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a b s t r a c t

In this paper, we study a new coloring parameter of graphs called the gap vertex-
distinguishing edge coloring. It consists in an edge-coloring of a graph G which induces
a vertex distinguishing labeling of G such that the label of each vertex is given by the
difference between the highest and the lowest colors of its adjacent edges. The minimum
number of colors required for a gap vertex-distinguishing edge coloring of G is called the
gap chromatic number of G and is denoted by gap(G).

We here study the gap chromatic number for a large set of graphsG of order n and prove
that gap(G) ∈ {n− 1, n, n+ 1}.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and definitions

All graphs considered in this paper are finite and undirected. For a graph G, we use V (G), E(G), 1(G) and δ(G) to denote
its vertex set, edge set, maximum degree and minimum degree, respectively. For any undefined terms, we refer the reader
to [4].

A vertex labeling of a graph G is said to be vertex-distinguishing labeling if distinct vertices are assigned distinct labels. Let
k be a non-negative integer. A k-edge-coloring of G is a mapping f from E(G) to {1, 2, . . . , k}. We say that an edge coloring is
proper if no two adjacent edges have the same color. Many researchers investigated the question of edge coloring inducing
a vertex distinguishing labeling. This is often referred to as vertex-distinguishing edge colorings. In the literature, four main
different functions have been proposed to label each vertex v of G according to the colors of its incident edges. A vertex
labeling l induced by an edge-coloring f is said to be:

(1) vertex-labeling by sum if l(v) =


v∋e f (e),∀v ∈ V (see [11,2]).
(2) vertex-labeling by sets if l(v) =


v∋e f (e),∀v ∈ V (see [8,9,14]).

(3) vertex-labeling by multiset if l(v) =


v∋e f (e),∀v ∈ V (see [1,6,7,10]).
(4) vertex-labeling by product if l(v) =


v∋e f (e),∀v ∈ V (see [17]).

The problem of vertex-distinguishing edge colorings offers many variants and received a great interest during these last
years.We refer the interested reader to Chapter 13 of Chartrand and Zhang’s book [12]. In this paper, we define a new variant
called gap vertex-distinguishing edge coloring, which is defined as follows.

Definition 1. Let G be a graph, k be a positive integer and f be a mapping from E(G) to the set {1, 2, . . . , k}. For each vertex
v of G, the label of v is defined as
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l(v) =


f (e)e∋v if d(v) = 1
max
e∋v

f (e)−min
e∋v

f (e) otherwise.

The mapping f is called gap vertex-distinguishing labeling if distinct vertices have distinct labels. Such a coloring is called a
gap-k-coloring.

The minimum positive integer k for which G admits a gap-k-coloring is called the gap chromatic number of G and is denoted
by gap(G). Necessary and sufficient conditions for the existence of such a coloring are given by the following proposition.

Proposition 1. A graph G admits a gap vertex-distinguishing edge coloring if and only if it has no connected component
isomorphic to K1 or K2.

Proof. Since no isolated vertex of a graph G is assigned a label in an edge coloring of G, wemay assume that G has no isolated
vertices. Furthermore, ifG contains a connected component K2, then the two vertices of K2 are assigned the same label in any
edge coloring of G. Hence, when considering gap vertex-distinguishing edge coloring of a graph G, we may assume that the
order of every connected component of G is at least 3. Let G be such a graph and let E(G) = {e1, e2, . . . , em}. The following
edge coloring function: f (ei) = 2i−1 for 1 6 i 6 m induces a gap vertex-distinguishing edge coloring of G. �

The following lemma gives a lower bound on the gap chromatic number.

Lemma 2. A graph G of order n and without connected component isomorphic to K1 or K2 satisfies gap(G) ≥ n− 1. Moreover,
if δ(G) ≥ 2 or if any vertex of degree greater than 1 has at least two adjacent vertices of degree 1, then gap(G) ≥ n.

To illustrate these concepts, consider the graph G shown in Fig. 1(a). A 6-edge coloring f1 of G is given in Fig. 1(b) and a
5-edge coloring f2 of G is given in Fig. 1(c). For example, in Fig. 1(b), the vertex w is incident to two edges colored 2 and one
edge colored 3, then l1(w) = 1, while the vertex z is incident with one edge colored 6, then l1(z) = 6. The resulting vertex
labels are distinct for both figures. By Lemma 2, we have gap(G) ≥ 5; hence we can immediately conclude that gap(G) = 5.

After a strong analysis of this problem, we raised the conjecture asserting that there is no graph G of order n with
gap(G) > n+ 1.

Conjecture 3. A graph G of order n (not necessarily connected), without isolated edges and isolated vertices has gap(G) ∈
{n− 1, n, n+ 1}.

In the following sections, we prove this conjecture for a large set of graphs and we even decide the exact value of gap(G).
The rest of the paper is organized as follows: first, we point out some previous work related to the topic of this paper and
give somemotivations to investigate this new parameter. The results of Section 3will confirm our conjecture for a large part
of graphs with minimum degree at least 2. In Section 4, we prove our conjecture for some classes of graphs with minimum
degree 1, such as paths, complete binary trees and all trees with at least two leaves at distance 2. This classification of our
results according to δ(G) is due to the definition of our parameter, especially to the definition of labels of vertices of degree
one. Concluding remarks and some open issues are discussed in the last section.

2. Motivation and related work

In this section, we describe the motivation to study the gap coloring problem. We first introduce the following notation:
given a set S of positive integers, we denote by diam(S) the diameter of S, where diam(S) = max{x − y : x, y ∈ S}. The
following proposition is thus obvious.

Proposition 4. Let S1 and S2 be two sets of positive integers, if diam(S1) ≠ diam(S2), then S1 ≠ S2.

From the gap vertex labeling function (Definition 1), we observe that the label of every vertex v with degree at least 2
is the diameter of the set of colors incident to v. Note that this is not the case for the vertices of degree 1. Then, the gap
labeling of a graph G can be seen as a strong version of set and multiset labelings (defined on page 2, in (2) and (3)). Indeed,
according to Proposition 4, a gap distinguishing labeling of a graph G is also a multiset distinguishing labeling of G and a set
distinguishing labeling (if δ(G) > 1). We here present the main results about these related coloring problems.

Let χ ′s(G) denote the minimum number of colors required to have a proper edge coloring of G that induces a vertex-
distinguishing labeling by sets. This coloring number was introduced and studied by Burris and Schelp in [5,8], and
independently called observability of a graph by Cerny et al. [9]. The following result has been conjectured by Burris and
Schelp [8] and proved in [3].

Theorem 5 ([3]). A graph G with n vertices, without isolated edges and with at most one isolated vertex, has χ ′s(G) ≤ n+ 1.
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Fig. 1. A gap vertex-distinguishing edge coloring of a graph.

Let χ ′0(G) denote the minimum number of colors required to have an edge coloring (not necessarily proper) of a graph G
that induces a vertex distinguishing labeling by sets. Harary and Plantholt [14] referred to this type of coloring as a point-
distinguishing edge coloring. They proved, among other things, the exact value ofχ ′0(Pn), χ

′

0(Cn),χ ′0(Qn) andχ ′0(Kn) for n ≥ 3.
Even for bipartite graphs it seems that the problem of determining χ ′0(Km,n) is not easy (see [15,16,18]). Clearly we have
χ ′0(G) ≤ χ ′s(G), and the following result follows from Theorem 5.

Theorem 6. A graph G with n vertices, without isolated edges and with at most one isolated vertex, has χ ′0(G) ≤ n+ 1.

Finally, let c(G) denote the minimum number of colors required to have an edge coloring (not necessarily proper) of G
that induces a vertex-distinguishing labeling by multisets. This concept was studied in [6,7,13,10] and the following result
stated in [12] will be useful to bound our parameter.

Theorem 7 ([12]). If G is a connected graph of order n ≥ 4, then c(G) ≤ n− 1.

We now characterize the relationship between our coloring parameter and the two coloring parameters χ ′0(G) and c(G)
defined previously. The following results follow from Proposition 4 and the definitions of χ ′0(G) and c(G).

Lemma 8. For every graph G without components isomorphic to either K1 or K2 and with minimum degree at least 2, we have

χ ′0(G) ≤ gap(G).

Lemma 9. For every graph G, without components isomorphic to either K1 or K2, we have

c(G) ≤ gap(G).

We will see in Corollary 20 how the results of the current paper can be connected to the study of χ ′0(G).

3. Graphs with δ(G) ≥ 2

Recall that an m-edge-connected graph is a graph in which removing any m − 1 edges does not disconnect it. The main
result of this section is the following.

Theorem 10. For every m-edge-connected graph G of order n with m ≥ 2,

gap(G) =


n if G is not a cycle of length ≡ 2, 3(mod 4)
n+ 1 otherwise.

The proof of Theorem 10 is the combination of several results detailed below.

Theorem 11. Let Cn be a cycle of order n, then

gap(Cn) =


n if n ≡ 0, 1(mod 4)
n+ 1 otherwise.

Proof. Let Cn = (v1, v2, . . . , vn, vn+1 = v1). For each integer i with 1 ≤ i ≤ n, let ei = vivi+1. We consider two cases as
follows:
Case 1: n ≡ 0, 1(mod 4). By Lemma 2, we have gap(Cn) ≥ n, it then suffices to prove that Cn admits a gap-n-coloring. Two
subcases are considered:
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Subcase 1.1: n ≡ 0(mod 4). A mapping f from E(Cn) to {1, 2, . . . , n} is defined as follows (see Fig. 2(a)).

For 1 ≤ i ≤ n, f (ei) =

n+ 1− i if i is odd
1 if i ≡ 2(mod 4)
2 if i ≡ 0(mod 4).

This mapping induces the following gap vertex labeling function.

For 1 ≤ i ≤ n, l(vi) =

n− i+ 1 if i ≡ 2(mod 4)
n− i if i ≡ 0, 3(mod 4)
n− i− 1 if i ≡ 1(mod 4).

Then, it is easy to check that l is a bijection from V (Cn) to {0, 1, . . . , n− 1}. Hence gap(Cn) = n.
Subcase 1.2: n ≡ 1(mod 4). A mapping f from E(Cn) to {1, 2, . . . , n} is defined as follows (see Fig. 2(b)).

For 1 ≤ i ≤ n, f (ei) =

i if i is odd
n− 1 if i ≡ 2(mod 4)
n if i ≡ 0(mod 4).

This mapping induces the following gap vertex labeling function.

For 1 ≤ i ≤ n, l(vi) =

n− i if i ≡ 1, 2(mod 4)
n− i+ 1 if i ≡ 0(mod 4)
n− i− 1 if i ≡ 3(mod 4).

Then, it is easy to check that l is a bijection from V (Cn) to {0, 1, . . . , n− 1}. Hence gap(Cn) = n.
Case 2: n ≡ 2, 3(mod 4). We first prove that gap(Cn) > n. Let f : V (Cn) −→ {1, 2, . . . , n} be any edge-coloring of Cn which
induces a gap vertex-distinguishing function l. Now note that:

n
i=1

l(vi) = |f (e1)− f (en)| +
n

i=2

|f (ei)− f (ei−1)| =
n(n− 1)

2
.

In this formula, each term f (ei) appears twice with opposite (or same) signs; hence n(n−1)
2 is even. But this latter value is odd

if n ≡ 2, 3(mod 4), which is a contradiction. Thus, gap(Cn) ≥ n + 1. It then remains to show that gap(Cn) ≤ n + 1. Two
subcases are considered according to whether n mod 4 = 2 or 3.
Subcase 2.1: n ≡ 3(mod 4). We know that Cn+1 admits a gap-(n+1)-coloring. Necessarily, Cn+1 must contain two successive
edges of same color j where 1 ≤ j ≤ n + 1. By merging these two edges into a single edge colored by j, we obtain a gap-
(n+ 1)-coloring of Cn (see Fig. 2(c)).
Subcase 2.2: n ≡ 2(mod 4). In this subcase, we define an edge coloring f from E(Cn) to {1, 2, . . . , n, n+ 1} by (see Fig. 2(d))
: f (en) = f (en−1) = 2, f (en−2) = 3 and

for 1 ≤ i ≤ n− 3, f (ei) =

n+ 2− i if i is odd
1 if i ≡ 2(mod 4)
2 if i ≡ 0(mod 4).

This mapping induces the following gap vertex distinguishing labeling:
l(vn−2) = 2, l(vn−1) = 1, l(vn) = 0 and

for 1 ≤ i ≤ n− 3, l(vi) =

n− i if i ≡ 1(mod 4)
n+ 2− i if i ≡ 2(mod 4)
n+ 1− i if i ≡ 0, 3(mod 4).

Then, it is easy to check that l is a bijection from the vertex set ofCn to the set {0, 1, . . . , n}\{3}. Hence gap(Cn) = n+1. �

We now introduce a definition which plays a pervasive role in this section.

Definition 2. Let G be a graph of order n and let f be an edge coloring of G. For every vertex v of G, we specify an interval
I(v) = [min f (e)e∋v,max f (e)e∋v]. We say that f is balanced if I(v1) ∩ I(v2) ∩ · · · ∩ I(vn) ≠ ∅.

The following proposition summarizes an important property of our coloring parameter.

Proposition 12. Let G be a graph with δ(G) ≥ 2. If there exists a spanning subgraph H of G with δ(H) ≥ 2 and there exists a
gap vertex-distinguishing balanced edge coloring f of H with k colors, then gap(G) ≤ k.

Proof. Under the stated hypothesis, the gap vertex-distinguishing labeling of H is induced by a balanced edge coloring f
with k colors. Therefore, there exists at least an integer j where 1 ≤ j ≤ k such that ∀v ∈ V , we have j ∈ I(v). By coloring
the edges of G \ H with the color j, we obtain a gap-k-coloring of G. Hence gap(G) ≤ k. �



M.A. Tahraoui et al. / Discrete Mathematics 312 (2012) 3011–3025 3015

Fig. 2. A gap vertex-distinguishing edge colorings of Cn: (a) n = 8, (b) n = 9, (c) n = 7, (d) n = 6.

We illustrate the interest of Proposition 12 by considering the following example: let G be a Hamiltonian graph of order
n ≡ 0(mod 4). In the proof of Theorem 11 (Subcase 1.1), it is easy to check that the proposed edge coloring of Cn is balanced.
Indeed, for each vertex v in G, we have 2 ∈ I(v). Hence, we can extend the cycle Cn to G by weighting the added edges with
color 2 without affecting the gap chromatic value of Cn. Thus, for every Hamiltonian graph G of order n ≡ 0(mod 4), we
have gap(G) = n.

The following proposition is useful for proving Theorem 10. Furthermore, it provides a useful tool for proving other
results.

Proposition 13. If G = (V , E) is an m-edge-connected graph of order n (with m ≥ 2), different from a cycle of length ≡ 1,
2 or 3(mod 4), then for all integer a ≥ 0, there exists an (a + n)-edge-coloring f which induces a gap vertex-distinguishing
labeling l : V → {a, a+ 1, . . . , a+ n− 1}.

Proof. The proof of this proposition is done by giving a polynomial-time algorithm. Let us begin with some definitions and
notations. For every subset S of V , let NS denote the set of neighboring vertices of S, not included in S.

NS = {u ∈ V \ S : ∃v ∈ S for which (v, u) ∈ E}.

For every two adjacent vertices u and v of G such that v ∈ S and u ∈ NS , let P(v, u) be a function which returns a path (or
cycle) from v to a vertex w ∈ S that passes through u, such that the set of vertices between v and w does not belong to S.

Let f be an edge coloring of G. For every subgraph R of G, let g(R) be a function defined on the set E(R) as follows:

g(R) = min{f (ei) : ∀ei ∈ E(R), f (ei) ≠ 1, 2}.

We denote by Q the set of all graphs that are isomorphic to a cycle of order multiple of 4 or to two cycles having at least one
vertex in common.

Observation Everym-edge-connected graph G (withm ≥ 2), different from a cycle of length≡ 1, 2 or 3(mod 4) contains at
least one subgraph H ∈ Q .

It is clear that if G is a 2-edge-connected graph, different from a cycle, then 1(G) ≥ 3. Hence, the subgraph H can always
be obtained from G. The basic idea of our algorithm is to find a balanced edge-coloring f of a 2-edge-connected spanning
subgraph G′ = (V ′, E ′) of G. Initially, both sets V ′ and E ′ are empty set. During the algorithm, the updating of V ′ and E ′ is
done gradually through a specific edge coloring procedure (which is explained in more detail below). When an edge of G
is colored by this procedure it is inserted into E ′. A vertex v ∈ V is inserted into V ′ if and only if it is incident with at least
two colored-edges (e, s ∈ E). Note that when a vertex v is inserted in V ′, we set the label l(v) as l(v) = |f (e) − f (s)| and
the interval I(v) at [min(f (e), f (s)),max(f (e), f (s))]. Such an edge coloring ensures that for every interval I(v), we have
2 ∈ I(v).

In more details, the proposed algorithm starts by coloring the edges of a subgraph H ∈ Q of G of order kwhich induces a
gap vertex-distinguishing labeling of H , where the vertices of H are labeled by distinct numbers ranging from n+ a− k to
n+ a− 1. We can easily establish this labeling structure for every subgraph H of G which is isomorphic to a member of Q .
Then, we have proposed four edge-coloring functions to color the set of edges which constructs a cycle that has an unique
vertex in V ′ or a path between two vertices of V ′. This last step is iterated until all vertices are labeled (i.e., |V ′| = |V |).

In order to color the subgraph H , we need to define several edge-coloring functions. For a proper understanding of our
algorithm, we are going to present the algorithm for a graph G which contains at least one cycle of length multiple of 4.
Otherwise, all other edge-coloring functions of H are described in detail in Appendix. The different steps of the algorithm
are illustrated in the example of Fig. 3, where a = 12.
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Fig. 3. Illustration of Algorithm 1 (a = 12): (a) A 2-edge-connected graph G. (b) Coloring of R1 . (c),(d),(e),(f) illustrate the coloring of R2, R3, R4, R5 ,
respectively. (g) A balanced gap-30-coloring of a spanning subgraph G′ of G. (h) A gap-30-coloring of Gwhich induces a gap vertex-distinguishing function
l : V → {12, 13, . . . , 29}.

Algorithm 1

Input: An integer a ≥ 0 and an m-edge-connected graph G = (V , E) of order n, such that m ≥ 2 and G is not isomorphic
to a cycle of length≡ 1, 2 or 3(mod 4).

Output: A balanced (a + n)-edge-coloring f of G which induces a gap vertex-distinguishing function l : V → {a, a +
1, . . . , a+ n− 1}.

Begin of Algorithm

Step 1: V ′ ← ∅, E ′ ← ∅. Let an index t = 2.

Step 2: Take any subgraph H = R1 ∈ Q of G.
2.1 If (R1 is a cycle of length k ≡ 0(mod 4)) Then
Let H = (v1, v2, . . . , vk, vk+1 = v1). For each integer i with 1 ≤ i ≤ k, let ei = vivi+1. A mapping f from E(R1) to
{1, 2, . . . , a+ n} is defined as follows:

For 1 ≤ i ≤ k, f (ei) =


n+ a− i+ 1 if i is odd
1 if i ≡ 2(mod 4)
2 if i ≡ 0(mod 4)
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This mapping induces the following vertex labeling of R1:

For 1 ≤ i ≤ k, l(vi) =


n+ a− i+ 1 if i ≡ 2(mod 4)
n+ a− i if i ≡ 0, 3(mod 4)
n+ a− i− 1 if i ≡ 1(mod 4)

Then, it is easy to check that l is a bijection from the vertex set of R1 to the set {n+ a−1, n+ a−2, . . . , n+ a− k}.
Otherwise all other edge-coloring functions of R1 are described in detail in the Appendix.
2.2 V ′ ← V (R1), E ′ ← E(R1) and set z = g(R1).

Step 3: While (V ′ ≠ V ) do
Begin while
3.1 Take any two adjacent vertices u and v such that v ∈ V ′ and u ∈ NV ′ .
3.2 Let Rt = P(v, u), we represent the obtained subgraph Rt by the walk (v1 = v, v2 = u, . . . , vk−1, vk). For each
integer i with 1 ≤ i ≤ k − 1, let ei = vivi+1. We now define an edge coloring f of Rt . Four cases are considered
according to the value of k mod 4.
Case 1: k ≡ 0(mod 4). A mapping f from E(Rt) to {1, 2, . . . , a+ n} is defined as follows: f (ek−1) = z − k+ 2 and

For 1 ≤ i ≤ k− 2, f (ei) =


z − i if i is odd
1 if i ≡ 0(mod 4)
2 if i ≡ 2(mod 4)

This mapping induces the following gap vertex labeling of Rt : l(vk−1) = z − k and

For 2 ≤ i ≤ k− 2, l(vi) =


z − i− 1 if i ≡ 1, 2(mod 4)
z − i− 2 if i ≡ 3(mod 4)
z − i if i ≡ 0(mod 4)

Case 2: k ≡ 2(mod 4). A mapping f from E(Rt) to {1, 2, . . . , a+ n} is defined as follows:

For 1 ≤ i ≤ k− 1, f (ei) =


z − i if i is even
1 if i ≡ 3(mod 4)
2 if i ≡ 1(mod 4)

This mapping induces the following gap vertex labeling of Rt .

For 2 ≤ i ≤ k− 1, l(vi) =


z − i− 1 if i ≡ 0, 1(mod 4)
z − i− 2 if i ≡ 2(mod 4)
z − i if i ≡ 3(mod 4)

Case 3: k ≡ 1(mod 4). A mapping f from E(Rt) to {1, 2, . . . , a+ n} is defined as follows: f (e1) = z − 2 and

For 2 ≤ i ≤ k− 1, f (ei) =


z − i if i is odd
1 if i ≡ 2(mod 4)
2 if i ≡ 0(mod 4)

This mapping induces the following gap vertex labeling of Rt : l(v2) = z − 3 and

For 3 ≤ i ≤ k− 1, l(vi) =


z − i− 1 if i ≡ 0, 3(mod 4)
z − i− 2 if i ≡ 1(mod 4)
z − i if i ≡ 2(mod 4)

Case 4: k ≡ 3(mod 4). A mapping f from E(Rt) to {1, 2, . . . , a+ n} is defined as follows: f (ek−1) = z − k+ 2 and

For 1 ≤ i ≤ k− 2, f (ei) =


z − i if i is even
1 if i ≡ 3(mod 4)
2 if i ≡ 1(mod 4)

This mapping induces the following gap vertex labeling of Rt : l(vk−1) = z − k, and

For 2 ≤ i ≤ k− 2, l(vi) =


z − i− 1 if i ≡ 0, 1(mod 4)
z − i− 2 if i ≡ 2(mod 4)
z − i if i ≡ 3(mod 4)
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Observation: In the previous four cases, it is easy to check that l is a bijection from the vertex set V (Rt)− {v1, vk}

to {z − 3, z − 4, . . . , z − k}.

2.3 V ′ ← V ′ ∪ V (Rt), E ′ ← E ′ ∪ E(Rt). Set z = g(Rt) and t = t + 1.
End while

Step 4: For all edges e ∈ E \ E ′, set f (e) = 2.

End of algorithm.

We now present the proof of correctness of the above algorithm. We first show that this algorithm achieves its goal
without blocking, i.e., both actions in Step 3 (3.1 and 3.2) satisfy the following assertions:

If |V ′| < |V | then NV ′ ≠ ∅. (1)

For every vertex u ∈ NV ′ there exists a path from u to a vertex v ∈ V ′ of order at least 2. (2)

The assertion (1) follows from the connectivity hypothesis on G. For a vertex u ∈ NV ′ there exists, at last, an edge
(u, v) ∈ E such that v ∈ V ′. The 2-edge-connectivity hypothesis of G implies that every edge of G belongs to a cycle,
then the two vertices u and v belong to the same cycle. Therefore, the assertion (2) also holds.

We now prove that our coloring algorithm gives a gap vertex-distinguishing function l : V ′ → {a, a+ 1, . . . , a+ n− 1}
of G′ induced by a balanced edge coloring f with a + n colors. At the end of the loop of Step 3, we obtain a bijection l from
the set V ′ to the set {a, a + 1, . . . , a + n − 1}, i.e., for any two vertices u, v of V ′, we have l(u) ≠ l(v). It then remains to
show that f is a balanced edge-coloring and for every vertex v of V ′, we have l(v) equal to maxe∋v f (e)−mine∋v f (e) in G′.
By considering the degree in G′ of each vertex v, we have two cases.
Case 1. d(v) = 2: from the algorithm, it is clear that the label of each vertex v of degree 2 which is incident with two edges
e and s of E ′ is equal to |f (e)− f (s)|.
Case 2. d(v) > 2: let R(v) = {Rd1 , Rd2 , . . . , Rdp} denote the set of all subgraphs having a common vertex v, where d1 ≤
d2 ≤ · · · ≤ dp. From the algorithm, we can observe that (see Fig. 3(g)):

• for any two subgraphs Ri and Rj of R(v), we have E(Ri) ∩ E(Rj) = ∅.
• v is incident with exactly two edges ed1 and sd1 of E(Rd1). Let f (ed1) ≥ f (sd1); then the label of v is fixed as l(v) =

f (ed1)− f (sd1).
• for every subgraph Ri of R(v), where i ≥ d2, we have v is incident with one or two edges of E(Ri).

Furthermore, according to the edge coloring f , we can easily see that:

• for every vertex v of G′, we have 2 ∈ I(v);
• 1 ≤ f (sd1) ≤ 2 and f (ed1) ≥ g(Rd1) ≥ 2;
• for every subgraph Ri of R(v), where i ≥ d2 then ∀e ∈ E(Ri) with v ∈ e, we have 2 ≤ f (e) ≤ g(Rd1).

From these observations we can conclude the following:

• the edge-coloring f is balanced;
• for every vertex v of V ′,maxe∋v f (e) = f (ed1) and mine∋v f (e) = f (sd1).

At Step 4 of the algorithm, we know that the obtained edge coloring f of G′ is balanced. Hence, we can extend G′ to G by
coloring the added edges with color 2 without affecting the vertex labeling function l : V → {a, a+ 1, . . . , a+ n− 1}. �

Now, we can state the proof of Theorem 10. To proceed, we introduce the following result.

Theorem 14. For every m-edge-connected graph G of order n (with m ≥ 2), different from a cycle of length n ≡ 2 or 3(mod 4),
we have

gap(G) = n.

Proof. By Lemma 2, we have gap(G) ≥ n. It then suffices to prove that G admits a gap-n-coloring. We know by Theorem 11
that if G is a cycle of length n ≡ 0, 1(mod 4), then gap(G) = n. Otherwise, it is clear by Proposition 13 that if we set the
integer parameter a at 0, we obtain a gap-n-coloring of G induced by a balanced edge coloring. Hence gap(G) = n. �

We can now conclude that the result of Theorem 10 is a direct consequence of Theorems 11 and 14.
Here we generalize the previous results to a special case of disconnected graphs as follows.

Theorem 15. If G is a graph of order n with connected components G1, . . . ,Gt such that each component of G is an m-edge
connected graph (with m ≥ 2), different from a cycle of length≡ 1, 2, 3(mod 4), then

gap(G) = n.
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Proof. Let ni be the order of Gi (1 ≤ i ≤ t). The proof is essentially due to Proposition 13. The idea is to provide a gap vertex
distinguishing edge coloring for each component of Gi according to the parameter a of Proposition 13 as follows: by applying
this proposition in sequence to G1,G2, . . . ,Gt , we can obtain the labeling function l : V (Gi) → {a, a + 1, . . . , a + ni − 1}
induced by an edge coloring f with a+ ni colors such that a = n−

i
j=1 nj. From this, it is easy to check that l is a bijection

from the vertex set of G to the set {0, 1, 2, . . . , n− 1}. Thus gap(G) = n. �

We believe that the result of Theorem 10 can be extended to all graphs of minimum degree at least 2. But we have not been
able to prove it. We suggest the following conjecture.

Conjecture 16. For every connected graph G of order n with minimum degree δ(G) ≥ 2, we have

gap(G) =


n+ 1 if G is a cycle of length ≡ 2, 3(mod 4)
n otherwise.

4. Graphs with δ(G) = 1

In this section, we give the value of gap(G) for some classes of graphs having δ(G) = 1.

Theorem 17. Let Pn be the path of order n. Then

gap(Pn) =

n− 1 if n ≡ 0, 1(mod 4)
n otherwise.

Proof. The proof of this theorem is similar to the one of Theorem 11. Let Pn = (v1, v2, . . . , vn). For each integer i with
1 ≤ i ≤ n− 1, let ei = vivi+1. We consider two cases as follows:
Case 1: n ≡ 0, 1(mod 4). By Lemma2,wehave gap(Pn) ≥ n−1, it then suffices to prove that Pn admits a gap-(n−1)-coloring.
Two subcases are considered:
Subcase 1.1: n ≡ 0(mod 4). A mapping f from E(Pn) to {1, 2, . . . , n− 1} is defined as follows (see Fig. 4(a)).

For 1 ≤ i ≤ n− 1, f (ei) =


i
2

if i even

n− 2
2

if i ≡ 3(mod 4)

n− 1 if i ≡ 1(mod 4).

This mapping induces the following vertex labeling function: l(vn) =
n−2
2

and for 1 ≤ i ≤ n− 1, l(vi) =



n− i− 2
2

if i ≡ 0(mod 4)

n− 1−
i− 1
2

if i ≡ 1(mod 4)

n− 1−
i
2

if i ≡ 2(mod 4)

n− i− 1
2

if i ≡ 3(mod 4).

Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, . . . , n− 1}. Hence gap(Pn) = n− 1.
Subcase 1.2: n ≡ 1(mod 4). A mapping f from E(Pn) to {1, 2, . . . , n− 1} is defined as follows (see Fig. 4(b)).

For 1 ≤ i ≤ n− 1, f (ei) =


i
2

if i even

n− 1
2

if i ≡ 3(mod 4)

n− 1 if i ≡ 1(mod 4).

This mapping induces the following vertex labeling function:

and for 1 ≤ i ≤ n− 1, l(vi) =



n− 1− i
2

if i ≡ 0(mod 4)

n− 1−
i− 1
2

if i ≡ 1(mod 4)

n− 1−
i
2

if i ≡ 2(mod 4)

n− i
2

if i ≡ 3(mod 4).
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Fig. 4. A gap-coloring of Pn: (a) n = 8, (b) n = 9, (c) n = 7, (d) n = 6.

Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, . . . , n− 1}. Hence gap(Pn) = n− 1.
Case 2: n ≡ 2, 3(mod 4). We first prove that gap(Pn) > n− 1. Let f : V (Pn) −→ {1, 2, . . . , n− 1} be any edge-coloring of
Pn which induces a gap vertex-distinguishing labeling l. We note that:

n
i=1

l(vi) = f (e1)+ f (en−1)+
n−1
i=2

|f (ei)− f (ei−1)| =
n(n− 1)

2
.

In this formula, each term f (ei) appears twice with opposite (or same) signs; hence n(n−1)
2 is even. But this latter value is odd

if n ≡ 2, 3(mod 4), which is a contradiction. Thus, gap(Pn) ≥ n. It then remains to show that gap(Pn) ≤ n. Two subcases
are considered according to whether n mod 4 = 2 or 3.
Subcase 2.1: n ≡ 3(mod 4). We know that Pn+1 admits a gap-n-coloring. Necessarily Pn+1 must contain two successive edges
of same color j where 1 ≤ j ≤ n. By merging these two edges into a single edge colored by j, we obtain a gap-n-coloring of
Pn (see Fig. 4(c)).
Subcase 2.2: n ≡ 2(mod 4). In this subcase, we define an edge coloring f from E(Pn) to {1, 2, . . . , n} (see Fig. 4(d)) by
f (en−1) = n− 1 and

for 1 ≤ i ≤ n− 2, f (ei) =


i
2
+ 1 if i even

n
2

if i ≡ 3(mod 4)

n if i ≡ 1(mod 4).

This mapping induces the following gap vertex distinguishing labeling: l(v1) = n, l(vn−1) =
n
2 − 1, l(vn) = n− 1 and

for 2 ≤ i ≤ n− 2, l(vi) =



n− i
2
− 1 if i ≡ 0(mod 4)

n−
i+ 1
2

if i ≡ 1(mod 4)

n−
i
2
− 1 if i ≡ 2(mod 4)

n− i− 1
2

if i ≡ 3(mod 4).

Then, it is easy to check that l is a bijection from V (Pn) to {0, 1, . . . , n} \ { n2 }. Hence gap(Pn) = n. �

The complete binary tree of height h > 0will be denoted by BTh, note that BTh has exactly 2h+1
−1 vertices. The following

theorem gives the gap chromatic number of BTh.

Theorem 18. For any complete binary tree BTh of order n and height h ≥ 2, we have

gap(BTh) = n− 1.

Proof. By Theorem 17, we have gap(BT1) = gap(P3) = 3. Then, we may restrict our attention to h ≥ 2. By Lemma 2, we
have gap(BTh) ≥ n − 1, it then suffices to prove that BTh admits a gap-(n − 1)-coloring. We define the level l(u) of vertex
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Fig. 5. (a) Notation of BT3 , (b) A gap-14-coloring of BT3 .

u of BTh as the number of edges along the unique path between it and the root. Similarly, the level of an edge e = (u, v)
of BTh is l(e) = max{l(u), l(v)}. We represent the vertices and the edges of BTh, level by level, left to right by the sequence
v1, v2, . . . , vn and e1, e2, . . . , en−1, respectively (see Fig. 5(a)). We now define a mapping f from E(BTh) to {1, 2, . . . , n− 1}
as follows.

For 1 ≤ i ≤ n− 1, f (ei) =

2h if i ≤ 2
i+ 2(h− l(ei)) if i ≥ 3.

This mapping induces the following gap vertex labeling: l(vi) = i − 1 for 1 ≤ i ≤ n. Then it is easy to check that l is a
bijection from V (BTh) to {0, 1, . . . , n− 1}. Thus gap(BTh) = n− 1. �

Theorem 19. Let T = (V , E) be a tree of order n which has at least two leaves u and v at distance two, then

gap(T ) ≤ n.

Proof. The proof of this theorem is done by giving a polynomial-time algorithm. We first start with some definitions used
in the following. Let R1 = (u, w, v) be a path of T and let R be the subtree of T rooted in w and induced by the set V \ {u, v}
(see Fig. 6(a)). Let h be the depth of R. For every level i of R, let Li denote the set of leaves at level i. Let S be a subset of V (R)
and for every vertex x of V (R) \ S, let P(x, S) be the function which returns a path from x to a vertex y ∈ S, such that the set
of vertices between x and y does not belong to S.

Let l be a vertex labeling on V (T ). For every path P of T , let g(P) be a function defined as follows:

g(P) = min{l(v) : ∀v ∈ V (P)}.

The different steps of Algorithm 2 are illustrated in the example of Fig. 6.

Algorithm 2
Input: A tree T = (V , E) of order nwith two leaves u and v at distance 2.
Output: A gap-n-coloring of T .
Begin of Algorithm
Set a mapping f : E(R1)→ {1, n} as follows: f (vw) = n, f (uw) = 1.
This mapping induces the following gap vertex labeling of R1: l(v) = n, l(w) = n− 1 and l(u) = 1.
Let a set S = {w}, an integer z = n− 1 and an index t = 2.
For i = 1 to h do
Begin For

For every vertex x of Li in the subtree R do
Begin For
Let Rt = P(x, S). We denote the path Rt by the sequence of vertices v1 = x, v2, . . . , vk−1, vk. For each integer i with

1 ≤ i ≤ k− 1, let ei = vivi+1. Set an edge coloring f of Rt as follows:

For 1 ≤ i ≤ k− 1, f (ei) =


z − i+1
2 if i odd

i
2 otherwise

This mapping induces the following gap vertex labeling of Rt .

For 1 ≤ i ≤ k− 1, l(vi) = z − i

S ← S ∪ V (Rt), z ← g(Rt), t ← t + 1.
End for

End for
End of Algorithm
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Fig. 6. Illustration of Algorithm 2: (a) A tree T . (b) Coloring of R1 . (c),(d),(e),(f) illustrate the coloring of R2, R3, R4, R5 , respectively. (g) A gap-14-coloring
of T .

Now, we present the proof of correctness for the above algorithm. At the end of this algorithm, we obtain a bijection l
from V to the set {1, 2, . . . , n}. It then remains to show the property of our coloring parameter. By considering the degree
of each vertex v of T , we have three cases:

Case 1. d(v) = 1: from the algorithm, it is clear that l(v) = f (e)e∋v .

Case 2. d(v) = 2: from the algorithm, it is clear that the label of vertex v of degree 2 which is incident with two edges e and
s of E equal to |f (e)− f (s)|.

Case 3. d(v) > 2: let R(v) = {Rd1 , Rd2 , . . . , Rdp} denote the set of all paths having a common vertex v, where d1 ≤ d2 ≤
· · · ≤ dp. We represent the distance between two vertices x, y ∈ V by dist(x, y). From the algorithm, we can observe the
following.

• Every path Ri of R(v) contains a leaf li of T which is an endpoint of Ri. We can see that dist(v, ld1) ≤ dist(v, ld2) ≤ · · · ≤
dist(v, ldp).
• For any two paths Ri and Rj of R(v), E(Ri) ∩ E(Rj) = ∅.
• The vertex v is incident with exactly two edges ed1 and sd1 of E(Rd1). Let f (ed1) ≥ f (sd1); then the label of v is fixed as

l(v) = f (ed1)− f (sd1).
• For every path Ri of R(v), where i ≥ d2, the vertex v is incident to exactly one edge ei of E(Ri).

Furthermore, according to the edge-coloring f , we can see the following.

• f (sd1) = ⌈
dist(v,ld1 )

2 ⌉.
• For every path Ri of R(v), where i ≥ d2, we consider two cases for the value of f (ei) (with v ∈ ei) according to the distance

between v and li:
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• dist(v, li) is even. We have f (ei) =
dist(v,li)

2 . Hence f (sd1) ≤ f (ei) ≤ g(Rd1) ≤ f (ed1).
• dist(v, li) is odd. We have f (ei) = g(Ri)+

dist(v,li)−1
2 . Hence f (sd1) ≤ f (ei) ≤ g(Rd1) ≤ f (ed1).

From these observations, we can conclude that for every vertex v of V , f (ed1) = maxe∋v f (e) and f (sd1) = mine∋v f (e).
Hence, T admits a gap-n-coloring. �

5. Concluding remarks and open problems

In this paper, we studied a new variant of graph edge colorings that induces a vertex distinguishing labeling. Exact results
are given for paths, cycles, some trees and allm-edge-connected graphs withm ≥ 2. The study of the relationships between
our parameter and the point distinguishing problem gives the following result which is a direct consequence of Lemma 8
and Theorem 15.

Corollary 20. If G is a graph of order n with connected components G1, . . . ,Gt such that each component of G is an m-edge
connected graph (with m ≥ 2) different from a cycle of length≡ 1, 2, 3(mod 4), then χ ′0(G) ≤ n.

We would like to end this paper by mentioning three further issues.

(1) We leave as an open question to show that the gap chromatic number of a graph of order n is always in {n−1, n, n+1}.
(2) The computational complexity of the gap chromatic number is still an open problem (this is the case of themost variants

of vertex distinguishing problems derived from an improper edge coloring).
(3) As for the other distinguishing parameters, it would be interesting to consider the variant of the gap coloring problem

that distinguishes the adjacent vertices only.

Appendix. Step 2 of Algorithm 1

In Step 2 of Algorithm 1, it remains to handle the case where R1 is a subgraph of G which is isomorphic to two cycles
having at least one vertex in common. Let us recall that the goal is to define an edge coloring of R1 (of order k) which induces
the following gap vertex-distinguishing function l : V (R1) → {n + a − 1, n + a − 2, . . . , n + a − k} such that ∀ ∈ v, we
have 2 ∈ I(v).

It is clear that the edge set of R1 can be partitioned into two sets generating a cycle C and a path (cycle) P such that the
endpoints of P belong to C . Let C = (v1, v2, . . . , vq, vq+1 = v1). For each integer i with 1 ≤ i ≤ q, let ei = vivi+1. Let
P = (u1, u2, . . . , ut). For each integer i with 1 ≤ i ≤ t − 1, let si = uiui+1, we assume that vq = u1. In the following, we
illustrate the coloring of R1, several cases are considered according to the value of q and t .
Case 1: q ≡ 1(mod 4) and t ≡ 1, 2(mod 4). A mapping f of E(R1) is defined as follows: f (eq) = 2 and

For 1 ≤ i ≤ q− 1, f (ei) =

a+ n− i+ 1 if i is odd
1 if i ≡ 2(mod 4)
2 if i ≡ 0(mod 4).

Then, the following cases define the coloring of the remaining edges of R1.
Subcase 1.1: t ≡ 1(mod 4).

For 1 ≤ i ≤ t − 1, f (si) =

g(C)− i− 1 if i is odd
1 if i ≡ 2(mod 4)
2 if i ≡ 0(mod 4).

Subcase 1.2: t ≡ 2(mod 4). We use the same coloring scheme as in Subcase 1.1 except that f (st−1) = g(C)− t + 1.
Case 2: q ≡ 1(mod 4) and t ≡ 0, 3(mod 4). A mapping f of E(R1) is defined as follows: f (eq) = 1 and

For 1 ≤ i ≤ q− 1, f (ei) =

a+ n− i+ 1 if i is odd
2 if i ≡ 2(mod 4)
1 if i ≡ 0(mod 4).

Then, the following cases define the coloring of the remaining edges of R1.
Subcase 2.1: t ≡ 3(mod 4).

For 1 ≤ i ≤ t − 1, f (si) =

g(C)− i− 1 if i is odd
2 if i ≡ 2(mod 4)
1 if i ≡ 0(mod 4).

Subcase 2.2: t ≡ 0(mod 4). We use the same coloring scheme as in Subcase 2.1 except that f (st−1) = g(C)− t + 1.
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Case 3: q ≡ 2(mod 4) and t ≡ 0, 1, 2(mod 4). A mapping f of E(C) \ {eq, eq−1} is defined as follows:

For 1 ≤ i ≤ q− 2, f (ei) =

a+ n− i+ 1 if i is odd
1 if i ≡ 2(mod 4)
2 if i ≡ 0(mod 4).

Then, the following cases define the coloring of the remaining edges of R1.
Subcase 3.1: t ≡ 0(mod 4). f (eq) = 2, f (eq−1) = n+ a− q+ 2 and

For 1 ≤ i ≤ t − 1, f (si) =

g(C)− i if i is even
1 if i ≡ 1(mod 4)
2 if i ≡ 3(mod 4).

Subcase 3.2: t ≡ 1(mod 4). f (eq) = 2, f (eq−1) = a+ n− q+ 1, f (s1) = g(C)+ 1 and

For 2 ≤ i ≤ t − 1, f (si) =

g(C)− i+ 1 if i is odd
1 if i ≡ 2(mod 4)
2 if i ≡ 0(mod 4).

Subcase 3.3: t ≡ 2(mod 4). We use the same coloring scheme as in Subcase 3.2 except that f (st−1) = g(C)− t + 3.
Case 4: q ≡ 2(mod 4) and t ≡ 3(mod 4). A mapping f of E(R1) is defined as follows:

For 2 ≤ i ≤ q− 2, f (ei) =

a+ n− i− 2 if i is odd
2 if i ≡ 2(mod 4)
1 if i ≡ 0(mod 4)

f (e1) = a+ n, f (eq−1) = a+ n− 4, f (eq) = 1, f (s1) = a+ n− 2 and

For 2 ≤ i ≤ t − 1, f (si) =

g(C)− i+ 1 if i is odd
1 if i ≡ 0(mod 4)
2 if i ≡ 2(mod 4).

Case 5: q ≡ 3(mod 4) and t ≡ 0(mod 4). A mapping f of E(R1) is defined as follows:

For 1 ≤ i ≤ q− 1, f (ei) =

a+ n− i+ 1 if i is odd
2 if i ≡ 2(mod 4)
1 if i ≡ 0(mod 4).

f (eq) = 1, f (st−1) = g(C)− t + 1 and

For 1 ≤ i ≤ t − 2, f (si) =

g(C)− i− 1 if i is odd
1 if i ≡ 0(mod 4)
2 if i ≡ 2(mod 4).

Case 6: q ≡ 3(mod 4) and t ≡ 1(mod 4). A mapping f of E(R1) is defined as follows:

For 1 ≤ i ≤ q− 1, f (ei) =

a+ n− i+ 2 if i is even
2 if i ≡ 1(mod 4)
1 if i ≡ 3(mod 4)

f (eq) = a+ n− q+ 2, f (st−1) = g(C)− t + 2 and

For 1 ≤ i ≤ t − 2, f (si) =

g(C)− i if i is even
1 if i ≡ 1(mod 4)
2 if i ≡ 3(mod 4).

Case 7: q ≡ 3(mod 4) and t ≡ 2, 3(mod 4). A mapping f of E(C) is defined as follows: f (eq) = n+ a− q+ 1 and

For 1 ≤ i ≤ q− 1, f (ei) =

a+ n− i+ 2 if i is even
1 if i ≡ 1(mod 4)
2 if i ≡ 3(mod 4).

Then, the following cases define the coloring of the remaining edges of R1.
Subcase 7.1: t ≡ 2(mod 4)

For 1 ≤ i ≤ t − 1, f (si) =

g(C)− i+ 1 if i is even
1 if i ≡ 3(mod 4)
2 if i ≡ 1(mod 4).

Subcase 7.2: t ≡ 3(mod 4). We use the same coloring scheme as in Subcase 7.1 except that f (st−1) = g(C)− t + 3.
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