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An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals
of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are
compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR
estimates are of skin SST, whereas buoysmeasure SST below the surface. Adjustment is therefore made for the
skin effect, for diurnal stratification and for differences in buoy–satellite observation time. With such
adjustments, satellite-in situ differences are consistent between day and night within ~0.01 K. Satellite-in situ
differences are correlated with differences in observation time, because of the diurnal warming and cooling of
the ocean. The data are used to verify the average behaviour of physical and empirical models of the
warming/cooling rates.
Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour
(TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV b5 kg m–2, TCWV
N60 kg m–2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than
0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel
(D2) SSTs are warm by 0.06±0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06±0.21 K (day-
time D2: 0.07±0.23 K). Nadir-only results are N2: 0.03±0.33 K and N3: 0.03±0.19 K showing the improved
inter-algorithm consistency to ~0.02 K. This represents a marked improvement from the existing operational
retrieval algorithms for which inter-algorithm inconsistency is N0.5 K. Comparison against tropical
moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02±
0.13 K, D2: 0.03±0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are
around 0.1 K warm compared to AATSR.
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1. Introduction

A new sea surface temperature (SST) retrieval has been developed
for the Along Track Scanning Radiometer (ATSR) instruments, with a
view to developing an independent SST time-series for climate
applications (Merchant et al., 2008a). Accurate retrieval of SST was
the primary motivation for the ATSR missions (for a review and
references, see Llewellyn-Jones and Remedios (this issue)). The
instruments are well calibrated, and use along-track scanning to
give both a nadir view of the ocean surface and a forward view at a
satellite zenith angle of around 55°. The dual view capability is
particularly important in ensuring continuity of accuracy in anoma-
lous conditions, such as when stratospheric volcanic aerosol is
present. ATSR SST retrieval coefficients have developed significantly
(Merchant & Harris, 1999) since the work of Závody et al. (1995). The
results presented here arise from the project ATSR Reprocessing for
Climate (ARC) (Merchant et al., 2008a). Companion papers in this
issue have detailed the ARC's radiative transfer simulations (Embury
et al., this issue) and improved design of retrieval coefficients
(Embury & Merchant, this issue), which includes a refined treatment
of the ATSR viewing geometry and the use of coefficients banded by
total column water vapour to reduce biases with respect to
atmospheric state (Barton, 1998; Merchant et al., 2006). As a point
of comparison, the ARC results are at points compared with results
from techniques used in creating the ATSR SSTs in the ATSR multi-
mission archive version 2.0.

This paper presents an initial comparison of the new satellite-
derived SST estimates obtained for ATSR-2 and Advanced ATSR
(AATSR) with independent measurements.

There are two novel aspects to the work with wider ramifications,
as follows.

Firstly, in Section 2, we discuss how the purpose for which a
validation is undertaken affects the quality control to be applied and
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the statistics to be reported. Here, we apply minimal quality control of
in situ observations and report robust statistics, for reasons given.

Secondly, as described in Section 3, the satellite-derived estimates
validated here are of two types. The primary observations are of skin
SSTs (estimates from the satellite observations of the infrared
radiometric temperature of the sea surface at the time of observation).
In a further step, we derive time-adjusted depth SSTs (estimates
adjusted for the ocean thermal skin effect, near-surface stratification
and differences in observation time). The latter are intended to be
more directly comparable to the in situ data used for validation. It is
shown how adjustment for differences in time of observation can be
modelled from a sufficiently large data set itself, and that this reduces
systematic effects in the residuals between satellite and in situ SSTs
(Section 4).

Nevertheless, themain purpose of the paper is the initial validation
of new SSTs obtained within the ATSR Reprocessing for Climate
project (ARC) (Merchant et al., 2008a). The validation is “initial” in the
sense that all results presented here are derived before homogenisa-
tion (blending) of the multi-satellite SST time series. Ideally, the SSTs
obtained from ATSR-2 and AATSR would be so consistent that no
homogenisation would be necessary. Practically, the aim of the careful
work done on retrieval development is to minimise any homogeni-
sation required, since this increases the confidence we can have in the
stability of the homogenised record that will ultimately be created.
We find here that the global and regional retrieval biases in the new
satellite SSTs are low, mostly b0.1 K. The discrepancy between ATSR-2
and AATSR is also found to be b0.1 K. Although small, this discrepancy
is not negligible. Homogenisation will therefore be a crucial step in
developing a record appropriate for climate, and will be reported in a
subsequent article.
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Fig. 1. Probability distribution of simulated D2 retrieval error. Thin solid line shows
Gaussian distribution using standard statistics, the standard deviation (SD) being
0.058 K; thin dashed line shows Gaussian distribution using robust statistics, the robust
SD being 0.045 K. There are 2100 simulated cases, as described in Embury andMerchant
(this issue), and those shown are for the AATSR instrument. Results for other ATSRs are
similar.
2. Approach to validation

2.1. Statistical approach

It is important to be clear about the purpose of the SST validation
reported here. Our objective is to assess the accuracy of the new SST
retrieval scheme defined in Embury and Merchant (this issue). This is
a narrower focus than validation of a new SST product, since the
quality of an SST product is determined by the whole satellite-
processing system, which includes determination of which pixels are
valid for SST retrieval (by cloud and sea ice detection, checks on
validity of radiances, etc.). Cloud detection failures in particular are
known to introduce occasional large errors in retrieved SST that
significantly increase the standard deviation of satellite SSTs in
comparisons with in situ SSTs. In this paper, we make the assumption
that the incidence of cloud detection failure is low (this is shown to be
reasonable in Section 2).

Outliers can also arise from in situ errors. Operational systems for
flagging erroneous in situ data typically offer a basic level of quality
control (QC), and it is usual for additional QC to be applied (e.g.,
O'Carroll et al., 2008). However, any QC to remove doubtful data
inevitably involves a significant element of judgement: the harder one
looks, the more cases one can find justifications for rejecting. There is
therefore an arbitrary element that makes reported statistics difficult
to compare between validation studies: to some degree, the validation
statistics validate the judgements made regarding QC and not just the
SST retrieval method. In this work, the in situ observations are subject
to only minimal additional QC (e.g., in situ location is confirmed to be
ocean, temperature is not below freezing).

As our purpose is to assess the new SST retrieval scheme, we are
not concerned with characterizing the distribution of outliers that
arise for the reasons above. Thereforewe use outlier tolerant statistics,
also known as robust statistics (Huber, 1981), to assess the retrieval
results. No further attempt is made to catch and eliminate failures of
cloud detection or outliers in the in situ data during the statistical
analysis.

To describe the central value of a distribution we use the median.
For a Gaussian distribution or any symmetric distribution, this would
equal the mean. To describe the spread of a distribution, we use a
“robust standard deviation” or RSD. The RSD used is 1.48 times the
median absolute deviation from the median (MAD). For a Gaussian
distribution, the RSD and conventional standard deviation are equal.
There are many other ways to reach comparable statistics, such as
finding the best fit Gaussian, scaling the inter-quartile range, or
applying a 3-sigma filter and recalculating conventional statistics on a
second pass. However, the median and RSD are easy to calculate and
have a simple analogy to their conventional counterparts. Both
measures are highly robust meaning that a significantminority of data
points can be replaced with outliers of infinity without the calculated
statistics also going to infinity. In the particular case of SST validation,
these robust statistics are not overly sensitive to cloud detection or
gross in situ errors, and therefore isolate the performance of the SST
retrieval itself.

It could also be argued that the retrieval itself is a source of outliers
arising from extreme atmospheric conditions (e.g., (Minnett, 1986)).
This is true, but we cannot identify in a validation data set which
outliers do arise in this way, rather than from cloud detection or in situ
gross errors. The best information we have is from radiative transfer
simulations for a comprehensive range of atmospheric states (Embury
et al., this issue). Fig. 1 shows the distribution of simulated retrieval
error for dual-view 11 and 12 μm retrieval, and shows that while the
distribution is slightly skewed there are relatively few outliers and
96.5% of data points lie within 3-RSDs of the median. The outliers are
mostly associated with high amounts of atmospheric water vapour.
Table 1 shows various statistical measures of the simulated retrieval
errors. The statistics are given for all four types of retrieval as
discussed in Embury and Merchant, (this issue): N2 and N3, these
being single-view retrievals using 11 and 12 μm and 3.7, 11 and 12 μm
channel sets respectively; and D2 and D3, the corresponding dual-
view combinations. In all cases the mean and median agree to better
than 0.01 K, and only the nadir-only two-channel retrieval (N2) has
markedly different SD and RSD.

2.2. Match-up data

2.2.1. In situ data
For the purpose of this initial validation, we created a match-up

database (MDB) that contains both in situ SST measurements and the



Table 1
Summary statistics of simulated retrieval error in the absence of instrumental noise for
retrievals using four channel combinations, N2, N3, D2 and D3 (see main text for
definitions). “Min” and “Max” are the minimum and maximum simulated retrieval
error; “LQR” and “UQR” are the lower and upper quartiles; “RSD” is the robust standard
deviation (as defined in main text); “SD” is the standard deviation. All quantities are in
Kelvin.

Min LQR Median RSD Mean SD UQR Max

N2 −1.127 −0.099 0.015 0.157 0.010 0.284 0.116 1.462
N3 −0.239 −0.049 −0.005 0.067 0.003 0.080 0.044 0.584
D2 −0.359 −0.018 0.016 0.045 0.009 0.058 0.045 0.256
D3 −0.146 −0.024 0.002 0.039 0.003 0.039 0.028 0.187
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collocated ATSR observations. The in situ SST observations are
provided by the Met Office Hadley Centre in the form of ASCII files
using one decimal place accuracy, i.e. in situ latitude and longitude are
reported to 0.1° precision and SST measurements to 0.1 K, and are
comprised of data from the International Comprehensive Ocean–
atmosphere Dataset (ICOADS, (Worley et al., 2005)) from the start of
the ATSR-1 mission to the end of 1997, and National Centers for
Environmental Prediction (NCEP) near-real-time (NRT) marine re-
ports (see http://icoads.noaa.gov/nrt.html) from the start of 1998 to
present. The majority of data are received through the Global
Telecommunication System (GTS) which includes data from three
main sources: drifting buoys, moored buoys, and ships. Additional QC
information using the method of Rayner et al. (2006) is provided with
the in situ data, from which we exclude obviously bad data before
matching with the satellite data. Checks included in the QC flags are:
invalid or missing data; blacklisted data sources; inland and lake
buoys; temperatures below –1.8 °C; temperatures N8 °C different
from climatology; and a buddy check (in which nearby buoys are
compared).

Each of the three in situ data types has particular characteristics.
Drifting buoys have the most complete spatial coverage, although it is
far from uniform, and they measure the sea temperature at around
20 cm depth. The uncertainty in drifting buoy observations was
estimated to be 0.2 K by O'Carroll et al. (2008), and part of the
uncertainty arises from reporting of drifting buoy temperatures with
only 0.1 K resolution (i.e., rounded to one decimal place). During the
AATSR mission drifting buoys formed the majority of the in situ
dataset. Moored buoys can be roughly separated into two distinct
types, the Global Tropical Moored Buoy Array (GTMBA) and coastal
moorings. The GTMBA includes data from the TAO/TRITON (Tropical
Atmosphere Ocean/Triangle Trans Ocean Buoy Network; (McPhaden,
1995)), PIRATA (Prediction and Research Moored Array in the
Atlantic; (Bourlès et al., 2008)), and RAMA (Research Moored Array
for African-Asian-Australian Monsoon Analysis and Prediction
(McPhaden et al., 2009)) arrays, and all use ATLAS (Autonomous
Temperature Line Acquisition System) moorings. These provide the
most accurate measurements in the ATSR MDB: the instrument
accuracy is better than the 0.1 K resolution reported in GTS records,
but the number of match ups is low, representing b3% of the MDB.
ATLAS moorings measure SSTs at 1 m depth. Outside of the GTMBA,
most other moored buoys are located in North American and
European coastal waters. While coastal moored buoys do record
more information than drifters, their designs are more varied hence
temperature measurements are from a wider range of depths. Also,
the coastal location is particularly challenging for SST retrieval from
space, and so the coastal moored buoys are excluded from this initial
ARC SST validation. Finally, there are measurements from Voluntary
Observing Ships (VOS). These represented the majority of the in situ
record at the start of the ATSR1 mission (1991); however, the share
was rapidly reduced both due to the reduction in total number of VOS
reports and the increase in buoy data. VOS measurements use a range
of different sensors—hull contact, engine intake etc.—resulting in
significantly poorer precision than buoy data (e.g. (Emery et al.,
2001)), and therefore are also excluded from the initial ARC SST
validation.

2.2.2. Satellite data
Matching the in situ data with the satellite imagery is done as

follows. Firstly the in situ data are filtered to select only reports within
3 h of a given ATSR data-file (corresponding to a single orbit); these
are then collocated to the nearest ATSR pixel (whether clear or
cloudy) and all matches with separation N1 km (i.e. outside the ATSR
swath) are rejected. Secondly, matches to duplicate satellite data are
detected and removed. These are cases where a single buoy has
reported multiple observations, within the ±3 hour window, that are
matched to the same ATSR observation. The match with the smallest
time separation is retained and the remaining are ignored. Matches
where a single buoy observation is matched against more than one
ATSR orbit can occur at higher latitudes where the same location is
observed on consecutive overpasses. Such matches are considered
valid and are retained.

While matching against the pixel level product in this way should
ensure that all satellite-in situ distances are less than 1 km, in practise
it is limited by the geolocation accuracy of the two data types. As the
in situ locations are reported to only 0.1° resolution, spatial
separations of up to ~7 km may exist. ATSR SSTs are extracted for a
5×5 pixel window surrounding the nominal in situ position and the
average SST is calculated using all the clear-sky pixels. This pixel
window reduces the random SST uncertainty from sensor noise by a
factor of up to 5=

ffiffiffiffiffiffi

25
p

.
Additionally, various numeric weather prediction (NWP) data

used in the ARC processing system, such as surface wind speed and
total column water vapour (TCWV), are extracted along with the
satellite retrievals.

There are two consequences from the approach of matching to
full-resolution data, rather than spatially averaged SST products as
done in some previous AATSR validation studies (e.g., drifter
validation in Corlett et al. (2006) and O'Carroll et al. (2006). The
first is that this allows the satellite-in situ spatial and temporal
separation to be more accurately estimated and minimised. The
second relates to the fact that the operational ATSR spatially averaged
products are generated by first averaging the brightness temperatures
and retrieving the SST from those averages. The dual-view nature of
the ATSR instruments means that different pixels can be cloudy in the
two views. This can introduce unpredictable errors into the dual-view
retrievals as the nadir and forward views are no longer guaranteed to
correspond to the same source locations. We calculate SSTs from
individual pixel brightness temperatures, ensuring the locations
match as far as is possible between nadir and forward views.

The cloud screening algorithm used in the ARC processing system
is based on the probabilistic Bayesian method described in Merchant
et al. (2005), updated for day-time observations using methods in
Mackie et al. (2010), and further developed for simultaneous
exploitation of the two views of ATSR. A future article will give a
full description and report on validation of the implementation for
ARC of the Bayesian cloud detection algorithm; here we simply
comment that, overall, it seems more effective than the threshold-
based “SADIST” method (Závody et al., 2000) used with operational
ATSR data. Table 2 compares the SD and RSD of satellite-in situ
differences for the two cloud masks. The standard deviations show a
substantial decrease when using the Bayesian cloud detection,
equivalent to removing independent noise of magnitude N0.3 K.
Even the outlier-tolerant RSDs show modest improvement (equiva-
lent to removing ≃0. 12 K of independent noise), suggesting that the
improvement in cloud detection is not limited to outliers. For a dual
view SST, the global retrieval bias is not greatly affected by the cloud
detection used, probably because cloud contamination can cause
warm or cold biases depending on which view is affected by residual
cloud. The ratio of the SD to RSD gives a measure of how much a

http://icoads.noaa.gov/nrt.html


Table 2
Impact of different cloud detection on validation results, for AATSR between July 2002
and December 2007. Statistics are shown in Kelvin for residuals between satellite and in
situ observations when using cloud-flags from the operational imagery (“SADIST”) and
from ARC (Bayesian) cloud screening algorithms. SD represents the standard deviation
of satellite-in situ differences. RSD is an outlier-tolerant robust estimate of standard
deviation. The satellite SSTs are dual-view two-channel skin SSTs (D2 SSTs) based on
the same ARC algorithm throughout, to isolate the effects of cloud screening alone. D2
SSTs are not the most accurate of the available types of retrieval, but are available day
and night, allowing the impact of the different day and night cloud detection schemes
to be compared.

Drifters GTMBA

N SD RSD N SD RSD

Day
SADIST 89,831 0.565 0.236 5256 0.370 0.220
Bayesian 120,916 0.458 0.235 6837 0.324 0.218

Night
SADIST 100,826 0.602 0.257 3571 0.400 0.220
Bayesian 96,857 0.452 0.227 3081 0.242 0.174

Table 3
Drifting buoy matches for ATSR-2 and AATSR. “Clear-sky” indicates matches with at
least one clear pixel in the 5×5 pixel array around the reported buoy location.

ATSR-2 AATSR

Start date 1995-06-01 2002-07-24
End date 2003-06-22 2007-12-24
Total drifters 397,474 922,464
Clear-sky drifters 83,007 218,826
Clear-sky drifters/year 9896 41,945
Total GTMB 24,557 31,398
Clear-sky GTMB 7772 9918
Clear-sky GTMB/year 892 1872
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particular SD is affected by outliers (with a ratio of 1 implying no
outliers). The ratios are closer to unity for the Bayesian cloud
detection than for SADIST. Even for Bayesian detection, however,
the ratio is well above 1, reflecting the fact that cloud detection is not
the only contribution to outliers. The tropical moored buoys matched
with Bayesian-screened SSTs have SD equal to 0.24 K, with the RSD
equal to 0.17 K, reflecting both the improved cloud detection and
higher quality of the in situ data compared to drifters.

2.2.3. Match-up database summary
To assess the new SST retrieval scheme used within ARC, we

require that the comparison data are accurate, consistent, and cover
(a)
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Fig. 2. Global plots of clear-sky matches per year with drifting buoys for (a) ATSR-2 and (b) A
in terms of matches per unit area by scaling the plotted value at a given location by the arc
the widest possible range of observing conditions. Drifting buoys
provide the widest coverage of all the in situ types, with reasonable
consistency and accuracy, and are used throughout this paper, except
where otherwise stated. The GTMBA data are more accurate and
consistent, but the low spatial coverage and number of matches make
them unsuitable for fully characterising global SST. Nevertheless,
because of their good accuracy they are also useful for comparison
against the ATSR data. All comparisons from this point on are based on
ARC cloud screening, irrespective of whether the SST retrieval uses
operational or ARC coefficients. Because operational SSTs were
derived only for image pixels flagged clear by the operational cloud
flagging, SSTs using operational coefficients have been derived by re-
applying the operational coefficients to imagery cloud-screened by
ARC methods.

Table 3 summarises the total number of matches found. Approx-
imately 75% of all matches found corresponded to completely cloudy
scenes—i.e. all 25 pixels in the 5×5 window were classified as cloud
by the Bayesian cloud detection algorithm—and are not used for
retrieval validation. Fig. 2 shows the geographical distribution of the
drifting buoy matches retained for validation for ATSR-2 and AATSR.

3. Satellite–buoy differences

3.1. Skin SST and skin effect

Radiometers operating at infrared wavelengths, such as the ATSR
instruments, are sensitive to radiation emitted from the layer between
the air–sea interface and about 20 μm below the air–sea interface,
depending on wavelength. In situ measurements of SST, however, are
usually made at some distance below the surface, the exact depth
dependent on the observing platform used. During night there is a
temperature difference of approximately 0.2 K between the two
measurements. This is a “skin effect”, reflecting the large thermal
gradient required to maintain a flux of heat through the near-surface
layer in whichmolecular rather than turbulent heat transfer processes
dominate (e.g., (Saunders, 1967)). The skin effect exists also during
the day, but may be modified by absorption within the ocean skin
layer of near-infrared solar insolation. Under conditions of sufficiently
low wind-driven mixing, solar heating will also cause thermal
stratification of the upper ocean (discussed in the next section)
further altering the difference between what is observed by satellite
and measured by the in situ instrument. The Met Office has provided
estimates of the skin effect for the ARC project using the Fairall et al.,
(1996) method forced by ECMWF-Interim data (Simmons et al.,
2007). This accounts for bothwind speed and net heat flux (full details
of the implementation used are given in Horrocks et al.(2003a)). The
(b)

 75 100

375 500
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ATSR, per cell of 15° in longitude by 5° in latitude. The rate of matches can be compared
–cosine of its latitude.
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Fairall model includes two tuneable parameters (λ0 and A), which
have been set to λ0=4.5 and A=0.2 for this project, based on a
previous study as discussed later in this section.

Fig. 3 shows the difference between the AATSR retrieved SSTskin
and SSTdepth as measured by drifting buoys along with the predicted
skin effect from the Fairall model output. For comparison we also
show the empirical parameterization of night-time skin effect in
terms of wind speed (u) from Donlon et al. (2002), namely:

SSTsubskin−SSTskin = 0:14 + 0:30 exp −u = 3:7ð Þ ð1Þ

In the nighttime case, other than a warm offset of ~0.05 K, the
observed satellite-drifter differences follow the expected variation
with wind speed predicted by the Donlon curve. The offset may
represent an overall skin SST retrieval bias, a bias in the Donlon
parameterisation, or a combination of these factors. The variations
with wind speed of the Donlon estimate and the night time data are
similar, in that there is little variation above 6 or 7 m s–1.

Applying the Fairall method at night yields the shaded (\\) band.
The band shows the median plus and minus one RSD of the result of
the Fairall calculation; there is a range for a given wind speed because
the Fairall method accounts for the heat flux variability through the
skin layer. The Fairall skin-effect matches the observations at higher
wind speeds (N10 m s–1), cools with respect to the observed
difference for winds in the range ~10 down to ~5 m s–1, and is colder
than but parallel to the observed difference at lower wind speeds.

During day-time, the absorption of insolation by the ocean skin
leads to satellite-drifter differences which are almost independent of
wind speed at ~0.1 K, except for a rise at wind speeds b3 m s–1. The
observed difference is a combination of the day-time skin effect and,
particularly at wind speeds b3 m s–1, thermal stratification (Murray
et al., 2000) between the surface and the drifting buoy observation
depth. The shaded (//) band is the day-time skin effect calculated
using the Fairall method, which shows much less variation with wind
speed than the nighttime data.

For the next step in comparison, we formulate an SSTsubskin
estimate by using the Fairall model to adjust the SSTskin retrieval. Note
that we could apply the adjustment to the drifting buoy SSTs to form a
skin SST estimate to compare with the satellite SSTskin. The residual
differences would be identical. The convention we adopt here means
that all estimation steps (SST retrieval and adjustments) are kept on
one side of the comparison and are validated against unadjusted in
situ measurements.
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Fig. 3. AATSR retrieved SSTskin minus drifting buoy SST as a function of wind speed.
Error bars show the range of median difference plus and minus one standard error for
(black) night-time and (grey) day-time matches. Solid line shows empirical
parameterization of skin effect from Donlon et al.(2002). The shaded areas show the
estimate using the Fairall et al.(1996) method, the vertical range being the median±
RSD for each bin of wind speed: (\\) night-time cases; (//) day time cases. Unlike the
Donlon method, which is a function only of wind speed, Fairall's method attempts to
account for heat flux through the skin layer and solar absorption within the skin.
Fig. 4 shows the difference between the estimated SSTsubskin
(satellite skin SST adjusted using the Fairall method) and drifter SSTs
as a function of windspeed. The SSTsubskin-drifter difference is b0.03 K
for higher wind speeds (N10 m s–1), with a warmer bias of up to 0.1 K
for lowerwind speeds. The day and night SSTsubskin–drifter differences
are now very consistent—for all wind speeds above ~3 m s–1 the day
and night differences agree to ~0.02 K. A plausible interpretation is
that the divergence of the day and night differences forwinds b3 m s–1

is the consequence of thermal stratification within the ~20 cm of the
surface (between the drifter thermistor depth and the surface). There
is good consistency of the day and night curves at higher wind speeds
(3 to 15 m s–1) despite quite distinct day and night behaviour over this
range in Fig. 3. This suggests that the Fairall formulation is an effective
tool for estimating the different wind-dependence of the skin effect in
day and night. The residual variation of bias with wind speed above
3 m s–1 could arise from: (i) an inadequacy of the physics in Fairall's
formulation that is in common between day and night; (ii) an
inadequacy in the value of the λ0 and A parameters used here;
(iii) biases at low wind speeds in the NWP fluxes used to drive the
model (e.g., Horrocks et al., 2003a); (iv) a wind-related error in the
skin SST retrieval; or (v) an error in the skin SST retrieval that depends
on a factor correlatedwithwind speed (a confounding factor). Awind-
related retrieval error would arise, for example, via an inadequate
simulation of the dependencies of emissivity and reflected radiance
(most likely in the forward view) when defining retrieval coefficients.
Potential confounding factors are: inability of the retrieval to cope
wholly with marine aerosol (whose concentration is correlated to
wind speed); or systematic retrieval error related to atmospheric
humidity, since column water vapour is correlated to wind speed
globally.

Perhaps all of these factors play some role, but it seems likely that
parameter error in the implementation of the Fairall model is
significant. The implementation of the Fairall model used here was
tuned in an earlier study at the Met Office for use with operational
AATSR data, so as to minimise the wind-dependence of bias between
operational AATSR and in situ buoys. Much of the residual wind-speed
dependence seen here could therefore arise as an artefact of the
difference between the operational and new ARC retrieval co-
efficients. A preliminary study suggests that the residual wind-
speed dependence is reduced (data not shown) by removing the
tuning step in the Met Office's implementation of the Fairall model
and reverting to Fairall's original recommended formulation. This will
preserve the independence of ARC SSTs from drifting buoy observa-
tions (see Embury &Merchant, this issue), and results will be reported
in a later paper.
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Fig. 4. SSTsubskin minus drifting buoy SST as a function of wind speed. The SSTsubskin
estimate is the AATSR-retrieved skin SST adjusted for the skin effect using the Fairall
model (see main text). Error bars span the range of median difference plus and minus
one standard error for (black) night-time and (grey) day-time matches.



Table 4
Statistics of AATSR D2 sub-skin SST estimation for different skin effect corrections.
Median of satellite-in situ, with RSD in parentheses, both in Kelvin.

Day Day, uN3 m s–1 Night

Nmatches 120,916 104,843 96,857

None -0.084 (0.235) -0.084 (0.223) -0.149 (0.227)
Donlon 0.122 (0.240) 0.112 (0.226) 0.061 (0.221)
Fairall 0.070 (0.241) 0.066 (0.229) 0.057 (0.228)

Table 5
Median and (in parentheses) RSD of satellite SST minus drifter SST in kelvin, where the
satellite SST is the D2 SST skin retrieval adjusted to sub-skin and depth (20 cm). ΔT is
the estimated stratification between the sub-skin and depth.

All cases ΔTb0.05 K ΔTb0.05 K

Nmatches 120,916 116,763 4153

Sub-skin 0.070 (0.241) 0.069 (0.236) 0.150 (0.422)
0.2 m 0.066 (0.241) 0.068 (0.236) -0.004 (0.441)
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Table 4 shows the global retrieval biases and RSD for no skin
correction, with skin correction using the Donlon parameterization,
and using the Fairall model. The Donlon formulation is effective at
reducing both the night time bias and the RSD. While the Fairall
correction does result in a slight positive bias (~0.05 K) it has brought
the day and night retrievals into very close agreement. Use of the
Fairall method also causes a small increase in RSD; equivalent to an
independent noise signal of magnitude 0.04 K (night) or 0.06 K (day).

3.2. Thermal stratification

During the day solar heating of the upper ocean can cause the
formation of a near-surface “warm layer” under low wind conditions
(e.g., Lukas, 1991). As a result, the sub-skin temperature is warmer
than temperatures at lower depths. In cases of sustained wind speed
less than ~1 m s–1 and high incident solar radiation, the difference can
exceed 5 K by early afternoon relative to the SST before dawn, as
thermal stratification occurs. Such extreme events are seen in spring
and summer in mid and high latitudes (Gentemann et al., 2008;
Merchant et al., 2008b). More typically, the diurnal cycle of SST is of
order a few tenths of Kelvin.

To model diurnal warming for the ARC project we use the Kantha
and Clayson(1994) model implemented at the Met Office, of which
full details are given in Horrocks et al. (2003b). This model is a one
dimensional turbulence closure model, giving a profile of modelled
stratification throughout the model run. More highly parameterized
models for diurnal stratification exist (e.g., Gentemann et al., 2009;
Zeng & Beljaars, 2005), and these merit evaluation in future work.

Temperature differences are calculated between the sub-skin and
depth SST at 0.2, 1.0, and 1.5 m below surface. In 83% of cases these
differences are b0.05 K. For conditions conducive to large diurnal
warming events, themodelled stratification across the top ~20 cm can
reach 0.5 K by 1000 h local time. Fig. 5 shows the difference between
the SST at 0.2 m estimated by adjusting AATSR D2 SSTskin for both skin
effect and diurnal stratification, minus drifting buoy SST. Compared to
Fig. 4, there is reduced difference between the day and night-time
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Fig. 5. AATSR estimated SST0.2m–drifters as a function of wind speed. Error bars span the
range of median difference plus and minus one standard error.
dependence of difference at low wind speeds, indicating that the
stratification estimate is beneficial.

Table 5 shows how correcting for the diurnal stratification affects
the global biases. While the thermal stratification correction has a
visible improvement in the wind speed dependent biases shown in
Fig. 5, it has negligible effect on the global biases and RSD. This is
primarily due to the low incidence (14%below3 m s–1) of extreme low
wind speed conditions in the global dataset. Therefore, in Table 5, we
also present statistics for cases of low thermal stratification (b0.05 K)
and high thermal stratification (N0.05 K) separately. Day time cases of
lowmodelled stratification have lower RSD than the high stratification
cases. Using a harsher threshold of 0.01 K reduces the day time RSD to
match the night-time RSD of ~0.23 K (these “extremely” low
stratification cases cover 93% of all daytime matches). This is
consistent, since stratification at night is usually expected to be
negligible. The day-time cases with stratification greater than 0.05 K
have warmer sub-skin SST estimates relative to drifters (by ~0.08 K)
than the low-stratification cases, suggesting that truly stratified cases
are being captured by this criterion. However, the average stratifica-
tion correction for the high-stratification cases is 0.15 K, which
indicates that on average the stratification is over-estimated.

The RSD of the day-time SST depth minus drifter SST is marginally
greater than the RSD of day-time sub-skin SST minus drifter SST, for
the more stratified sample. So, it seems that the sub-skin to SST depth
adjustment is also adding some noise to these day-time cases. It is
challenging to model the magnitude of the thermal stratification as it
depends on both the wind speed and solar radiation history since
dawn. It may be that the NWP data used to drive the model do not
always capture these histories sufficiently accurately. Nonetheless,
the stratification model is shown to have some skill at predicting the
presence of stratification events and in reducing the bias of SST depth
compared to drifting buoy SSTs.

Table 6 shows equivalent statistics for the GTMB array. Here the
stratification effect is greater as the ATLAS moorings measure at a
greater depth, and they are found in tropical locations where
stratification events happen more often because of year-round high
insolation and relatively low average wind speeds. The model is now
reducing median and RSD satellite-in situ differences when consid-
ering both all matches and the low stratification events. For the more
stratified cases, the stratification adjustment results in a small
increase in RSD, but the significant improvement in median difference
(from ~0.25 K to 0.03 K) shows that the stratification model is
remarkably effective on average.

3.3. Diurnal cycle and time-adjustment

Sub-daily variability, particularly the diurnal cycle of SSTs, also
leads to differences between the satellite SST and in situ measured
Table 6
As Table 5 but for ATLAS moorings in the GTMBA. Measurement depth is 1 m.

All cases ΔTb0.05 K ΔTb0.05 K

Nmatches 6837 5783 1054

Sub-skin 0.072 (0.224) 0.055 (0.203) 0.245 (0.365)
1.0 m 0.049 (0.220) 0.051 (0.201) 0.030 (0.393)
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Fig. 7. Rate of change of SST calculated from AATSR D2 SST0.2m–drifter SST differences as
a function of solar zenith angle. Line: average rate found for different solar zenith angle
ranges calculated across the MDB. Shaded band: median pm RSD of rate simulated by
the skin effect and stratification models for the same matches.
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SSTs if the two are not perfectly coincident in time. The maximum
time-window allowed in the MDB is 3 h, so up to 3 h of solar heating
or night-time cooling can occur between the two observations of the
SST. Minnett (1991) showed that spatial separation between satellite
and in situ of ~10 km and time separations of ~2 h can introduce RMS
errors of ~0.2 K into satellite validation. In this section, we show that,
in fact, the errors associated with the time have a significant
systematic component that can be compensated for. This is important
where the distribution of satellite–buoy time difference is asymmet-
rical or where the satellite observation time is near the peak or trough
of the diurnal SST cycle, because then the time difference effect can
introduce an apparent bias in the validation results.

The effect of the time separation on retrieval bias is shown in Fig. 6.
There is a cooling trend of 0.015 K/h affecting night-timematches and
a warming trend of 0.058 K/h during the day. The Envisat satellite has
a fixed 10:00 h Local Equator Crossing Time (LECT), and for most
matches we can consider the local satellite observation times to be
roughly 10 a.m. and 10 p.m. and therefore interpret Fig. 6 as showing
the trends corresponding to two segments of the diurnal cycle. There
is an upper limit to the daytime satellite–buoy retrieval bias for time
differences N1.5 h, which corresponds to local buoy times of around
8:30 a.m. and earlier, i.e. local times closer to the minimum of the
diurnal cycle, before the sea surface begins to stratify significantly due
to solar radiation.

The Fairall skin and Kantha–Clayson stratification models, dis-
cussed in the previous sections, can also be used to estimate the
surface heating/cooling rates (that is, rates of change of surface
temperature). This was originally performed in order to homogenise
the ARC SST record—the Envisat satellite which carries the AATSR
instrument has a 10:00 h LECT while the ERS-1 and ERS-2 satellites
carrying the ATSR1 and ATSR-2 instrument have 10:30 h LECTs. This
half-hour difference is sufficient to introduce a discontinuity in the
day-time SST record of around 0.03 K (half this at night). Therefore, in
order to develop a homogeneous record across the three sensors, an
adjustment for the diurnal cycle is required. Here we validate the
modelled heating and cooling rates against observation-driven
estimates.

Fig. 7 shows the mean observed (line) and modelled (band)
heating rates at the AATSR observation time (mostly close to 10 a.m.
or 10 p.m.) as a function of solar zenith angle (SZA). The observed
heating rates are calculated by linear regression of the satellite-buoy
retrieval bias against time differences for a series of strata of SZA. The
simulated heating rates are represented by the shaded band which
gives the median±RSD of simulated heating rate as a function of SZA
for the same set of matches. The night-time rate (SZAN90°) is
between –0.01 and –0.02 K h–1 (i.e., modest cooling). The day-time
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Fig. 6. D2 SST0.2m retrieval bias as a function of satellite–buoy time difference for
daytime (grey) and night-time (black) matches. Solid lines show linear best fit to data
(only using time differences b1.5 h for daytime matches).
(SZAb90°) warming is strongly dependent on SZA, and is up to
0.1 K h–1, consistent with the ~0.5 Kmean amplitude of the daily cycle
in the tropics and summer mid-latitudes.

As ocean surface mixing is driven by surface winds, the rate of
heating will be strongly dependent on wind speed in addition to solar
zenith angle (insolation). This is shown in Fig. 8 where the heating
rates are plotted against wind speed for two example ranges of SZA
(one day and one night). There is very good agreement between the
observed (black bars) and simulated (shaded area) heating rates.
Within each range of SZA, the data show a dependence onwind-speed
that is well described as an exponential function (solid line). So, an
alternative to the model simulated time-corrections is an empirical
model, comprising, for each solar zenith angle range, a fit against wind
speed of form:

dSST
dt

= a0 exp a1uð Þ + a2 ð2Þ

This empirical fit is less onerous to calculate than the simulated
time corrections, and can also be applied to other observations with
similar LECTs, including the ATSR-1 and ATSR-2 MDBs (for which we
have not modelled the half-hour SST time corrections). Fig. 6 implies
that the empirical model can be applied for the in situ observations up
to 2 h at least from the 10:30 h overpass time of ATSRs 1 and 2.

These temperature trends can affect both the apparent retrieval
bias and noise in validation studies. For instance, if the distributions of
satellite-buoy time differences were uniform and the trend applied
exactly to all observations, the independent noise introduced would
be:

σ =
dSST
dt

Δt
ffiffiffi

3
p ð3Þ

where Δt is the maximum time difference between satellite and buoy.
For AATSR vs. drifter SSTs, the expected increase in SD/RSD is less than
the above estimate because the time differences are not uniformly
distributed. Larger time windows can also lead to bias artefacts if the
satellite–buoy time differences are not symmetrically distributed
around zero or span a range of local time over which the diurnal cycle
is not linear, as is the case for the morning AATSR observations.

Fig. 9 shows the distribution of satellite-buoy time differences in
the AATSR drifter and GTMBA datasets. Most drifting buoys are
making frequent reports (e.g., hourly) and as a result the majority,
~66%, of matches have time differences less than an hour. However, in
the case of the GTMBA data only 23% of matches were within a one-
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Fig. 8. Surface heating rates as a function of wind speed calculated from observations (black bars) and simulation (shaded grey area). Left panel: subset of day-time matches with
solar zenith angles between 30 and 60°. Right panel, night-time matches with solar zenith angles between 120 and 150°.
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hour time window, because of how frequently the ATLAS moorings
transmit.

Table 7 shows the global statistics of SST0.2m–drifter difference for
AATSR D2 using different corrections for satellite–buoy time differ-
ence: (i) making no correction; (ii) using a single mean heating rate
for day and cooling rate for night; (iii) using the SZA-dependent rates
shown in Fig. 7; (iv) using the fitted exponential-in-wind-speed
model for different SZAs (Eq 2); and (v) using the simulated rates
from the Fairall and Kantha–Clayson models. As the AATSR–drifter
time differences are already low (see Fig. 9) the effects are relatively
modest. Using the full correction reduces the daytime RSD from
0.241 K to 0.230 K (equivalent to removing independent noise of
magnitude 0.07 K), which thenmatches the night-time RSD. A greater
improvement in statistics is seen by limiting the data to matches
within a one hour time window—day-time RSD reduces to 0.223 K.
For comparison, the daytime matches with absolute time differences
greater than 1 h have a RSD of 0.286 K without correction for time
difference, and 0.258 K with correction.

Table 8 shows the equivalent statistics for the tropical moored
buoys. In this case there are far fewer matches and the time
differences are much more spread out due to the intermittent data
reported though the GTS. Restricting the comparison to the smaller
time window causes a significant increase in both RSD and bias due to
the reduced sample size. When considering all matches within a three
hour window, the time-difference correction reduces day-time RSD
from 0.220 K to 0.196 K (equivalent to removal of 0.10 K of
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Fig. 9. Distribution of satellite–buoy time differences for drifter (black) and GTMBA
(grey) matches. Number of GTMBA matches has been scaled by 10.
independent noise). There is also a positive effect in making day
and night observations more consistent on average.

All the tropical moored buoy comparisons show better agreement
(lower SD and RSD) with satellite measurement than do the drifting
buoy data. In addition, there are clearly fewer outliers affecting the
moored buoy comparison as the SDs are only slightly higher than
RSDs, while the drifter SDs were approximately double the corre-
sponding RSD. This is despite the tropical regions tending to have
lower precision satellite SSTs due to the higher water vapour loading.
The lower incidence of outliers seems, therefore, to reflect the higher
quality of the tropical moored buoys compared to the drifting buoys in
the data sets we use.

There is a trade-off between minimising the satellite-buoy
separation, in both time and space, and maximising the number of
matches to increase coverage and reduce sampling error. By matching
in situ data to the closest ATSR pixel, we apply a spatial separation
criteria of nominally 1 km, although it is effectively ~5 km due to the
0.1° resolution of the buoy location reports available to us. Increasing
this space-window does not significantly increase the number of
matches as the only “extra” ones are outside the satellite swath.When
selecting the maximum temporal separation allowed we should
consider how the SST can vary between two observations, which is
driven by the diurnal cycle (or, sub-daily variability more generally),
and the distribution of time separations. For example, a linear
temperature trend and a symmetric distribution of time differences
will give an unbiased satellite-in situ difference with only modest
increase in validation RSD/SD.
Table 7
Median and (in parentheses) RSD, in kelvin, of satellite SST0.2m minus drifter SST, for
different methods of satellite–buoy time difference corrections indicated in leftmost
column.

Day Night

Time window ±3 h ±1 h ±3 h ±1 h

N. matches 120,916 81,829 96,857 65,963

None 0.066
(0.241)

0.069
(0.223)

0.057
(0.228)

0.056
(0.221)

Global mean rate 0.068
(0.234)

0.068
(0.221)

0.057
(0.228)

0.056
(0.221)

SZA-dependent rate 0.069
(0.232)

0.068
(0.220)

0.057
(0.228)

0.056
(0.220)

Wind and SZA dependent
rate

0.068
(0.229)

0.068
(0.219)

0.057
(0.227)

0.057
(0.221)

Modelled 0.068
(0.230)

0.068
(0.220)

0.057
(0.228)

0.056
(0.221)



Table 8
Median and (in parentheses) RSD, in kelvin, of satellite SST1.0m minus GTMBA SST, for different methods of satellite–buoy time difference corrections indicated in leftmost column.

Time window Day Night

±3 h ±1 h ±3 h ±1 h

N. matches 6837 1449 3081 832

None 0.049 (0.220) 0.105 (0.244) 0.021 (0.181) 0.049 (0.210)
Global mean rate 0.032 (0.197) 0.088 (0.248) 0.030 (0.177) 0.053 (0.208)
SZA-dependent rate 0.029 (0.199) 0.085 (0.248) 0.028 (0.179) 0.052 (0.209)
Wind and SZA dependent rate 0.030 (0.194) 0.084 (0.245) 0.028 (0.180) 0.051 (0.208)
Modelled 0.029 (0.196) 0.086 (0.240) 0.032 (0.179) 0.052 (0.204)
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The RMS of the simulated diurnal cycle is 0.03 K h–1 at night and
0.10 K h–1 during the day, which matches the 0.2 K difference for a
two hour time separation identified byMinnett (1991). Simulations of
the diurnal heating rates are in good agreement with the observed
satellite–drifter differences. In the case of the AATSR–GTMBA
matches, where the distribution of time differences is asymmetric
with less than 25% of matches within a one hour window, correcting
for the diurnal heating effect significantly reduced the satellite-in situ
RSD while bringing the day/night differences into closer agreement.

4. Validation

4.1. Global AATSR

In the previous section we use the satellite-in situ differences to
explore and quantify the geophysical differences between the types of
measurement. We now validate SST-depth estimates derived by
adjusting retrieved skin SSTs to SST depth. The adjustments comprise
the Fairall model for the skin effects, the Kantha–Clayson model for
diurnal stratification, and time-difference effects parameterized in
terms of solar zenith angle and wind speed, as described in previous
sections. Performance of the new ARC retrievals is assessed partly in
comparison with operational coefficients. Identical adjustments to
SST depth have been applied, so that the effects of the different skin
retrieval schemes can be clearly seen. The operational retrievals have
already been shown to have relatively good performance. O'Carroll
et al. (2008) performed a three-way uncertainty analysis between
operational AATSR, in situ, and AMSR-E SSTs, and found the night time
AATSR retrievals to have a lower error (standard deviation ~0.16 K)
than in situ buoy measurements (0.23 K, although genuine geophys-
ical variability may also contribute to this value).

As well as basic comparisons, we investigate whether the residuals
vary systematically with factors which should affect the satellite
retrieval but not the in situmeasurements (such as atmospheric water
vapour or satellite viewing geometry). Additionally, comparing the
residuals from the different channel combinations and both the new
ARC and the operational retrieval algorithms are informative about
the characteristics of satellite retrieval uncertainties.

Note—we are not using the operational SSTs present in the ATSR
multi-mission archive version 2.0, but are implementing the opera-
tional retrieval algorithm within the ARC processing chain which
ingests Level 1b brightness temperature files. Both sets of SSTs (ARC
Table 9
Global AATSR estimated SST0.2m–drifter in kelvin, using both operational (ATS*) and
new ARC retrieval coefficients.

N2 N3 D2 D3

Day (120,916)
ATS* 0.464 (0.431) -0.086 (0.290)
ARC 0.020 (0.317) 0.068 (0.229)

Night (96,857)
ATS* 0.448 (0.450) 0.033 (0.200) -0.108 (0.291) 0.088 (0.223)
ARC 0.031 (0.327) 0.034 (0.192) 0.057 (0.227) 0.055 (0.207)
and “ATS*”) are generated from an identical set of input brightness
temperatures using identical cloud screening etc., the only difference
being the SST retrieval algorithm.

Table 9 shows global statistics comparing satellite-retrieved
SST0.2m against drifter SST for both the operational and ARC AATSR
retrievals. In all cases the ARC retrieval coefficients result in both a
smaller median AATSR–drifter difference and lower RSD. With the
operational SST there is a large spread in median AATSR–drifter
differences with N2 more than 0.5 K warmer than D2. In practise, the
operational nadir-only retrievals are used only in the absence of the
D2 (during day) and D3 (at night) retrievals. There is a ~0.2 K
difference between the dual-view retrievals, with D3 ~0.1 K warmer
than drifters and D2 ~0.1 K cooler. The ARC SSTs are more consistent
between types of retrieval: nadir-only N2 and N3 are ~0.03 K warmer
than in situ while D2 and D3 are ~0.06 K warmer.

When considering the differences in RSD between the operational
and ARC SSTs, the greatest improvement, from 0.45 K to 0.33 K, is seen
for the basic N2 SSTs, followed by 0.29 to 0.23 K for the D2. This is due
to these retrievals, which use only the 11 and 12 μm channels, being
the most sensitive to atmospheric water vapour and therefore
benefiting most from the improved ARC algorithm. For the night-
only N3 and D3 the decrease in RSD is much lower ~0.01 K. However,
the improvement may somewhat be masked because these RSDs are
around 0.2 K, and are probably dominated by the random error of the
buoy measurements.

Next, consider the differences in RSDbetween different algorithms.
Largest RSD is obtained for N2 SSTs, reflecting the fact that single-view
observations at 11 and 12 μm only do not have sufficient information
content to deal with the full range of variability of atmospheric
absorption.D2 SSTs improve significantly overN2SSTs in termsof RSD,
because the additional view significantly adds to the information
content of the observations. The use of the 3.7 μm channel in the N3
SST also adds significant information compared to N2 SST, and N3
inversion does not amplify noise as much as D2 or D3 inversion (the
magnitude of N3 coefficients is generally smaller than for the dual-
viewalgorithms). N3 SSTs thus turn out to have the smallest RSD. Note,
however, that the D3 SSTs still are less noisy than D2 SSTs. Moreover,
the dual-view algorithms generally maintain accuracy better under
unusual atmospheric conditions, and only they are highly robust
(insensitive) to episodes of elevated stratospheric aerosol.

Table 10 shows global statistics comparing satellite estimated
SST1.0m against in situ SSTs from the Global Tropical Moored Buoy
Table 10
Global AATSR-estimated SST1.0m–GTMBA SST in kelvin, using both operational (ATS*)
and new ARC retrieval coefficients.

N2 N3 D2 D3

Day (6837)
ATS* 0.399 (0.389) -0.155 (0.246)
ARC -0.064 (0.369) 0.030 (0.194)

Night (3081)
ATS* 0.412 (0.424) 0.055 (0.160) -0.155 (0.242) 0.073 (0.155)
ARC -0.043 (0.379) 0.018 (0.128) 0.028 (0.180) 0.036 (0.145)
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arrays. Again, ARC SSTs all have lower RSD and more consistent
median differences than operational SSTs. There are two important
differences compared to Table 9. Firstly, the measurement error
associated with the ATLAS moorings is much lower than drifters, and
this is reflected in the lower RSDs for N3, D2, and D3 SSTs in Table 10.
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Fig. 10. AATSR estimated SST0.2m–drifters as a function of latitude (a,b), TCWV (c,d), wind
column (b,d,f,h) shows operational retrievals. Dashed with symbol—N2; dashed—N3; soli
indicates day-time data.
The ARC N3 SSTs now have a RSD of 0.128 K while the operational N3
SSTs have a RSD of 0.160 K. Secondly, the behaviour of the ARC N2
SSTs appears inconsistent with the previous comparison. While the
ARC N2 SST–GTMBA does have lower RSD than the operational N2, it
has a higher RSD than in the drifter comparison. This reflects the more
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Fig. 11. As Fig. 10b, but including the latitudinal-dependent offset to the D2 SST
retrieval (see main text).
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limited geographical coverage of the GTMBA arrays which cover only
tropical regions. These present difficulties for the split-window N2
retrievals due to the high levels of atmospheric water vapour.

4.2. Regional AATSR

Fig. 10 shows the AATSR estimated SST 0.2m–drifter SST against
four different variables: latitude, NWP total column water vapour
(TCWV), NWP wind speed, and across-track pixel position. ARC
retrievals have improved inter-algorithm consistency, achieved
independently of in situ observations by design (Embury & Merchant,
this issue). ARC N3, D2, and D3 estimates are mutually consistent to
within 0.05 K in agreement with the global statistics in Table 9.
Latitudinal, TCWV and wind speed dependencies are also reduced.

In the latitudinal plots the greatest change between operational
(Fig. 10b) and ARC retrievals (Fig. 10a) is seen for N2 and D2 where
the operational retrievals have large systematic variations ~0.5 K.
With the updated ARC retrievals the majority of these systematic
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Fig. 12. Median of difference between AATSR-estimated SST0.2m and drifting buoy
variations are eliminated, with the exception of the N2 latitude bias
pattern between 30S and 30N whose latitudinal structure remains.
This is also apparent in the RSDs: in Fig. 10b the N2-drifter RSD is high
(0.3–0.5 K) at all latitudes, but in Fig. 10a it is reduced to ~0.2 K in
mid-latitudes while remaining high in the tropics. These retrieval
issues are associated with the high atmospheric water vapour in the
tropics which are particularly problematic for single-view split-
window SST retrievals (Merchant et al., 2009). The latitudinal
variation of the operational D2 SSTs is a known problem with
AATSR retrievals—commonly shown in D2–D3 difference plots
(Merchant et al., 1999)—and is an intrinsic property of the form of
the linear retrieval used operationally (Merchant et al., 2006). A
latitude dependent bias correction has been devised (Birks, 2006),
which has been applied to the operational D2 SST in Fig. 11, although
it does not resolve the underlying problem which is variability with
atmospheric state.

There are also two anomalies associated with Arctic retrievals.
Firstly, the day-time N2 and D2 retrievals are ~0.5 K cooler than
drifters north of 80° N. A similar effect is present in the operational
SSTs, but less obvious due to other zonal variations. However, this
value is based on only 24 matches to two separate drifters. It is
difficult to assess, therefore, whether the biases arise from retrieval
problems related to extreme atmospheric conditions, prevalent cloud
contamination, or other factors. Secondly, there is a ~0.1 K difference
between night-time D2 and D3, and the other retrievals within the
Arctic Circle. This may be due to a cloud screening failure—the nadir-
only and day-time retrievals are all consistent, while the dual-view
night-time retrievals are warmer in comparison. Such an effect would
occur if there is a small amount of undetected cloud in the forward
view.

Fig. 10d shows the large systematic variability of the operational
N2 and D2 retrievals as a function of TCWV. The N3 retrieval also
shows a dependence on TCWV over 30 kg m–2 reaching ~0.3 K for the
wettest atmospheres. Using the ARC retrievals (Fig. 10c) eliminates
the majority of this dependence with the exception of TCWV values
less than 5 kg m–2 or greater than 60 kg m–2. Retrieval-drifter
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differences are 0.1–0.2 K colder for these extremes. As shown in
Embury and Merchant(this issue), this is partly expected given the
retrieval design which leads to inherent biases at the extremes of the
atmospheric conditions used to generate the coefficients. For
example, the ARC D2 retrieval is expected from simulation to have a
cold bias of ~0.2 K for TCWV ~65 kg m–2; N3 and D3 are, in simulation,
less affected and the N2 more so, as observed in practice. There may
also be some bias because extremely humid atmospheres are
expected to be associated with less reliable cloud masking with a
higher chance of residual cloud affecting brightness temperatures
used for SST retrievals and causing cold biases.

For moderate TCWV values, the ARC N3, D2, and D3 retrievals
show a slight linear trend from ~0.05 K for dry conditions to ~0.1 K for
wet conditions—comparable to the operational D3 retrieval. While the
ARC N2 retrieval does match the others for dry conditions, it diverges
slightly for intermediate values of TCWV (20–40 kg m–2) with N2-
drifter differences around 0.0 K. At higher values of TCWV the N2–
drifter differences increase closer to the other retrievals. However,
when viewing a sufficiently opaque atmosphere, the retrieval relies
more on prior information (the climatological correlation of SST and
lower atmospheric temperatures) with decreased sensitivity to the
observations (Merchant et al., 2009).This can also be seen in the N2–
drifter RSD, which increases with TCWV, and is little different from
the operational N2–drifter RSD above about 40 kg m–2.

Wind speed dependence is shown in Fig. 10e and f. The operational
retrievals all have widely different sensitivities to the wind speed,
with N2 the most sensitive and D3 showing no dependence. With the
ARC coefficients all four retrievals have the same small dependence on
wind speed seen in Section 3.1. The consistency of the residual
dependence between the four different ARC retrievals is encouraging.
As discussed in Section 3.1, it is likely that a significant part of the
residual dependence is an artefact of the skin-effect adjustment,
implying that the wind-speed dependence of the new retrievals is
yet smaller.

Fig. 10g and h show the retrieval–drifter differences as a function
of across track pixel position. Systematic biases in the operational
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Fig. 13. Robust standard deviation of difference between AATSR-estimated SST0.2m and dri
retrievals across track arise from assuming the satellite viewing
geometry is a fixed function of the across track pixel position. The N2
retrieval–drifter difference is approximately 0.1 K lower in the centre
swath than at the edges, while the D2 and D3 retrievals show a slight
“m” shape similar to the simulations shown in Embury and Merchant
(this issue). This viewing geometry dependence may also be
contributing to the north–south asymmetry affecting the operational
D3 (Fig. 10b). The ARC scheme removes these across track biases.

Figs. 12 and 13 show global distributions of the median and RSD of
difference between AATSR-estimated SST0.2m and drifter SST. The N3,
D2, and D3 retrievals all have good agreement with the in situ data
with cell-mean differences mostly b0.1 K and RSDs b0.2 K. The largest
satellite–drifter differences are around Svalbard, Indonesia, and in the
Southern Ocean and these are all locations where satellite SST
retrievals are challenging and there is poor in situ coverage. In all
three cases the number of in situ matches is very low (see Fig. 2) as is
the number of individual buoys making the reports. The N2 retrieval,
however, has a much more varied regional bias pattern, especially
along the equator following the high equatorial RSD and zonal
differences seen in Fig. 10a. Here we see the equatorial satellite–
drifter differences are negative in the Pacific and Atlantic Oceans, but
positive in the Indian Ocean and around Indonesia. Similarly the N2
RSD is high at ~0.5 K throughout most of the tropics.

The degree of statistical significance of the median difference of
each cell from zero was evaluated using Student's t test, assuming that
all matches have independent errors. (Correlated errors between
different matches to a given buoy mean that the significance levels
found in this way are over-estimates.) The test indicated that the
calculated median differences are statistically significant at the 90%
confidence level for 65 to 70% of latitude–longitude cells depending
on the type of retrieval. Over half (50–55%) are significant at the 99%
level. In this context, statistically significance indicates that the
median satellite–drifter difference is non-zero, but these differences
are still mostly less than 0.1 K except for the N2 retrieval. Cells where
the observed median differences are not statistically significant
include the three areas of low in situ coverage and large (~0.5 K)
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Table 11
Global ATSR-2 estimated SST0.2m–drifter in Kelvin, using both operational (ATS*) and
new ARC retrieval coefficients.

N2 N3 D2 D3

Day (46,017)
ATS* 0.574 (0.438) −0.004 (0.357)
ARC 0.064 (0.350) 0.138 (0.315)

Night (36,461)
ATS* 0.575 (0.446) 0.129 (0.238) −0.008 (0.335) 0.133 (0.260)
ARC 0.095 (0.351) 0.137 (0.235) 0.143 (0.291) 0.143 (0.250)
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satellite–drifter differences discussed previously. The remaining cells
which are ‘not significant’ correspond to cases where the regional
biases are very low (~0.01 K for the N3, D2 and D3 retrievals).

One of the targets for ARC (Merchant et al., 2008a) was for regional
biases to be within 0.1 K. On the basis of Fig. 12, this objective has
been met for AATSR dual–view SSTs relative to drifting buoys across
80% of the global ocean.
4.3. ATSR-2

Table 11 shows global statistics comparing satellite estimated
SST0.2m against drifter SST for ATSR-2. As with the AATSR results (c.f.
Table 9), the ARC retrieval coefficients result in a lower satellite–
drifter RSD and more consistent median differences. However, the
satellite estimates of SST are now ~0.14 K warmer than drifters or
~0.1 K warmer than the corresponding AATSR comparison. Further-
more the N2 is ~0.05 K cooler than the other retrievals, a much larger
discrepancy than seen for AATSR. Table 12, comparing satellite
estimated SST1.0m against in situ SSTs from the Global Tropical
Moored Buoy arrays, again shows while the ARC SSTs are more
consistent in satellite–buoy differences, the ARC SSTs are significantly
warmer ~0.16 K than in situ data. The RSDs for the ATSR-2 N3 and D3
estimates shown in Table 12 are only slightly higher ~0.01 K
(equivalent to ~0.05 K independent noise) than the corresponding
AATSR values in Table 12, while for the D2 RSD the ATSR-2 value is
~0.06 K higher (equivalent to 0.16 K independent noise) than AATSR.

Fig. 14 is the ATSR-2 equivalent to Fig. 10 and shows the ATSR-2
estimated SST0.2m–drifter SST. The same comments made concerning
Fig. 10 apply here too, though the satellite–drifter differences are
~0.1 K warmer for the ARC ATSR-2 estimates than the AATSR ones.
The ATSR-2 SST estimates are more sensitive to TCWV than the AATSR
estimates, in Fig. 14c, the satellite–drifter differences go from ~0.1 K
for dry atmospheres to ~0.2 K for wet (values were ~0.05 K and
~0.10 K for AATSR). This also shows in the latitudinal differences,
Fig. 14a, where the ATSR-2 tropical estimates are ~0.2 K warmer than
drifters. Behaviour of RSD with latitude and TCWV is also different for
ATSR-2. While N3 and D3 RSDs were almost independent of TCWV
with AATSR, they are now higher (~0.05 K) for low TCWV and
decrease to close to the AATSR values for high TCWV; D2 RSDs,
however, are elevated regardless of the TCWV value.
Table 12
Global ATSR-2 estimated SST1.0m–GTMBA in kelvin, using both operational (ATS*) and
new ARC retrieval coefficients.

N2 N3 D2 D3

Day (6097)
ATS* 0.525 (0.381) −0.103 (0.263)
ARC 0.045 (0.358) 0.121 (0.243)

Night (1675)
ATS* 0.586 (0.438) 0.208 (0.176) −0.071 (0.265) 0.123 (0.160)
ARC 0.134 (0.407) 0.181 (0.134) 0.158 (0.238) 0.158 (0.156)
5. Discussion

In the ARC project we aim to retrieve skin SSTs from the satellite
observations, and also to generate SST estimates at depths represen-
tative of buoy observation depths at a standardised local time.
Therefore, in this initial validation, we have considered in detail the
relationships between skin SST retrieved from AATSR and in situ
observations, with respect to the skin effect, near-surface stratifica-
tion and the diurnal heating and cooling cycle.

To estimate the skin effect we use the Fairall et al. (1996) model
tuned for use with the operational AATSR D3 retrievals in a previous
study. Without accounting for the skin effect, there is apparently a
~0.07 K discrepancy between day and night-time SST retrievals
relative to in situ observations. Our interpretation is that this relative
bias is the average mid-morning modification of the skin effect by
insolation. Correction with the Fairall skin model (which accounts for
fluxes into the skin layer) reduces the day–night discrepancy to
~0.01 K.

The dependence of the Fairall skin effect model with wind speed is
not entirely consistent with the data, with a wind-speed dependent
residual of 0.1 K at about 3 m s–1 falling close to zero by 10 m s–1.
While having a positive effect on bias, applying the Fairall model does
slightly increase the scatter of the resulting SSTsubskin–drifter
differences. There are various possible reasons for these inconsis-
tencies. There may be wind-speed related biases in the skin SST
estimated from AATSR, either directly via inadequately modelled
surface emissivity or via confounding of wind-speed with some other
factor that causes bias. Moreover, the greater noise apparent in the
Fairall model estimates may arise from error in the input fluxes rather
than limitations of the model. However, we think the most likely
reason is that the Fairall model parameters used in this study were
originally intended to use with operational AATSR D3 retrievals. The
residual wind-speed dependence seen here is likely an artefact of the
different wind-speed sensitivity of the operational SSTskin retrievals.

There are two factors which suggest the ARC D3 skin SSTs are less
likely to be in error than the operational D3 skin SSTs. Firstly, in
validation all the operational retrievals have widely different re-
sponses to wind speed while the ARC retrievals are all consistent.
Secondly, the independent night-time skin correction of Donlon et al.,
(2002) has a wind-speed dependence that is consistent with the ARC
observations, and does reduce the scatter of SSTsubskin–drifter
differences when applied to night-time data.

The second step involved in adjusting SSTsubskin to drifter-depth is
to estimate near-surface stratification. This is based on running a
Kantha–Claysonmodel forced by the time-history of NWP fluxes from
the previous dawn (or time of minimum solar elevation). Diurnal
stratification within the uppermost few tens of centimetres of the
ocean around 10 a.m. local time is generally modest (b0.1 K on
average) but is detectable in the observations for wind speeds less
than ~3 m s–1. The Kantha–Clayson model we use for thermal
stratification does reconcile daytime and nighttime satellite–buoy
differences for low wind speeds (b3 m s–1) to ~0.02 K. Alternatively,
users of ARC SSTs for climate applications may prefer to exclude
potential thermal stratification events based on the model pre-
dictions: we find that this approach also reduces the day–night
differences and reduces the daytime RSD from 0.24 K to match the
night-time value of 0.23 K.

The final step in adjusting skin to drifter-depth SST accounts for
the diurnal cycle that is associated with warming during the morning
overpass and cooling during the evening overpass. There are two
reasons to address this. First, the uncorrected diurnal cycle increases
scatter in validation against observations collected over a time
window around the satellite time. Moreover, if satellite–buoy time
differences are asymmetrically distributed or include the time of
minimum or maximum diurnal cycle, the effect can introduce bias
artefacts between day and night satellite SSTs. While these problems
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Fig. 14. ATSR-2 estimated SST0.2m–drifters as a function of latitude (a,b), TCWV (c,d), wind speed (e,f), and pixel position (g,h). Left column (a,c,e,g) shows ARC retrievals, right
column (b,d,f,h) shows operational retrievals. Dashed with symbol—N2; dashed—N3; solid with symbol—D2; solid—D3. Black indicates night-time data; red (with X symbol)
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can be avoided by using very harshmatching criteria between satellite
and in situ (i.e. time differences b1 h or better) this can drastically
reduce the number of matches available for validation. Second, there
is a difference in overpass time of about 30 min between AATSR and
ATSRs 1 and 2, which must be adjusted for in an SST time series for
climate applications.
We have explored heating and cooling rates around the satellite
observation time both in simulation (using the Kantha–Claysonmodel
referred to above) and empirically. We determined the local surface
heating (or cooling) rate during the AATSR overpass from observed
time-dependence of satellite-in situ differences, as a function of solar
zenith angle and surfacewind speed. The observed heating rates show
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excellent functional agreement with those calculated with the
Kantha–Clayson model.

Because we have a large validation dataset in which most buoys
reports are within an hour of the satellite observation time, correcting
for the satellite–buoy observation time difference in the AATSR–
drifter match-up data base results in only slightly improved RSDs.
However, the AATSR–GTMBA matches are limited in number and not
so favourably sampled in time, and correcting for the time-difference
results in significantly reduced RSDs and better day/night bias
agreement, while using harsher matching criteria results in higher
RSDs and worse biases.

Our initial validation results for ARC SST0.2m from AATSR against
drifter measurements is encouraging. Global biases are around 0.03 K
for nadir-only retrievals and 0.05 K for dual-view retrievals. Scatter is
also low with RSD values of 0.33, 0.19, 0.23, 0.21 for the N2, N3, D2,
and D3 algorithms respectively. However, there is a limitation to the
validity of these RSD results. As shown by O'Carroll et al. (2008),
quality controlled drifting buoys reported on the GTS themselves have
an error of ~0.2 K, so the RSDs of the ARC–drifter comparisons may
predominantly reflect the quality of the in situ data rather than the
SST retrievals. N3 and D3 SSTs in particular are expected (from
simulation) to have scatter markedly less than 0.2 K (Embury &
Merchant, this issue). Using the GTMBA dataset based on the more
accurate ATLASmoorings, RSDs of 0.38 (N2), 0.13 (N3), 0.18 (D2), and
0.15 (D3) are obtained, which are a better estimation of the point
scatter error attributable to the ARC SST depth estimates. The SST
depth estimates are formed by adding adjustments for skin and
stratification effects to the primary ARC observations, which are skin
SST retrievals. With some limitations that have been noted, these
adjustments seem effective for systematic aspects of skin-depth SST
difference. However, the adjustments tend to add a small amount of
scatter, since they have random uncertainty of their own (e.g., see
Table 4). The RSDs quoted above therefore give us upper limits to the
random uncertainty inherent in the ARC SSTskin estimates.
(
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Fig. 15. Time series of ATSR-2 (up to mid-2003) and AATSR (from mid-2002) estimated SS
retrievals: solid with symbol D2; solid D3. Red lines (with X symbol) indicates day-time da
Systematic biases have been observed for previous (operational)
ATSR-series SSTs against latitude, TCWV, wind speed and viewing
geometry. The magnitude of these systematic effects has been reduced
usingARC SSTs to b0.1 K for all except themost extreme regimes, namely,
where TCWV b5 kg m–2, TCWV N60 kg m–2, and for latitudes polewards
of about 65°. Regional validation show SST0.2m–drifter differences are
b0.1 K for the N3, D2, and D3 retrievals for 80% of the area of the global
ocean. The exceptions are high-latitudes and Indonesian waters, both of
which have very sparse in situ coverage. The N2 is the only retrieval with
significant regional SSTsbiases exceeding0.1 K; thegreatest variations are
seen in the tropics,whereN2SSTs are several tenthsof adegree cool in the
Pacific and Atlantic, and several tenths of a degree warm in the Indian
Ocean and around Indonesia. These patterns have some resemblance to
those described for AVHRR in Merchant et al. (2009) and it should be
noted that the limitations of the Pathfinder “split-window” SSTsdiscussed
in that paper will apply to some degree also to ARC N2 SSTs, despite the
ARC coefficients being banded by TCWV.

Initial validation of ARC ATSR-2 SSTs show a reduction in
functional and regional biases comparable to that found for AATSR.
Likewise, there are also reduced RSDs compared to operational
algorithms. The global SST0.2m–drifter differences, while more
consistent than the operational retrievals, are around 0.1 K warmer
than their AATSR equivalents resulting in a median SST0.2m–drifter
difference of ~14 K. However, as shown in Fig. 15 the ATSR–2SST0.2m–
drifter differences change significantly over time. All the ATSR-2
retrievals are somewhat warmer, ~0.15 K, than drifters during the
early part of the ATSR-2 mission (1996–1998) but the N2 retrieval in
particular cools towards the end of the ATSR-2 mission. During the
overlap between the two satellites only the N3 and D3 retrievals show
the ~0.1 K difference between ATSR-2 and AATSR, for D2 the
difference is reduced to ~0.05 K, and N2 is b0.01 K.

There are several causes which could be contributing to the ATSR2–
AATSR discrepancy. It is most likely to arise from calibration difference
between the two instruments. Given that the process of SST retrieval
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tends to amplify any calibration errors (Merchant & Le Borgne, 2004),
this is quite plausible, and could arise by chance even if all channel
calibrations were accurate to b0.1 K. Furthermore a change in
calibration over time could lead to the inter-algorithm differences
seen with ATSR-2. Another cause (which we consider less plausible) is
inhomogeneity in the ARC processing inputs over time. The ARC
processing uses prior NWP information for both cloud detection and to
determine the TCWV that selects the SST coefficients used. The NWP
fields are taken fromERA-40 and, after the end of the ERA-40 time series
in August 2002, ECMWF-operational analyses. We consider this
potential cause less plausible for a 0.1 K offset, since neither cloud
detection nor SST retrieval are strongly responsive to the NWP state.
Lastly, it could be an artefact of changes in the in situ record itself. The
number of drifter matches in 2000 was double that in 1997. This can
affect ATSR2–drifter differences if the new additions are altering the
geographical distribution of the buoys as the ATSR-2 SST retrievals have
a greater regional variability (~0.1 K) than the AATSR ones. As part of
future work to ensure homogeneity of the ARC SST record a detailed
overlap analysis will be performed using common in situ data so that
ATSR-2/AATSR SSTs (and brightness temperatures) can be directly
compared, and ATSR-2/AATSR SSTs will be compared against quality
controlled in situ data selected for high stability.

This initial validation has established a high degree of consistency
between ATSR skin SST retrievals, day and night, for ATSR-2 and
AATSR, over most of the regimes of the global oceans. The subtle
variability of the ocean thermal skin and diurnal stratification has
been estimated to adjust the ATSR skin SST retrievals to form SSTdepth
estimates, which are more directly comparable to the buoy observa-
tions available for validation. We have been able to validate the
systematic behaviour of the skin and stratification models used, and
have shown that ATSR-2 and AATSR SSTdepth can be adjusted to a
common satellite overpass time with good confidence, thereby
minimising aliasing of the diurnal cycle into the multi-mission record
of SST. This all represents significant progress towards an indepen-
dent “climate quality” (Merchant et al., 2008a) SST record capable of
refining our knowledge of marine climate change over recent decades.
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