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Abstract 

In Malaysia, droughts often lead to water deficit and overcoming a lack of fresh water has become one of the important 
challenges in the country. Climate change have brought about a big environmental impact globally, such as the rise in 
sea levels, unavailability of fresh portal  water and more extreme drought and flood events occurring and Malaysia is 
no different and not spared all this calamities. The Langat River Basin is located in a fast growing region in Peninsular 
Malaysia, the Greater Kuala Lumpur Valley and hence the implementation of the drought index in this basin is vital 
important and necessary. Normally drought characteristics can be determined or identified using the drought indices. 
The two drought indices were used in this study, namely the SPI (Standardized Precipitation Index) and the EDI 
(Effective Drought Index) to assess the severity, duration and extend of drought event. The CanESM2 outputs under 
Representative Concentration Pathway (RCP) 8.5 emission scenario of IPCC Fifth Assessment Report (AR5) were 
utilized to produce regionalized precipitation and temperature data. The GCM outputs were statistically downscaled 
using the Statistical Downscaling Model (SDSM) version 4.2.9. Next, the SPI for time scale period of 1-month, 6-
months and 12-months (SPI-1, SPI-6 and SPI-12) and EDI were calculated for both the observed and statistically 
downscaled climate data to investigate and analyze the severity and extent of drought. Both indices were compared to 
get a more operational index between SPI-1, SPI-6, SPI-12 and EDI outlook for representing Malaysia drought events.  
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1. Introduction  

Droughts have become a frequent occurrence in many parts of the earth surface and are a calamity of big magnitude 
that needs global intervention. The reasons of drought occurrence are a deficiency of rainfall and prolonged periods 
of warmer temperatures. Recurring and permanent droughts will inevitably lead to desertification of sizeable areas of 
our planet. Since there is no single definition for droughts, a wide range of drought identification and assessment 
indexes had been introduced to monitor drought: the Standardized Precipitation Index (SPI) [1], Standardized 
Precipitation Evapotranspiration Index (SPEI) [2] and Effective Drought Index (EDI) are the commonly used for 
gauging droughts. This study focuses on the Langat River Basin, a fast growing urbanized region in Malaysia. In this 
study, the SPI and EDI will be analysed and used to identify the severity of potential future drought events. The main 
objective of this study is as follows: (i) to develop a future rainfall scenario for the 21st century, (ii) to investigate and 
analyse the severity and extent of drought events, and (iii) to develop a framework for operational drought indices 
outlook for the Langat River Basin. 

2. Methodology 

Rainfall observations from a specific station were used to establish SPI and EDI time series baseline and identify 
drought during 1976 to 2011. This observed rainfall is further used along with other large scale data such as NCEP 
and GCM data to downscale future rainfall event. Future rainfall generated based on the Intergovernmental Panel on 
Climate Change (IPCC) Fifth Assessment Report (AR5) scenario are then examined for future drought events using 
the SPI and EDI. The methods and data used here are described below. 

2.1. Location of study and precipitation 

The Langat River Basin in the state of Selangor, Malaysia has a total catchment area of about 1815 km2, formed 
by 15 sub-basins which lie within latitudes 2 40’15” N to 3 16’15” N and longitudes 101 19’20” E to 102 1’10” E. 
This basin is a fast growing region in this country in terms of rapid urbanization, new build-up areas, modern road 
network, industrialization and agricultural expansion. Unavoidably, the basin is subject to dire consequences of land 
use and land cover changes, pollution stress, forest fragmentation, depletion of ecosystem. These posed numerous 
challenges to sustainable development. Under such circumstances, the implementation of a best suited drought index 
on future climate outlook was deemed necessary. The rainfall data from station 3818110 at Sekolah Kebangsaan 
Kampung Sungai Lui (3°10'25"N, 101°52'20"E, 91.0m above sea level), was use to represent Langat River Basin. 
One of the reasons of this selection was due to its close proximity to the Langat reservoir. The 36 years (1976-2011) 
data available had been subjected to homogeneity tests before perusal. 

2.2. General Circulation Model and downscaled data 

The Canadian Earth System Model, CanESM2 Model from Canadian Centre for Climate Modeling and Analysis 
(CCCma) was chosen as a sole GCM output used for generating future rainfall in Langat River Basin. This model 
employed T63 triangular truncation with spatial resolution of 128x64 and 35 vertical layers [3]. In this study, 
Representative Concentration Pathway - 8.5 W/ m2 (RCP 8.5) scenario was employed rather than the ‘peak-and-
decline’ scenario (RCP 2.6) or ‘stabilization’ scenario (RCP 4.5 and RCP 6.0). This decision was made because of the 
assumption that the GHG emissions will continue to rise according to current trends. Our goal was to project future 
drought based on the continuity of the present level of CO2 emissions which more likely to happen as no significant 
strategies of GHG reduction has come into play yet. Besides the GCM data, the NCEP/NCAR Reanalysis data was 
another set of large scale data used in the downscaling model to establish the statistical relationship with observed 
station data. This Global Reanalysis Model has a resolution of about 210 km horizontally and 28 levels vertically [4].  
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The Statistical Downscaling Model (SDSM) version 4.2.9 developed by [5] was adopted as the only downscaling 
model. The SDSM calculates statistical relationship of large-scale data (predictors) and regional data (predictands) 
based on multiple linear regression techniques. The procedures of rainfall downscaling are summarized as: (i) Screen 
variables-a crucial step to establish a creditable regression model and involved the selection of most suitable NCEP 
predictors, (ii) Calibration- a conditional process in establishing monthly regression function between selected 
predictors and 20 years of observed data, (iii) Validation- a process to justify the validity of downscaled for further 
usage, and (iv) Scenario generation-involving generation of future rainfall from 2016 to 2100. 

2.3. Computation of Standard Precipitation Index (SPI) 

The method of SPI computation herein follows the exact way proposed by [1]. For the prediction of future drought 
events, two parts of SPI computation were carried out. For the first part, SPI was computed based on the observed 
rainfall from 1976-2011 (36 years of data). The Gamma probability distribution function was chosen to describe the 
rainfall in Peninsular Malaysia. This probability distribution function is similar to the method first proposed by [1] in 
their research for computation of SPI and its suitability is further proven by Sharma and Singh (2010)[3] for 
description of rainfall in monsoon seasons. After that, the function was further normalized and standardized to obtain 
the SPI value. In other words, the SPI value is a z-score of the distribution function which represents a deviation event 
from the mean of historical rainfall data. 

The second part is the computation of futuristic SPI, which is almost the same as part one but using generated 
rainfall from previous section at year 2016 to 2100. The difference is the SPI value at this part was computed based 
on the rainfall distribution established in part one (year 1976 to 2011). In other words, the future rainfalls were used 
to compare with the mean and standard deviation of historical rainfall to generate SPI value. This decision was made 
with the consideration of a more comprehensive way to present how far the deviated rainfall event will go based on 
the current scenario. As mentioned above, the downscaled rainfall from GCM only consists 365 days per year, the 
29th February of leap year will then be assumed to have the same rainfall as on the 28th February in the drought index 
computation. 

One of the advantages of SPI is the flexibility in choosing its time scale. This research focus only on SPI-1, SPI-6 
and SPI-12, which are 1-month, 6-month and 12-month time scale respectively. This decision was made with the 
reason that SPI-1, SPI-6 and SPI-12 is suitable to describe meteorological, agricultural and hydrological drought 
respectively and fit to the purpose of this study. The calculation of SPI values here follows the method by [6] and 
demonstrated in the following steps: 

 
First, the cumulative gamma distribution is defined as: 
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Where  is shape factor,  is scale factor, and kx is the amount of precipitation over k consecutive months (selected 
time scale) in millimeter. The function  ( ) is the gamma function and the parameters  and  to be estimated using 
the approximation by [7]. 

When kx = 0, the cumulative gamma distribution is undefined and, the cumulative probability may be written as 
below to encounter this situation.  

kk 1H xGqqx          ( 2 ) 

Where, q is probability of zero rainfall. 
The cumulative probability, )( kxH , is then standardized to obtain the value of SPI. Lastly, the approximate 

conversion provided by [8] will be used in this study to calculate SPI values. 
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Where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.The negative 
values indicate the rainfall is less than median of historical precipitation. 

The drought classification of SPI values are classified by certain ranges. It represents mild drought when the SPI 
values fall in between 0 to -0.99, moderate drought when -1.00 to -1.49 and severe drought when the SPI values 
between -1.5 to -1.99. When the SPI values fall below -2.00, it indicates an extreme drought event. 

2.4. Computation of Effective Drought Index(EDI) 

EDI was developed to monitor drought condition on daily time step [9] [10]. Subsequently, it was extended for 
monthly drought monitoring [11]. In this study, daily time step EDI was chosen. The computation of EDI involves 
the following equations: 
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The effective precipitation (EP) represents the total amount of daily precipitation relative to a time dependent 
reduction function, where Pm is the precipitation of m days ago, N is the duration of preceding period, and i is the 
duration of summation. At first, i is set to be 365 days, as it could be representative of available water resources or 
water stored for a long duration. Several equations to calculate the EP had been proposed but the equation above is 
the most suitable to show the depletion of water resources [12]. The mean effective precipitation (MEP) represents 
the mean of the EP values over the study period. Thus, DEP is the deviation of the actual precipitation from its mean. 
The next step was to compute the standardized value of DEP (SEP), where Std(DEP) is the standard deviation of each 
day’s DEP. In order to take into account of dry period longer than 365 days, j value is considered as 356 plus the 
consecutive negative value of SEP. Finally, EDI is computed from DEP of j period instead of i=365. 

As mentioned in the SPI computation, EDI computation in this study involves two parts as well. The historical EDI 
is computed based on the rainfall records from year 1976 to year 2011. The futuristic EDI was computed based on the 
mean and standard deviation generated from historical EDI and rainfall downscaled from CanESM2 using SDSM 
(year 2016 to 2100). 



714   Yuk Feng Huang et al.  /  Procedia Engineering   154  ( 2016 )  710 – 717 

3. Results and discussion 

3.1. Statistical rainfall downscaling 

The list of selected predictor variables, their correlation coefficient and significance level for stations 3818102 is 
given in         Table 1. 

 
             Table 1. Screening results. 

Predictand Predictors Description of Predictor Partial r P-value 
Precipitation  
(3118102) 

P1_zgl (lag 
5)

1000hPa Relative vorticity of wind 0.031 0.0911 

P8zhgl (lag 
1)

850hPa Divergence of true wind -0.042 0.0197 

S850gl 850hPa Specific humidity 0.037 0.0465 
Mslpgl Mean sea level pressure -0.002 0.5610 

 
For the selection of predictors, the significant level is set to be 10%, which means the P-value more than 0.1 should 

be rejected. From Table 2, however, the mean sea level pressure with a large P-value is still included as predictor 
because the local precipitation is largely dependent on this variable and thus should not be excluded.  

The results of calibration and validation are shown in              Table 3. The explained variance and standard error 
of calibration were based on the average values of each month while the explained variance of validation part was 
computed from monthly average of model generated rainfall and observed rainfall.  

 
Table 2. Result of calibration and validation. 
Predictand Calibration Validation  

Explained 
Variance, %

Standard Error Explained 
Variance, % 

Precipitation (3118102) 24.0 0.473 78.3
 
In general, the relationship of selected predictors and predictand (rainfall) is considered low. Thus, the calibration 

result of the model does not give a high explained variance as well. For the purpose of this study, a good validated 
monthly rainfall would be enough. Thus, 78% of correlation is accepted. On the other hand, a higher correlation in 
validation of daily rainfall does not indicate a high accuracy of future rainfall prediction. Futuristic rainfall is highly 
dependence on the accuracy of the General Circulation Model used. 

3.2. Drought indices comparison 

On average, the indices perform differently with a same series of rainfall. However, a trend still can be observed. 
Graphically, SPI-12, SEP and EDI agree with each other to some extend while SPI-1 deviate from this three indices 
most. Coefficient of correlation among indices from              Table 3 suggest SEP and EDI have a correlation as high 
as 0.995. The second highest correlation is between SEP and SPI-12 while EDI and SPI-12 have a correlation of 0.893. 
Highest correlation between SEP and EDI can be explained with the same distribution chosen in index computation, 
while the high correlation between SEP and SPI-12 is due to both of these indices basically consider 12 months 
precipitation. Correlation between EDI and SPI-12 does not expect to have highest correlation as EDI consider the 
drought longer than 12 months and probability distribution chosen to describe rainfall by these two indices is not the 
same. 

             Table 3. Coefficient of correlation among drought indices. 
Drought Index SEP EDI SPI-1 SPI-6 SPI-12 
SPI-1 0.171 0.171 1.000 0.391 0.219 
SPI-6 0.533 0.530 0.391 1.000 0.656 
SPI-12 0.903 0.893 0.219 0.656 1.000 
SEP 1.000 0.995 0.171 0.533 0.903 
EDI 0.995 1.0 0.171 0.530 0.893 
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It could be observed that EDI identify a longer period of drought than SPI-12. In other words, SPI-12 might 
underestimate the drought period as it only considers 12 months rainfall before the concerned month. A longer period 
of rainfall deficit than 12 months will not be taken into account by SPI-12 unless a longer time scale SPI is used. EDI, 
on the other hands, considers the dryness more than 12 months until the rainfall deficit recovers to normal. Thus, a 
false recover signal will not be given by EDI unless the rainfall shortage is truly over. 

SPI computation involves analysis of the monthly rainfall deviation from its recorded rainfall series of that 
particular month. For example, the SPI value at February 2016 is computed by analyzing its rainfall deviation from 
February rainfall series of 1976 to 2011. On the other hand, EDI considers the average daily rainfall throughout the 
year in index computation (analyzes how much daily rainfall of day concerned deviated from average daily rainfall of 
year 1976 to 2011 regardless the month and date). This could explain the scenario why SPI-12 of November is 
generally lower than other months even though the rainfall over 12 consecutive months at November is generally 
higher than others. 

The correlation between SPI-1 and EDI is the lowest among others. The correlations between SPI-1 with other 
indices are generally low as well (less than 0.5). This suggests that SPI-1 identify drought differently with others. 
Since only one month of rainfall is considered into computation, SPI-1 is more likely to detect drought of shorter 
period and these droughts may not be detected with longer time scale drought indices such as SPI-12 and EDI. This 
could be the scenario of a relatively low amount of rainfall in dry season follows or followed by a high rainfall event 
in rainy season. In this situation, longer-time-scale index cannot detect such drought occurrence. Therefore, a high 
fluctuation of SPI-1 can be observed in Figure 1. 

The longest drought duration is successfully identified by EDI with the period of 127 months starting from January 
2016, as shown in Table 4. This again proves EDI as a good indicator for hydrological drought. EDI suggests that the 
shortage rainfall will only recover and return back to normal on July 2026. This information is deemed to be important 
for the Langat reservoir located near to the station. SPI-6 have identified the longest total period of droughts happens 

Figure 1.Comparison of SEP, EDI, SPI-1, SPI-6, and SPI-12 under RCP8.5 at station 3118102 from year 
(a) 2016-2040; (b) 2041-2070; (c)2071-2100.
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between the 2016 to 2100, which is 370 months out of 1140 months (33%). Since SPI-6 is an indicator for agricultural 
drought, this could be an alert to the agricultural activities within Langat River Basin. However, within 370 months, 
only two months of them consist SPI less than -1.0. Thus, no frequent severe agricultural drought is expected to happen 
within the period of study. 

 
 

Table 4.Summary statistics of indices. 
Drought Index SPI-1 SPI-6 SPI-12 SEP EDI 
Highest drought index 4.271 2.705 2.111 2.827 3.021 
Lowest drought index -0.914 -1.384 -0.908 -0.999 -0.560 
Total amount of drought 
months (month) 363 370 245 271 259 

Longest continuous 
drought months (month) 
and period 

4 
(Jul – Oct of year 2022, -23, -
30, -33, -34, -36, -42, -46, -73, 
-74, -76, -88, -96, -97 & -98) 

17 
(Aug 17 – Dec 
18 & Jul 23 – 
Nov 24) 

67  
(Jul 19 – 
Jan 25) 
 

120 
(Jan 16 – 
Nov 25) 
 

127 
(Jan 16 – 
June 26) 
 

4. Conclusions 

Drought is obviously one of the more damaging yet hardly determined natural disasters among others. Drought 
monitoring using drought indices often serves as an important base. Drought indices computed from forecasted rainfall 
gives a better outlook of potential risk that may be inflicted upon the region. In this study, a means is provided to 
compare among drought indices of different time scales for further study into respective drought types. 

The usage of SDSM in future rainfall downscaling is deemed to be sufficient for drought index computation 
although the rainfall generation might not be highly accurate. The comparison between SPI-1, SPI-6, SPI-12, SEP, 
and EDI suggests that all these indices are correlated to certain extent especially SPI-12, SEP and EDI. For 
hydrological drought, EDI performs better in the sense of less likelihood of the index to produce false signal of drought 
recovery. Even though the SPI-1 does not seem to agree with other indices, it serves to identify the local meteorological 
drought which is not detected well by other indices of longer time scales. Thus, the preference for each method and 
drought indices for drought monitoring depends on the particular application. 

In this study, clime change and alteration of rainfall patterns have been detected by all drought indices especially 
SPI-1. Generally, the rainfall amount increases in future. This conclusion is drawn from high averages indices value 
(higher than zero).A higher rainfall in future December and a lower rainfall amount in October would be expected in 
Langat River Basin according to the research. All in all, the drought indices in this study are able to monitor the 
evolution of a drought event. With the combination of future rainfall downscaled by SDMS, a framework of future 
drought event outlook could be generated. This information could help the state authority in aspects of drought 
management. 
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