip S to
perform the sort-split operation on blocks of data BBB(S) and TWB(S)
are systolic algorithms using local communication only so that their evalu-
ation does not depend on whether the constant or the linear model is used.
Furthermore it seems obvious that their design is technically feasible
whenever the sorting chip S is technically feasible.

TWB has optimal asymptotic time complexity, so its existence proves
that under the linear model external sorting can be done asymptotically as
fast as under the constant model. The time complexity of TWB(S) is

354 H. SCHRijDER

linearly dependent on the speed gs = nslts. It is shown that the speed if
looked at as a function of the chip capacity C is asymptotically maximal
for AT2 optimal sorting algorithms. Thus S should be a sorting algorithm
similar to the M-M-sorter presented in this paper. A major disadvantage
of TWB(S) is that it cannot exploit the maximal throughput ds = ns/ps of a
systolic sorting algorithm S.

Therefore algorithm BBB(S) is introduced. The time complexity of
BBB(S) is linearly dependent on ds. It is shown that the throughput is
maximal for AP2 optimal algorithms. There is a wide range of such sorting
algorithms including algorithms that can be realized in a way that is inde-
pendent of the length of the keys. For example, BBB(S) with S being a
highly parallel version of odd-even transposition sort has this kind of
flexibility. A disadvantage of BBB(S) is that it is asymptotically slower
than TWB(S).

ACKNOWLEDGMENT

The author thanks the referees whose suggestions have led to significant improvement of
this paper.

REFERENCES

BILARDI, G. (1984), “The Area-Time Complexity of Sorting,” Ph.D. thesis, Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign.

BONUCCELLI, M. A., LODI, E., AND PAGLI, L. (1984), External sorting in VLSI, IEEE
Trans. Comput. C-33, No. 10, 931-934.

CHAZELLE, B. M., AND MONIER, L. M. (1981), A model of computation for VLSI with
related complexity results, in “Proceedings, 13th Symposium on Theory of Comput-
ing,” pp. 318-325.

DURIS, P., THOMPSON, C. D., SYKORA, O., AND VRTO, 1. (1985). Tight chip area bounds for
sorting, Comput. ArtiJicial Intelligence (Czechoslovakia) 4, No. 6, 535-544.

JA’JA, J., AND OWENS, R. M. (1985), Parallel sorting with serial memories, IEEE Trans.
Comput. C-34, No. 4, 379-383.

KIM, W., GAJSKY, D., AND KUCK, D. J. (1984), A parallel pipelined relational query pro-
cessor, ACM Trans. Database Sys. 9, No. 2, 214-242.

KNUTH, D. E. (1973), “The Art of Computer Programming,” Vol. 3, “Sorting and Search-
ing,” Addison-Wesley, Reading, MA.

KUMAR, M., AND HIRSCHBERG, D. S. (1983), An efficient implementation of Batcher’s odd-
even merge algorithm and its application in parallel sorting schemes, IEEE Trans.
Comput. C-32, 254-264.

KUNG, H. T. “Why systolic architectures,” Computer MtrgaTinc, 15, pp. 37-46. 1982.
LANG, H. W., SCHIMMLER, M., SCHMECK, H., AND SCHRBDER, H. (1985), Systolic sorting

on a mesh-connected network, IEEE Trans. Comprct. C-34, 652-658.

VLSI-SORTING 355

MANGIR, T. E. (1983), Impact and limitations of interconnect technology , in “IEEE
International Conference on Computer Design: VLSI in Computers,” pp. 735-739.

MEHLHORN, K. (1984), “Datastructures and Algorithms. I. Sorting and Searching,” EATCS
Monographs on Theorerical Computer Science, Springer-Verlag, Berlin.

MIRANKER, G. S., TANG, L., AND WONG, C. K. (1983), A zero time VLSI sorter, IBM J.
Res. Develop., 140-148.

NASSIMI, D., AND SAHNI, S. (1979), Bitonic sort on a mesh-connected parallel computer,
IEEE Trans. Compur. C-28, 2-7.

PREPARATA, F. P., AND VUILLEMIN, J. (1981), The cube-connected-cycles: A versatile
network for parallel computation, CACM, 24, No. 5, 300-309.

SHIN, H., WELCH, A. J., AND MALEK, M. (1983), I/O overlapped sorting schemes for VLSI,
in “IEEE International Conference on Computer Design: VLSI in Computers.”

THOMPSON, C. D., AND KUNG, H. T. (1977). Sorting on a mesh-connected parallel com-
puter, CACM 20, 264-271.

THOMPSON, C. D. (1983), The VLSI complexity of sorting, IEEE Trans. Compur. C-32,
1171-I 184.

THOMPSON, C. D., AND RAGHAVAN, P. (1984), On estimating the performance of VLSI
circuits, in “Proceedings. Conference on Advanced Research in VLSI,” MIT.

TODD, S. (1978). Algorithm and hardware for a merge sort using multiple processors, IBM J.
Res. Develop. 22, No. 5. 509-517.

VITANYI, P. M. B. (1984a), “Signal Propagation Delay, Wire Length Distribution and Effi-
ciency of VLSI Circuits,” Tech. Rep. CS-R 8412, Centre for Mathematics and Com-
puter Science, Amsterdam.

VITANYI, P. M. B. (1984b), “Signal Propagation Delay and the Efficiency of VLSI Cir-
cuits,” Tech. Rep. CS-R 8414. Centre for Mathematics and Computer Science, Amster-
dam.

