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The solvability and the absence of a duality gap for the primal and the dual
Monge]Kantorovich mass-transference programs for arbitrary Hausdorff topologi-
cal spaces are established. Q 1996 Academic Press, Inc.

Gaspar Monge gave for the first time in 1781 a mathematical formula-
tion in terms of descriptive geometry of the ‘‘Cutting and Filling’’ problem
which appeared in France at the end of the eighteenth century. Monge

Ž . Ž .and his successors C. Dupin 1818 , A. de St. Germain 1886 , P. Appel
Žwho won in 1885 the Bordin Price of the Academy of Sciences of Paris for

.a solution of this problem , and others studied this problem using tech-
niques of descriptive and differential geometry very different from the

Ž w x.actual techniques of modern Optimization Theory see 27, 29 . Several
Ž .years later L. V. Kantorovich 1942 posed the problem in terms of

Measure Theory and this abstract approach is followed in the modern
Ž w x.literature see 1, 24, 25, 28 .

The Monge]Kantorovich mass-transference problem has attracted since
its beginnings the attention of many specialists in various areas of mathe-
matics such as differential geometry, functional analysis, infinite-dimen-
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sional linear programming, probability theory and mathematical statistics,
information theory and cybernetics, statistical physics, theory of dynamical
systems, and matrix theory. Moreover it has many applications in engineer-
ing, economy, logistics, theory of stochastic processes, and decision theory.

Along the years many results about the solvability of the primal and dual
programs and about the absence of a duality gap for them have been
stated under different assumptions about the spaces, the functions, and the
measures. For instance, recently remarkable results have been obtained
for completely regular spaces homeomorphic to some universally measur-

Ž .able subset of a compact space certain functions and tight measures ,
Ž .polish spaces and cost functions verifying certain subadditive condition ,

Ž Ž .and compact spaces continuous cost functions and classical Radon
. Ž w x.measures see 1, 17, 28 .

w xIn 6 it is proved that the primal mass-transfer problem is solvable in
the general situation of Hausdorff topological spaces, bounded lower

Ž w x.semicontinuous cost functions, and Radon measures in the sense of 30 .
In the present paper it is established, also for arbitrary Hausdorff topologi-

Ž w x.cal spaces and Radon measures also in the sense of 30 , that the primal
mass transfer problem is solvable for lower semicontinuous cost functions

Ž .bounded below Theorem 1 , that the dual problem is solvable, and that
there is no duality gap for the primal and the dual programs if the cost

Ž .function is bounded and upper semicontinuous Theorems 9 and 11 ,
where the dual program is formulated in the set of the upper semicontinu-
ous functions. In fact Theorem 8 states the absence of a duality gap under
a weaker condition about the cost function c. Also in Section 4 a construc-
tive proof is given of the solvability of the dual problem.

For bounded continuous cost functions it is proved in Theorem 12 that
< Ž . < Ž .the restrictions u p K and ¨ p K are continuous for every optimal1 2

Ž .solution u, ¨ of the dual program, every compact subset K ; supp m ,0
and every optimal solution m of the primal problem. If the Hausdorff0

Žtopological spaces X and Y are uniformizable in particular if they are
.compact , and the cost function is a bounded uniformly continuous one,

Ž .then Proposition 13 states the existence of an optimal solution u, ¨ of the
dual program such that the functions u and ¨ are uniformly continuous on
X and Y, respectively.

In Section 3 some characterizations and properties of uniformly count-
ably additive bounded subsets of measures are obtained and used to study
the mass-transfer programs having an uniformly countably additive feasi-
ble set of the primal program. In this case it is proved that the primal
program is also solvable for universally Lusin measurable cost functions
bounded below, and that there is no duality gap for the primal and the
dual programs also if the cost function is bounded and universally Lusin
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Ž .measurable. Example 22 shows that if X s N or Y s N equipped with
the discrete topology then the primal feasible set is uniformly countably
additive.

1. PRELIMINARIES AND NOTATIONS

ŽLet X and Y be two Hausdorff topological spaces and denote following
w x. 1 Ž .30 by M X the space of all non-negative and finite Radon measuresq

Ž .on X and analogously for Y, X = Y, . . . equipped with the narrow
topology, by p and p the natural projections from X = Y onto X and Y,1 2

Ž . Ž .respectively, and by S X and S Y the families of all bounded upperb b
semicontinuous real functions defined on X and Y, respectively.

1 Ž .Consider from now on two Radon measures m g M X and m g1 q 2
1 Ž . Ž . Ž . ŽM Y such that m X s m Y , a universally Borel measurable i.e.,q 1 2

1 Ž ..m-Borel measurable for every m g M X = Y function c: X = Y ª R,q
and the following ‘‘primal’’ and ‘‘dual’’ mass transfer programs:

¦
min c dmH

X=Y ¥ PPŽ .1m g M X = YŽ .q §p m s m , i s 1, 2Ž .i i

and

max u dm q ¨ dmH H1 2
X Y

u , ¨ g S X = S YŽ . Ž . Ž . DPŽ .b b

u x q ¨ y F c x , yŽ . Ž . Ž .
x , y g X = Y .Ž .

Ž . Ž .Henceforth F PP and F DP will denote as usual the feasible sets of
Ž . Ž . Ž Ž . � 1 Ž . Ž .the programs PP and DP i.e., F PP s m g M X = Y : p m sq i

4 Ž . �Ž . Ž . Ž . Ž . Ž .m , i s 1, 2 and F DP s u, ¨ g S X = S Y : u x q ¨ y F1 b b
Ž . Ž . 4. Ž . Ž .c x, y , x, y g X = Y . Moreover, we will write occasionally m c , m u ,1

Ž .and m ¨ instead of H c dm, H u dm , and H ¨ dm , respectively, and2 X=Y X 1 Y 2
1 Ž .m g M X = Y will denote throughout the paper an optimal solution of0 q

Ž . Ž . Ž . Ž .PP . Also we will write u q ¨ F c instead of ‘‘u x q ¨ y F c x, y for
Ž . � < Ž . < Ž . 4every x, y g X = Y ’’ and M will be M s sup c x, y : x, y g X = Y .

In what follows M will always be finite.
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2. SOLVABILITY AND ABSENCE OF DUALITY GAP

Ž .Let us remark first that the primal problem PP is feasible since the
1 Ž . Ž Ž ..product measure m m m g M X = Y exists and 1rm X m m m s1 2 q 1 1 2

Ž Ž .. Ž . Ž Ž . Ž .1rm Y m m m g F PP clearly the case m X s m Y s 0 is2 1 2 1 2
.trivial .

Ž . Ž . Ž .Moreover for every PP -feasible measure m g F PP and every DP -
Ž . Ž .feasible couple u, ¨ g F DP we have that

u dm q ¨ dm F c dm.H H H1 2
X Y X=Y

THEOREM 1. If c is a lower semicontinuous function bounded below then
Ž .either the primal problem PP is sol̈ able or its ¨alue is q`.

w xProof. It follows from Proposition 2 and 3 of 30, pp. 371, 372 that
Ž . 1 Ž .F PP is a closed subset of M X = Y . Moreover, for every « ) 0 thereq

Ž .exist two compact subsets K ; X and K ; Y such that m X y K -1 2 1 1
Ž .«r2, m X y K - «r2, and2 2

m X = Y y K = K F m X y K q m X y K - «Ž . Ž . Ž .1 2 1 1 2 2 2

Ž . w xfor every m g F PP . Then it follows from Theorem 3 of 30, p. 379 that
Ž . 1 Ž .F PP is a compact subset of M X = Y from where the result followsq

Ž . Ž . Ž 1 Ž ..immediately since the operator T m s m c m g M X = Y is lowerc q
1 Ž . �semicontinuous on M X = Y . Indeed, for every l g R and b g m gq

1 Ž . Ž . 4M X = Y : m c ) l it follows from the Lebesgue monotone conver-q
Ž .gence theorem that there exists n g N such that b c ) l where c sn n

Ž .inf c, nx . Then c is a bounded lower semicontinuous function onX=Y n
Ž . 1 ŽX = Y and the mapping m ª m c is lower semicontinuous on M X =n q

. Ž .Y . Consequently there exists a neighborhood V b of b such that
Ž . � 1 Ž . Ž . 4 Ž . Ž .b g V b ; m g M X = Y : m c ) l and m c G m c ) l for ev-q n n

Ž . Ž . � 1 Ž . Ž . 4 �ery m g V b . Thus V b ; m g M X = Y : m c ) l and m gq
1 Ž . Ž . 4 1 Ž .M X = Y : m c ) l is an open subset of M X = Y .q q

1 Ž .DEFINITION 2. A subset H ; M X is said to be uniformly innerq
Ž .regular with respect to the metrizable compact subsets of X if for

every « ) 0 there exists a metrizable compact subset K ; X such that
Ž .m X y K - « for every m g H.

1 Ž . Ž . ŽA measure m g M X is said to be a Radon measure of type KK seeq m
w x.12, 14 if for every « ) 0 there exists a metrizable compact subset K ; X

Ž .such that m X y K - « .
1 Ž . � Ž . 4We will say that H ; M X is bounded if m X : m g H is bounded.q
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1 Ž .PROPOSITION 3. If a bounded subset H ; M X is uniformly innerq
Ž .regular with respect to the metrizable compact subsets of X then H is a

1 Ž .metrizable relatï ely compact subset of M X .q

Ž .Proof. In fact there exists a sequence K of metrizable compactn
Ž .subsets of X such that m X y K - 1rn for every m g H and everyn

n g N. Then L s D K is a Lusin space and therefore it follows fromn n
w x 1 Ž . ŽTheorem 7 of 30, p. 385 that M L equipped with the narrow topology,q

.as always in this paper is also a Lusin space. Hence by Theorem 3 and
w x � 4Corollary 2 of 30, pp. 379, 106 the adherence H of H s m : m g HL L L

Ž .where m denotes as usual the induced measure on L by m , endowedL
with the narrow topology, is a metrizable compact space. Now the result

Ž .follows immediately since m X y L s 0 for every m g H.

Ž .PROPOSITION 4. If m and m are Radon measures of type KK then1 2 m
Ž . 1 Ž .F PP is a metrizable compact subset of M X = Y .q

Ž .Proof. This follows immediately from Proposition 3 since F PP is
closed and in this case it is also uniformly inner regular with respect to the

Ž .metrizable compact subsets of X = Y see the proof of Theorem 1 .

Remark 5. If c is a lower semicontinuous function bounded below, m1
Ž . Ž n. Ž .and m are Radon measures of type KK , and a sequence m ; F PP2 m

verifies that

lim mn c s inf m c : m g F PP ,� 4Ž . Ž . Ž .
n

Ž m n.then it follows from Proposition 4 that there exists a subsequence m
Ž .convergent to some measure b g F PP and b is an optimal solution of

Ž . Ž . � Ž . Ž .4PP since b c s inf m c : m g F PP . Moreover, if the primal problem
Ž n.has a unique optimal solution then the initial sequence m is convergent.

LEMMA 6. Assume c to be bounded. Then the program obtained adding
< < Ž .the constraints u F M and y2 M F ¨ F 0 in DP is equï alent to the

Ž .original one. In other words, DP is sol̈ able if and only if the newly obtained
program is sol̈ able, and in this case both programs ha¨e the same optimal
solutions.

Ž . Ž . � Ž . 4 Ž .Proof. Let be u, ¨ g F DP . If a s sup ¨ y : y g Y then u9, ¨ 9 s
Ž . Ž . Ž . Ž . Ž . Ž .u q a , ¨ y a g F DP and m u9 q m ¨ 9 s m u q m ¨ . More-1 2 1 2

� Ž . 4 Ž .over sup ¨ 9 y : y g Y s 0 and u9 x F M for every x g X since u9 q
Ž . � Ž . 4¨ 9 F c F M. Considering now u0 x s max u9 x , yM for every x g X

Ž . � Ž . 4and ¨ 0 y s max ¨ 9 y , y2 M for every y g Y , we have that
Ž . Ž . < < Ž . Ž .u0, ¨ 0 g F DP , u0 F M, y2 M F ¨ 0 F 0, and m u9 q m ¨ 9 F1 2

Ž . Ž .m u0 q m ¨ 0 , from where the result follows immediately.1 2
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LEMMA 7. If X and Y are compact spaces and c is a bounded upper
Ž .semicontinuous function on X = Y then DP is sol̈ able and there is no

Ž . Ž .duality gap for PP and DP , i.e.,

sup m u q m ¨ : u , ¨ g F DP s inf m c : m g F PP . 1� 4� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2

Ž .Proof. Let c be the set of all real continuous functions on X = Yi ig I
Ž . Ž .such that c F c F M. Making i F j i, j g I when c F c , I, F is ai j i

Ž . Ž .directed set. Therefore we have that lim c s c and lim m c s m c fori i i i
Ž . Ž . Ž . Ž .every m g F PP . It follows that lim m c s inf m c s m c , wherei i i i

Ž . � Ž . Ž .4 Ž . � Ž . Ž .4m c s inf m c : m g F PP and m c s inf m c : m g F PP .i i
w xNow it follows from Lemma 6 and 1, Theorem 5.2 that for every i g I

Ž . Ž . < <there exists u g C X and ¨ g C Y such that u q ¨ F c , u F M,i i i i i i
Ž . Ž . Ž .y2 M F ¨ F 0, and m u q m ¨ s m c . Therefore,i 1 i 2 i i

m u x m B q m B m ¨ x F c d m m mŽ . Ž . Ž . Ž . Ž .H1 i B 2 2 1 1 2 i B i 1 21 2
B =B1 2

for all Borel subsets B ; X and B ; Y.1 2
Ž .Since it follows from the Alaoglu]Bourbaki theorem that u , ¨ is ai i ig I

Ž `Ž . `Ž . 1Ž . 1Ž ..s L m = L m , L m = L m -relatively compact subset of1 2 1 2
1Ž . 1Ž . Ž .L m = L m , it has an accumulation point f , g such that1 2

m f q m g s lim m c s m cŽ . Ž . Ž . Ž .1 2 i
i

and

m f x m B q m B m g x F lim c d m = mŽ . Ž . Ž . Ž .Ž . H1 B 2 2 1 1 2 B i 1 21 2 i B =B1 2

s c d m m m . 2Ž . Ž .H 1 2
B =B1 2

Let us define now the functions

¡ m f xŽ .1 B
inf sup : U > B g BB X , m B / 0Ž . Ž .1½ 5m BUgV Ž .x 1~u x sŽ .

if x g supp m1¢yM if x f supp m1
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and

¡ m g xŽ .2 B
inf sup : V > B g BB Y , m B / 0Ž . Ž .2½ 5m BVgV Ž .y 2~¨ y sŽ .

if x g supp m2¢y2 M if x f supp m ,2

Ž . Ž .where BB X and BB Y denote the families of the Borel subsets of X and
Y, and V and V are fundamental systems of neighborhoods of x and y,x y

Ž . Ž . Ž . Ž . Ž .respectively. Then u, ¨ g F DP since u, ¨ g S X = S Y and itb b
Ž .follows from 2 that u q ¨ F c.

Ž . Ž .Let us see now that u, ¨ is an optimal solution of DP . In fact for
every n g N there exists a compact subset K ; X such that the restric-n

< Ž .tion u K is continuous and m X y K - 1rn. For every « ) 0 andn 1 n
x g K there exists an open neighborhood U of x in K such that then x n

< Ž . Ž .Ž Ž . .oscillation of u K in U is less than « and m f x F m B u x q «n x 1 B 1
Ž .for every B g BB X , B ; U . Since K is compact there exists a finitex n

� 4 n Xsubset x , . . . , x ; K such that K s D U . Making U s1 n n n is1 x iiiy1 Ž .yU D U 1 F j F n we have thatx js1 xi j
n

Xm f x s m f xŽ . Ž .Ý1 k 1 Un i
is1

n
XF m U u x q «Ž . Ž .Ý 1 i i

is1

F u dm q 2«m K .Ž .H 1 1 n
Kn

Thus

m f x F u dmŽ . H1 k 1n
Kn

and

m f F u dmŽ . H1 1
X

Ž .since lim m X y K s 0.n 1 n
In a similar way we obtain that

m g F ¨ dm .Ž . H2 2
Y

Therefore,

m c s m f q m g F u dm q ¨ dm F m cŽ . Ž . Ž . Ž .H H1 2 1 2
X Y

Ž . Ž .hence u, ¨ is an optimal solution and satisfies 1 .
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THEOREM 8. Let c: X = Y ª R be a bounded function ¨erifying that for
<e¨ery « ) 0 there exists a compact subset K ; X = Y such that c K is an

Ž .upper semicontinuous function and m X = Y y K - « for e¨ery m g
Ž . Ž . Ž .F PP . Then there is no duality gap for PP and DP .

� Ž . Ž .4 Ž Ž ..Proof. Let be m s inf m c : m g F PP and m9 s 1rm X m m m .1 1 2
Then for every n g N there exists a compact subset K ; X = Y such thatn

< Ž .the function c K is upper semicontinuous and m X = Y y K - 1rnn n
Ž . i Ž . n Ž X . Ž .1 2for every m g F PP . If K s p K , m s p m i s 1, 2 andn i n i i K =Kn n

c x , y if x , y g KŽ . Ž . n
c x , y s n g N ,Ž . Ž .n 1 2½ yM if x , y g K = K y KŽ . n n N

n 1 Ž 1 2 .then it follows from Lemmas 6 and 7 that there exist m g M K = K ,0 q n n
Ž 1. Ž 2 . Ž n. n Ž . < <u g S K , and ¨ g S K such that p m s m i s 1, 2 , u F M,n b n n b n i 0 i n

nŽ . nŽ . nŽ .y2 M F ¨ F 0, u q ¨ F c , and m u q m ¨ G m c y Mrn. Ifn n n n 1 n 2 n 0 n
we extend now the functions u and ¨ to X and Y making u s yM onn n n
X y K 1 and ¨ s y2 M on Y y K 2, and we make m s m9 y mX

1 2 q mn
n n n n K =K 0n n

Ž X n
1 2where we denote also by m and m the measures on X = Y whichK =K 0

are the images under the canonical injection K 1 = K 2 ª X = Y of then n
X n. Ž . Ž . Ž .1 2measures m and m , then u , ¨ g F DP , m g F PP becauseK =K 0 n n nn n

Ž . Ž . Ž .p m s p m9 s m i s 1, 2 ,i n i i

1
n 1 2m K = K y K F m X = Y y K - ,Ž .Ž .0 n n n n n n

M
Xn

1 2c dm s m c y c d m9 y m G m y ,Ž . Ž .H H0 n K =Kn n1 2 nK =K X=Yn n

2m K MŽ .2 nn 1m u y m u F Mm X y K q 1 y Mm Y F 2Ž . Ž . Ž .Ž .1 n 1 n 1 n 2m Y nŽ .2

< Ž . nŽ . < Ž .and analogously m u y m u F 4 Mrn . Therefore,2 n 2 n

M
n nm u q m ¨ G m u q m ¨ y 6Ž . Ž . Ž . Ž .1 n 2 n 1 n 2 n n

M
nG m c y 7Ž .0 n n

M
n n 1 2G c dm y 2 Mm K = K y K y 7Ž .H 0 0 n n n

1 2 nK =Kn n

M
G m y 10 ,

n

and the result follows immediately.
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This has the following remarkable consequence:

THEOREM 9. If c is a bounded upper semicontinuous function then there
Ž . Ž .is no duality gap for PP and DP .

Remark 10. The family of all real bounded functions g defined on
X = Y verifying that for every « ) 0 there exists a compact subset K ;

< Ž .X = Y such that the function g K is continuous and m X = Y y K - «
Ž . Žfor every m g F PP so these functions g satisfy the condition of Theo-

. Žrem 8 , is an algebra, a lattice, and a Banach space endowed with the
.usual supremum norm which contains the bounded continuous real func-

Ž . Ž . Ž . Ž .tions on X = Y and the functions f x, y s f x and f x, y s f y1 2
ŽŽ . .x, y g X = Y when f is a bounded m -Lusin measurable functioni i
Ž .i s 1, 2 .

THEOREM 11. If c is a bounded upper semicontinuous function then the
Ž .program DP is sol̈ able.

�Ž . Ž . < <Proof. Consider the set H s u, ¨ g F DP : u F M, y2 M F
4¨ F 0 . Then it follows from the Alaoglu]Bourbaki theorem that H is
Ž `Ž . `Ž . 1Ž . 1Ž ..a s y L m = L m , L m = L m relatively compact subset of1 2 1 2

`Ž . `Ž .L m = L m and therefore it follows from Lemma 6 and Theorem 91 2
sŽ . Ž . Ž .that there exists f , g g H such that m f q m g s m where m s1 2

� Ž . Ž .4inf m c : m g F PP . Moreover

m f x X m B0 q m B9 m g x F c d m m mŽ . Ž . Ž . Ž . Ž .H1 B 2 1 2 B 0 1 2
B9=B 0

Ž . Ž . Žfor all Borel subsets B9 g BB X and B0 g B Y and then if we define as
.in the proof of Lemma 7

¡ m f xŽ .1 B
inf sup : U > B g BB X , m B / 0Ž . Ž .1½ 5m BUgV Ž .x 1~u x sŽ .

if x g supp m1¢yM if x g X y supp m1

and

¡ m g xŽ .2 B
inf sup : V > B g BB X , m B / 0Ž . Ž .2½ 5m BVgV Ž .y 2~¨ y sŽ .

if y g supp m2¢y2 M if y g Y y supp m ,2
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where V and V are fundamental systems of neighborhoods of x and y,x y
Ž . Ž .respectively, then u, ¨ g F DP , and proceeding as in the proof of

Ž .Lemma 7 it can be proved that u, ¨ is an optimal solution of the program
Ž .DP since m and m are Radon measures.1 2

Ž .THEOREM 12. If c is a bounded continuous function and u, ¨ is an
Ž . Ž . Ž . Ž . Ž .optimal solution of DP then u x q ¨ y s c x, y for e¨ery x, y g S s

< Ž . < Ž .supp m and the functions u p K and ¨ p K are continuous for e¨ery0 1 2
compact subset K ; S.

Ž . Ž .Proof. Let u, ¨ be an optimal solution of the program DP . Then
Žc y u y ¨ is a non-negative lower semicontinuous function and m c y0

. Ž . Ž . Ž . Ž .u y ¨ s 0 and so u x q ¨ y s c x, y for every x, y g S.
Ž . Ž .Moreover for every compact subset K ; S and every net x ; p Ki ig I 1

Ž . Ž . Ž .convergent to some x g p K there exists y ; p K such that1 i ig I 2
Ž . Ž .x , y ; K. Let x, y g K be an accumulation point of the neti i ig I
Ž .x , y . Then there exists an ultrafilter UU in I, finer than the filter ofi i ig I
sections of I, such that lim y s y and thereforeUU i

u x q ¨ y s c x , y s lim c x , y s lim u x q lim¨ y .Ž . Ž . Ž . Ž . Ž . Ž .i i i i
UU UU UU

Since

u x G lim u x and ¨ y G lim ¨ y ,Ž . Ž . Ž . Ž .i i
UU UU

Ž . Ž . < Ž .we have u x s lim u x and the function u p K is continuous. In aUU i 1
< Ž .similar way it is proved that ¨ p K is continuous.2

Let us remark that with the notation and conditions of Theorem 12,
since u s c y ¨ on S, u is upper semicontinuous and c y ¨ is lower

Ž . Ž . Ž .semicontinuous, we have that the functions x, y ª u x and x, y ª
Ž .¨ y are continuous on S.

PROPOSITION 13. If the spaces X and Y are uniformizable and c is a
Ž .bouneed uniformly continuous function then there is an optimal solution u, ¨

Ž .of DP such that the functions u and ¨ are uniformly continuous.

Ž . Ž . ŽProof. Let u9, ¨ 9 be a DP -optimal solution whose existence follows
.from Theorem 11 and consider the functions

u x s inf c x , y y ¨ 9 y : y g Y x g X� 4Ž . Ž . Ž . Ž .

and

¨ y s inf c x , y y u x : x g X y g Y .� 4Ž . Ž . Ž . Ž .
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Then

u x s inf c x , y y ¨ y : y g Y x g X ,� 4Ž . Ž . Ž . Ž .

u9 F u, ¨ 9 F ¨ , and u q ¨ F c.
For every « ) 0 there exists a symmetrical element N s Ny1 of the

Ž . Ž . Ž .uniformity of X such that c x, y F c x9, y q « for every x, x9 g N
Ž .and y g Y. Then for every x, x9 g N there exists y9 g Y such that

Ž . Ž . Ž .c x9, y9 y ¨ y9 F u x9 q « and so

u x q ¨ y9 F c x , y9 F c x9, y9 q « F u x9 q ¨ y9 q 2« .Ž . Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž . Ž . Ž .Therefore u x y u x9 F 2« and u x9 y u x F 2« for every x, x9 g
N and the function u is uniformly continuous. In a similar way it is proved
that the function ¨ is also uniformly continuous. Now the statement is
already proved since clearly

u9 dm q ¨ 9 dm F u dm q ¨ dm .H H H H1 2 1 2
X Y X Y

An interesting particular case of the last proposition is the following
Ž w Ž .x.extension of 1, Theorem 5.2 a :

PROPOSITION 14. If X and Y are compact Hausdorff spaces and c is a
Ž . Ž .continuous function then there is an optimal solution u, ¨ of DP such that

the functions u and ¨ are continuous.

3. MASS-TRANSFER PROGRAMS WITH A UNIFORMLY
COUNTABLY ADDITIVE PRIMAL FEASIBLE SET

This section studies the solvability and the absence of a duality gap in
Ž .the particular case when F PP is a uniformly countably additive set. Also

some characterizations and properties of the uniformly countably additive
1 Ž .bounded subsets of M X are presented.q

1 Ž . Ž � Ž . 4PROPOSITION 15. Let A ; M X be a bounded set i.e., m X : m g Aq
. 1is bounded . The following assertions are equï alent:

Ž .15.1 A is a uniformly countably additï e.
Ž .15.2 For e¨ery « ) 0 and e¨ery unï ersally Lusin measurable bounded

<function f on X there exists a compact subset K ; X such that the function f K
Ž .is continuous and m X y K - « for e¨ery m g A.

1 Ž . Ž . wThe equivalence between 15.1 and 15.3 is proved for a compact space X, in 9, Lemma
x3, p. 157 .
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Ž .15.3 A is uniformly inner regular, i.e., for e¨ery Borel subset B ; X
Ž .and e¨ery « ) 0 there exists a compact subset K ; B such that m B y K - «

for e¨ery m g A.

Proof. If the set A is uniformly countably additive then there exists a
ŽRadon measure b on X such that A is uniformly b-continuous i.e., for

Ž .every « ) 0 there exists d ) 0 such that m B - « for every Borel subset
Ž . . Ž w x.B ; X such that b B - d see Theorem 4 of 9, p. 11 . Hence for every

universally Lusin measurable bounded function f on X there exists a
< Ž .compact subset K ; X such that f K is continuous and b X y K - d .

Ž . Ž .So m X y K - « for every m g A and 15.2 holds.
Ž .let us suppose now that 15.2 holds. Then for every Borel subset B ; X

<and every « ) 0 there exists a compact subset K ; X such that x K isB
Ž .continuous and m X y K - « for every m g A. Therefore B l K is

Ž Ž .. Ž .compact and m B y B l K F m X y K - « for every m g A, and
Ž .15.3 holds.

Ž . Ž .Finally suppose that 15.3 is verified and let us prove that 15.1 holds.
In fact if the set A is not uniformly countably additive then there exists
« ) 0, a non-increasing sequence of Borel subsets X > B xB and an

Ž . Ž .sequence m ; A such that m B ) « for every n g N.n n n
Ž .It follows now from 15.3 that for every n g N there exists two compact

X Y Ž X . nq1subsets K ; B and K ; X y B such that m B y K - «r2 andn n n n n n
Ž c Y . nq1 X Ym B y K - «r2 for every m g A. If K s K j K we have thatn n n n n
Ž . n <m X y K - «r2 for every m g A and the function x K is continu-n B nn

Ž .ous. Then K s F K is a compact subset of X such that m X y K - «n n n
Ž .for every n g N and B l K is a non-increasing sequence of compactn
Ž .subsets such that F B l K s B. Therefore there exists n g N suchn n 0

that B l K s B andn0

« ) m X y K G m B y K s m B ) « ,Ž . Ž . Ž .n n n n n0 0 0 0 0

which is a contradiction.

Ž .THEOREM 16. If the primal feasible set F PP is uniformly countably
additï e and c is a unï ersally Lusin measurable bounded function then there

Ž . Ž .is no duality gap for PP and DP .

Proof. This is an immediate consequence of Theorem 8 and Proposi-
tion 15.

PROPOSITION 17. Let S be a s-algebra of subsets of a set V. A bounded
Ž .set A of non-negatï e countably additï e measures on V, S is uniformly
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countably additï e2 if and only if the measure

m9: m9 E s lim m E E g SŽ . Ž . Ž .
UU

is countably additï e for e¨ery ultrafilter UU on A.

Proof. Suppose first that the set A is uniformly countable additive.
w xThen from 9, Theorem 4, p. 11 follows the existence of a non-negative

Ž .real-valued countably additive measure b on S such that A is uniformly
b-continuous. This implies that m9 is countably additive.

Let us prove now that the condition is also sufficient. Suppose that for
every ultrafilter UU on A the measure m9 is countable additive and that A
is not uniformly countably additive. Then there exist « ) 0, a non-increas-
ing sequence of measurable sets E xB and a sequence of measuresn
Ž . Ž . Ž .m ; A such that m E ) « for every n g N. If UU is a non-trivialn n n
ultrafilter on N and

m9 E s lim m E E g S ,Ž . Ž . Ž .n
n , UU

we have that

m9 E s lim m E G «Ž . Ž .n k n
k , UU

for every n g N and then, since the measure m9 is countable additive, it
follows that

0 s lim m9 E G « ) 0,Ž .n
n

which is a contradiction.

Ž .PROPOSITION 18. If F PP is uniformly countably additï e and
Ž . Ž . Ž .m ; F PP is a net which con¨erges in the narrow topology to somei ig I

Ž .measure m g F PP , then

m c s lim m cŽ . Ž .i
i

for e¨ery unï ersally Lusin measurable bounded function c on X = Y.

Proof. Let UU be an ultrafilter on I finer than the filter of sections of I.
w xIt follows from 9, Theorem 4, p. 11 that there exists a non-negative

countably additive measure b which in this case can moreover be taken to
Ž .be a Radon measure, such that F PP is uniformly b-continuous. Then it

2 Ž .Recall that a subset ca V, S is relatively sequentially compact if and only if it is
Ž w x.uniformly bounded and uniformly countably additive see 10, p. 306 .
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follows from the proof of Proposition 17 that

m9 E s lim m E E g BB X = YŽ . Ž . Ž .Ž .i
i , UU

1 Ž .is a Radon measure on X = Y, and since M X = Y is Hausdorff weq
Ž . Ž .have that m9 s m and therefore m E s lim m E for every Borel subseti i

E ; X = Y, from where the result follows immediately.

This has the following remarkable consequence:

THEOREM 19. If c is a unï ersally Lusin measurable bounded function
Ž . Ž .and F PP is uniformly countably additï e, then the primal program PP is

sol̈ able.

Ž . Ž 1 Ž ..PROPOSITION 20. The primal feasible set F PP ; M X = Y is uni-q
formly countably additï e if and only if for e¨ery compact subset K ; X = Y

Ž . Ž . Žthe mapping m ª m , from F PP into C K , is continuous for theK
.corresponding narrow topologies .

Ž .Proof. If the primal feasible set F PP is uniformly countably addi-
w xtive then it follows from 30, Theorem 3, p. 379 that the measure m9 s

Ž . Ž .lim m g F PP exists for every ultrafilter UU on F PP and so PropositionUU

18 assures that

m9 E s lim m EŽ . Ž .
UU

for every Borel subset E ; X = Y. Therefore

mX E s lim m E E g BB K ,Ž . Ž . Ž .Ž .K K
UU

� 4 Xm : m g UU converges to m and the mapping m ª m is continuous.K K K
Ž . Ž .Suppose now that this mapping is continuous from F PP into C K for

Ž .every compact subset K ; X. Let UU be an ultrafilter on F PP which
Ž . Ž .converges to m9 g F PP . If E g BB X = Y then for every « ) 0 there

Ž .exists a compact subset K ; E such that m9 E y K - ` and

lim m E G lim m K s lim m K s mX K s m9 K ) m9 E y « .Ž . Ž . Ž . Ž . Ž . Ž .K K
UU

UU UU

Therefore

lim m E G m9 E and lim m X = Y y E G m9 X = Y y E ,Ž . Ž . Ž . Ž .
UU UU

Ž . Ž . Ž . Ž . Ž .which implies that lim m E s m9 E since m X = Y s m X s m YUU 1 2
Ž .for every m g F PP . It follows immediately from Proposition 17 that the

Ž .set F PP is uniformly countably additive.
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Remark 21. It follows from the proof of Proposition 20 that if the limit

lim m K s m9 KŽ . Ž .
UU

exists for every compact subset K ; X = Y and every ultrafilter UU on
Ž . Ž .F PP which converges to m9, then F PP is uniformly countably additive.

Let us see now an example of a mass-transfer program with a uniformly
countably additive primal feasible set, and also an example of a mass-
transfer program without this property.

Ž .EXAMPLE 22. If Y s N equipped with the discrete topology then F PP
is uniformly countably additive.

In fact, let f be a universally Lusin measurable bounded real function
defined on X = Y. Then for every « ) 0 and n g N there exists a compact

X Ž . < X Ž X .subset K ; X such that f ?, n K is continuous and m X y K -n n 1 n
Ž nq1 Ž .. X Ž . Ž Ž ..«r 2 m Y . If K 9 s F K then m X y K 9 - «r 2m Y and2 n n 1 2

Ž . <f ?, n K 9 is continuous. Let K 0 ; Y be a compact subset such that

«
m Y y K 0 - ,Ž .2 2m XŽ .1

<then f K 9 = K 0 is continuous and

m X = Y y K 9 = K 0 F m X y K 9 m Y q m X m Y y K 0 - «Ž . Ž . Ž . Ž . Ž .1 2 1 2

Ž . Ž .for every m g F PP . It follows from Proposition 15 that F PP is a
uniformly countably additive set.

w xEXAMPLE 23. If X s Y s 0, 1 and m and m are the Lebesgue1 2
w x Ž .measure on 0, 1 then F PP is not uniformly countably additive.

ŽLet E be the diagonal we always take only the diagonals parallel to the0
. w x w x Xline y s x of the square 0, 1 = 0, 1 , E the union of the diagonals of all1

Žthe squares of the partition of X = Y in squares of length side 1r2 i.e.,
�w x w x w x w x w x w x w x0, 1r2 = 0, 1r2 , 0, 1r2 = 1r2, 1 , 1r2, 1 = 0, 1r2 , 1r2, 1 =
w x4. X1r2, 1 , and E the union of the diagonals of all the squares of then
partition of X = Y in squares of length side 1r2 n. Consider now E s1

X X ny1 X Ž .E y E , E s E y D E n ) 1 and the Radon measures m1 0 n n is1 i n
ny1'Ž . Ž . Ž Ž .. Ž .n g N on X = Y such that m B s 1r 2 2 l B l E for everyn n

Borel subset B ; X = Y, where

22ny1

n nl B l E s l B l D ,Ž . Ž .Ýn m m
ms1
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� n4 nD are the diagonals of the squares of length side 1r2 such thatm
E s D 2 2 ny1

Dn , furthermore ln s w n r, where r denotes the Lebesguen ms1 m m m
n'w xmeasure on 0, 2 r2 and

'2
n nw : 0, ª Dm mn2

is an isometric homeomorphism.
Ž . Ž . Ž .Then m ; F PP , E is a pairwise disjoint sequence of Boreln n

subsets,
q`

m E s m E s 1Ž .Dn i n nž /
is1

Ž .for every n g N and therefore F PP is not uniformly countably additive.

4. A CONSTRUCTIVE PROOF OF THE SOLVABILITY OF
Ž .THE DUAL PROGRAM DP

Assume that the spaces X and Y are uniformizable and let c be an
uniformly continuous bounded real function defined on X = Y. Proceed-

Ž . Ž .ing as in the proof of Theorem 8 we can find two sequences u ; S Xn b
Ž . Ž . < < Ž .and ¨ ; S Y such that u F M, y2 M F ¨ F 0, u q ¨ F c n g Nn b n n n n

and

lim m u q m ¨ s m c .Ž . Ž . Ž .1 n 2 n 0
n

Therefore

lim c y u y ¨ dm s 0,Ž .H n n 0
n X=Y

Ž .thus u q ¨ converges to c in m -measure and so there exists an n 0
Ž .m -measurable subset S ; S s supp m such that m S y S s 0, and a0 0 0 0 0

Ž .sequence u q ¨ converging pointwise to c on S . Moreover, for everyn n 0k k

« ) 0 there exists a symmetrical element N s Ny1 of the uniformity of X
such that

c x , y9 - c x9, y9 q «Ž . Ž .
Ž .for every x, x9 g N, y9 g Y and

lim u x q ¨ y F c x , y9 - c x9, y9 q «Ž . Ž . Ž . Ž .Ž .n nk k
k

s lim u x9 q ¨ y9 q «Ž . Ž .Ž .n nk kk
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Ž . Ž .for every x9, y9 g S , x, x9 g N. Therefore0

lim u x y u x9 - «Ž . Ž .n nk k
k

Ž . Ž .for every x, x9 g N such that x9 g p S . In particular1 0

lim u x y u x9 - «Ž . Ž .n nk k
k

Ž . Ž .for every x, x9 g p S such that x, x9 g N. If UU is an ultrafilter on N,1 0
Ž . Ž . Ž .finer than the Frechet Filter, and u x s lim u x for every x g p S´ k , UU n 1 0k

Ž .then u is a uniformly continuous function on p S . In a similar way it is1 0
Ž . Ž . Ž Ž ..proved that the function ¨ y s lim ¨ y y g p S is uniformlyk , UU n 2 0

Ž . Ž . Ž . Ž . Ž .continuous on p S . Moreover u x q ¨ y F c x, y for every x, y g2 0
Ž . Ž . Ž . Ž . Ž . Ž .p S = p S and u x q ¨ y s c x, y if x, y g S .1 0 2 0 0

Ž . ŽLet us suppose now that p S is separable this happens in particular1 0
Ž .if m is a Radon measure of type KK since p S s supp m andŽ .1 m 1 0 1

Ž Ž .. Ž . .m supp m y p S F m X y S s 0 and let D be a countable subset1 1 1 0 0 0
Ž . Ž .of p S such that D s p S , then by means of the diagonal method a1 0 1 0

Ž .Xpointwise convergent subsequence u can be constructed on D, and wenk

have that

X X X X X Xlim u x y u x F lim u x y u x9 q lim u x y u x9Ž . Ž . Ž . Ž . Ž . Ž .n n n n n hk h k k h h
h , k k h

- 2«

Ž . Ž .for every x g p S and x9 g D with x, x9 g N. Therefore the limit1 0

u x s lim u X xŽ . Ž .nkk

Ž . Ž .exists for every x g p S . Moreover, for every y g p S there is an1 0 2 0
Ž . Ž .x g p S such that x, y g S and then the following limit exists:1 0 0

X X X X¨ y s lim ¨ y s lim u x q ¨ y y lim u x .Ž . Ž . Ž . Ž . Ž .n n n nk k k kk k k

Ž . Ž . Ž . Ž . Ž . Ž .Clearly u x q ¨ y F c x, y for every x, y g p S = p S and1 0 2 0
Ž . Ž . Ž . Ž .u x q ¨ y s c x, y for every x, y g S .0
If we consider the functions

u* x s inf c x , y y ¨ y : y g p S x g X� 4Ž . Ž . Ž . Ž . Ž .2 0

and

¨* y s inf c x , y y u* x : x g X y g Y ,� 4Ž . Ž . Ž . Ž .
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Ž .then it follows from the proof of Proposition 13 that u*, ¨* is an optimal
Ž .solution of DP and the functions u* and ¨* are uniformly continuous on

X and Y, respectively.
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