
Review Article

Receptor tyrosine kinases: Characterisation, mechanism of action
and therapeutic interests for bone cancers

Aude I. Ségaliny a,b, Marta Tellez-Gabriel a,b, Marie-Françoise Heymann a,b,c,
Dominique Heymann a,b,c,n

a INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France
b Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
c CHU de Nantes, France

a r t i c l e i n f o

Article history:
Received 15 January 2015
Accepted 18 January 2015
Available online 23 January 2015

Keywords:
Bone metastasis
Bone sarcoma
Receptor tyrosine kinase
Growth factor
Inhibitor
Therapy

a b s t r a c t

Bone cancers are characterised by the development of tumour cells in bone sites, associated with a
dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been
developed to target the cancer cells or tumour niche. As the crosstalk between these two entities is
tightly controlled by the release of polypeptide mediators activating signalling pathways through several
receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown
exciting clinical impacts, such as imatinib mesylate, which has become a reference treatment for chronic
myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main
molecular and functional characteristics of RTKs, and focuses on the clinical applications that are
envisaged and already assessed for the treatment of bone sarcomas and bone metastases.
& 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

To be able to play their physiological role (intra- and inter-
cellular signal transmission and adaptation to changes in the
microenvironment), cells must be able to receive, integrate and
respond to numerous extracellular messengers. These communi-
cations between cells and their environment are made possible
through the attachment of molecules considered as messengers to
their receptors, identified as effectors (cytokines, growth factors,
etc). As proposed by Ehrlich in 1910, “to act, a substance must be
fixed." These receptors are essentially located at the cell mem-
brane, although there are also intra-cytoplasmic receptors such as
steroid hormone that can be translocated into the nucleus to
regulate expression of numerous genes. Membrane receptors
possess (i) an extracellular hydrophilic domain, often glycosylated,
which recognises the ligand; (ii) a hydrophobic trans-membrane
domain that makes embedding possible within the lipid bilayer of
the plasma membrane; and (iii) an intra-cytoplasmic domain
dedicated to signal transduction within the cell. The binding of a
ligand to its receptor is specific, reversible and involves a large
number of low-energy bonds (hydrogen, ionic, hydrophobic, and
Van der Waals). Thus, at equilibrium, the dissociation rate is equal
to the rate of association. Among the receptors of cytokine/growth

factors, six types of receptor have intrinsic enzymatic activity
(kinase or phosphatase receptors, and guanylyl cyclase-coupled
receptors) or not (the G protein-coupled receptors, the receptor-
type “channel”, and cytokine receptors).

The guanylyl cyclase-coupled receptors include natriuretic
peptide, nitric oxide, carbon monoxide and enterotoxin receptors.
The binding of the ligand to the extracellular domain of its
receptor leads to intracellular activation of the guanylate cyclase
domain of the receptor chain, and synthesis of a cyclic GMP for
activating the cAMP-dependent protein kinase environment [1].
The G protein-coupled receptors are characterised by seven
transmembrane domains. The trimeric G proteins located on the
cytoplasmic side of the cell membrane transduce and amplify cell
signalling through the production of cyclic AMP. The chemokine
receptors are included in this family environment [2]. The ion
channel linked receptors are ligand-dependent ion channels and
their opening or closing activities are associated with the nature of
the ligand. These receptors can be ionotropic or metabotropic. In
the first case, the receptor is actually the pore, and opens following
a conformational change made possible by the ligand binding. On
the contrary, in the case of metabotropic receptors, ligand-
stimulated receptors activate a ligand-independent channel
through the intracellular effector environment [3]. Cytokine
receptors can be divided into four groups: (i) receptors with an
immunoglobulin-like ectodomain (IL-1α/β, IL-18); (ii) the trimeric
members of the TNF receptor superfamily (which include, for
instance, RANK, TRAIL receptors and TNF receptors-α/β); (iii), class
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I-cytokine receptors (or haematopoietin receptors) environment
[4]; and (iv) class II-cytokine receptors (or interferon and IL-10
receptors) [5]. Class I/II- cytokine receptors have oligomeric struc-
tures, where a specific α-chain warrants specific ligand recognition,
while one or two channels (β/γ) are used for signal transduction.
For instance, the receptors of interleukins (IL) 2, 4, 7, 9 and 15
consist in a specific chain to the cytokine, and the shared IL-2 γ-
receptor chain, IL-2 and IL-34 also share a β-receptor chain
environment [6]. Similarly, the IL-6 cytokine family (IL-6, IL-11,
CNTF, OSM and LIF) shares the gp130 receptor chain environment
[7]. Among the cytokine receptor families, some are characterised
by intrinsic kinase activity and consequently by their ability for
autophosphorylation. They form the receptor tyrosine kinase (RTK)
family.

All these receptors tightly control tissue homeostasis, and any
dysregulation of these ligand–receptor systems (mutations, over-
expression, etc.) disturbs cell communication and leads to patho-
logical situations. Bone formation and bone remodelling are then
controlled by a large panel of cytokines and growth factors
regulating the dialogue between osteoblasts, osteoclasts and their
environment [8]. It has been recognised that cancer cells (bone
sarcomas and metastatic cells originating from carcinomas) dys-
regulate the balance between osteoblasts and osteoclasts, activate
osteoclastogenesis and then stimulate bone resorption. Conse-
quently, activated osteoclasts resorb the extracellular bone matrix
and release numerous growth factors entrapped in the organic
matrix, which stimulate in turn the proliferation of cancer cells.
Based on these observations, numerous chemical drugs have been
developed to specifically target the various receptor tyrosine
kinases activated by mutations, or by the ligands present in the
tumour microenvironment. The present review summarises the
classification, structure and mechanism, and focuses on the
targeting of action of the receptor tyrosine kinases. Their use in
the treatment of bone cancers (bone sarcomas and bone metas-
tases) is described and discussed.

2. The receptor tyrosine kinase (RTK) family

2.1. Classification and structure of RTKs

Protein kinases are key enzymes in the regulation of various
cellular processes that catalyse the transfer of a phosphate group
from ATP to a hydroxyl group of a serine or a threonine. Among
the 90 identified genes encoding proteins with tyrosine kinase
activity, 58 encode receptors divided into 20 subfamilies [9,10]
(Table 1). Of these subfamilies, EGFR/ErbB (class I), the receptor for
insulin (class II), for PDGF (Class III), for FGF (class IV), for VEGF
(class V) and HGF (MET, Class VI) are strongly associated with
oncological diseases. These RTKs are characterised by a single
trans-membrane domain and a glycosylated N-terminal extracel-
lular domain with a high number of disulfide bonds. This extra-
cellular domain is involved in the dimerisation process of the
receptors, and consequently in ligand recognition (Fig. 1). The
composition of these domains (immunoglobulin domains, rich in
leucine, lysine and cystein, fibronectin type III domain, etc.)
depends on the classes of RTKs and then defines the specificity
of the ligands. The RTKs are inserted into the cell membrane
thanks to an α-helix trans-membrane domain composed of 20
amino acids. The trans-membrane domain plays a key role in the
formation and stabilisation of the dimer of the receptor chains. In
the lipid environment of the cell membrane, the α-helices are
non-covalently oligomerised [11] (Fig. 1). This type of process
makes it possible to pre-dimerise the RTKs in the cell membrane
capable of interacting with the corresponding ligand [12].

The cytoplasmic domain harbours a specific domain with
tyrosine kinase activity that is involved in the catalysis of the
ATP-dependent phosphorylation of receptor chains. It includes
two domains: a juxtamembrane region composed of 40–80 amino
acids corresponding to the tyrosine kinase domain and a carboxy-
terminal region. The tyrosine kinase domain is composed of 12
subdomains organised into two lobes, connected by the kinase
insert domain (subdomain V) (Fig. 1). The tyrosine kinase
domain includes an activation loop, whose orientation (and
phosphorylation) determines the active or inactive state of the
kinase domain. The ATP required for kinase activity is housed
between the two lobes. The small lobe (named lobe N, for
N-terminal, subdomains I–IV), composed of β-sheets and one α
helix, binds, stabilises and orients the ATP previously complexed
with Mg2þ ions. The large lobe (named C, for C-terminal, sub-
domains VI–IX) is mainly composed of α helices, and plays a part
in the chelation of ATP by Mg2þ ATP. It then binds the protein
substrate containing the tyrosine target and catalyses the transfer
of the phosphate group from the ATP to the receptor chains [13].
The size of the tyrosine kinase domain is relatively constant
between the different RTKs. On the contrary, the size and content
of the juxta- and C-terminal domains vary considerably between
the RTK families, conferring the specificity of intracellular signals.
For instance, the intracellular domain of PDGFRβ has 552 amino
acids and the intracellular domain of EGFR has 542 amino acids,
while the FGFR1 shows 425 and TrkA only 356 amino acid
residues. The number of tyrosine residues (phosphorylable or
not) and their distribution vary significantly between the RTKs.
Thus, 27 tyrosine residues are detected for the PDGFRβ (of which
19 can be phosphorylated) and only 11 tyrosines can be detected
in TrkA (with 6 phoshorylable tyrosines) [16] . However, a pair of
tyrosine residues phosphorylated after RTK activation is found in
the activation loop and is required for the functionality of the
receptor. The activation of these tyrosine residues stabilises the
“open” conformation of the activation loop and both lobes, and
also allows the ATP and peptidic substrate environment to bind
[13]. An additional, third tyrosine amino acid (located in a close
upstream domain) participates in the conformational change of
the activation loop. All the mutations on these tyrosine residues
result in inactivation of the receptor chains. EGFR is an exception
in the RTK families and it has only one tyrosine residue at this
position, which is not essential for receptor chain activation and
function.

2.2. General mechanism of action

It is admitted that the binding of a dimeric ligand to its receptor
chains increases the proximity or/and stabilises the receptor
chains that will be then auto-phosphorylated through their kinase
domains (a process called trans-phosphorylation). This non-
covalent dimerisation is associated with conformational changes
that lead to the activation of the cytoplasmic kinase domains of
the receptors. In most cases, one of the two receptor chains will
trans-phosphorylate specific cytoplasmic tyrosines from other
monomeric chain environment [14]. In some cases, the constitu-
tive form of the RTKs is a dimer such as insulin receptors.
In addition, some ligands such as EGF are monomeric, and their
binding to their receptor induces a conformational change that
shifts the intra-molecular loop and exposes a binding domain in
the receptor that results in its dimerisation environment [15]. In
others, the dimerisation of the ligand is required to activate the
receptor chain (i.e., the NGF–TrkA system environment [16]).

In the absence of the ligand, the activation loop self-regulates
activation of the receptor because its “closed” conformation
inhibits catalytic activity (cis-inhibition). Dimerisation of the RTK
chains following ligand binding induces the rotation of the N- and
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C-lobes, as well as the major axis of the protein. The activation
loop, which is masked by its tyrosine residues, the ATP binding
site, moves to enable ATP binding and the autophosphorylation of
tyrosine residues located on the opposite receptor chain. The trans
phosphorylation of key tyrosine residues located in the activation
loop stabilises the “open” conformation, and breaks the binding
between these tyrosines and the binding sites to the protein
substrates, making it possible to access the C lobe, then activating
its kinase activity. In addition, other tyrosine residues are phos-
phorylated by protein kinases previously recruited on the phos-
phorylated tyrosines of the RTK environment [17]. Several
molecular “brakes” in kinase activity have been developed to limit

phosphorylation levels. These molecular domains are located in
the activation loop, in the juxtamembrane domain (KIT, PDGFR) or
in the C-terminal domain (i.e., Tie2). In the last two cases, these
molecular repressions will be removed by cis-phosphorylation of
the RTKs during the ligand binding-induced conformational
changes [18]. Phosphorylation of the catalytic domain of the RTKs
activates and increases the activity of the kinase domain, whereas
the non-catalytic domains create various anchoring sites for
cytoplasmic targets involved in intracellular signal transduction.
These tyrosines are mostly located on the juxta-membrane and C-
terminal domains, and at the insert kinase domain residues,
allowing the binding, activation and phosphorylation of numerous

Table 1
Classification and characteristics of the human RTKs.

Class Family name Members Molecular characteristics of the extracellular domains

I EGFR EGFR, ERBB2, ERBB3, ERBB4 2 cysteine-rich domains
II Insulin R INSR IGFR 2 chains α and β, with one cysteine-rich and 2 FNIII domains
III PDGFR PDGFRα, PDGFRβ, M-CSFR, KIT, FLT3L 5 Ig-like domains
IV VEGFR VEGFR1, VEGFR2, VEGFR3 7 Ig-like domains
V FGFR FGFR1, FGFR2, FGFR3, FGFR4 3 Ig-like domains, 1 acidic box
VI CCK CCK4 7 Ig-like domains
VII NGFR TRKA, TRKB, TRKC 2 Ig-like domains, rich leucin domains
VIII HGFR MET, RON 1 transmenbrane α chain linked with one extracellular β chain
IX EPHR EPHA1 to 6, EPHB1 to 6 1 Ig-like, 1 cysteine-rich and 2 FNIII-like domains
X AXL AXL, MER, TYRO3 2 Ig-line, 2 FNIII-like domains
XI TIE TIE, TEK 2 Ig-like, 1 EGF, and 3 FNIII-like domains
XII RYK RYK 1 transmenbrane β chain linked with one extracellular α chain
XIII DDR DDR1, DDR2 1 discoidin-like domain
XIV RET RET 1 cadherin-like domain
XV ROS ROS 6 FNIII-like domains
XVI LTK LTK, ALK 1 cysteine-rich domain
XVII ROR ROR1, ROR2 1 Ig-domain, 1 cysteine-rich domain and one kringle-like domains
XVIII MUSK MUSK 4 Ig-like and 1 cysteine-rich domains
XIX LMR AATYK1, AATYK2, AATYK3 A short extracellular domain
XX Undetermined RTK106 A short receptor chain with a short extracellular domain

EGFR: epidermal growth factor receptor; InsR: insulin receptor; PDGFR: platelet-derived growth factor receptor; VEGFR: vascular endothelial growth factor receptor; FGFR:
fibroblast growth factor receptor; CCK: colon carcinoma kinase; NGFR, nerve growth factor receptor; HGFR: hepatocyte growth factor receptor; EphR: ephrin receptor; Axl:
from the Greek word anex-elekto, or uncontrolled, a Tyro3 protein tyrosine kinase; TIE: tyrosine kinase receptor in endothelial cells; RYK: receptor related to tyrosine
kinases; DDR: discoidin domain receptor; Ret: rearranged during transfection; ROS: RPTK expressed in some epithelial cell types; LTK: leukocyte tyrosine kinase; ROR:
receptor orphan; MuSK: muscle-specific kinase; LMR: Lemur; Ig: immunoglobulin; FN: fibronectin. (From Blume-Jensen and Hunter [10]).
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cytoplasmic proteins that will then relay the signal towards
various intracellular activation pathways. These proteins have
SH2 or PTB domains that recognise tyrosine phosphorylated
receptor chains, and have intrinsic enzymatic activity, such as
Src or PLCγ, or serve as adapter proteins for recruiting other
enzymes, such as Grb2 linked to the MAPK activation pathway. The
proteins recruited by their SH2 domains are named “adapter”,
while those that bind directly to the receptor chains or to the Grb2
adaptative protein are called “anchoring proteins”. Adaptive and
anchoring proteins can bind to similar phosphorylated tyrosine
residues or to several tyrosine residues from the same receptor
chains. Thus, Gab1 binds to tyrosine1068 and tyrosine1086 of EGFR.
Insulin and FGF receptors bind to a protein assembly that can be
phosphorylated and used as adaptive proteins [19].

2.3. RTKs and activated signalling pathways

RTKs are considered as protein platforms, or the starting point
for many cellular signalling pathways by recruiting enzymatic
effectors (PLCγ, PI3K, Src, etc.) either directly on to their intra-
cytoplasmic domain, or indirectly through adapter proteins (Grb2,
Shc, etc.), forming complexes capable of activating intracellular
enzymes (Ras, etc.) (Fig. 2). RTK downstream signalling pathways
are mainly MAPK, PI3K, Src, and other signalling pathways
involving PLCγ, JAK / STAT, etc. While the early stages of signal
transduction following the activation of RTKs is based mainly on
tyrosine phosphorylation, signal propagation associates various
phosphorylations on serine/threonine residues in the majority of
cellular processes, as well as other processes such as ubiquitina-
tion, glycosylation or acetylation [20].

The MAPK pathway plays a part in controlling cell proliferation,
cell death or differentiation, and migration, as well as promoting
angiogenesis. The MAPK signalling cascade is divided into four major
pathways used by RTKs and leading to ERK1/2 activation (Fig. 2). After

activation of the RTKs by their ligand, the adaptive protein Grb2 binds
by its SH2 domains, the phosphorylated tyrosine residues of the
receptor chains and the adaptive protein SOS by their SH3 domain,
which is bound to the PIP2 membrane. This binding allows the
activation of Ras, a small G protein, via SOS, a GEF protein exchanging
the GDP for a GTP. In fact, Ras oscillates between its active and inactive
state, thus acting as a “switch” for intracellular effector molecules.
Once activated, Ras allows phosphorylated signal transduction through
recruitment and phosphorylation of Raf kinases A, B or C (or MAP3K)
[21]. Activated Raf phosphorylates MEK1 and MEK2 (or MAP2K1/2)
on serine218/serine222 and serine222/serine226 residues of their activa-
tion loop, and activated MEK1/2 itself catalyses the phosphorylation
of Erk1 and Erk2 (or MAPK1/2) on their threonine202/185 and
tyrosine204/187 residues. Phosphorylated Erk1/2 will be then translo-
cated to the nucleus to activate transcription factors that will regulate
the transcription of genes involved in the survival and growth of the
cells, or activate cytosolic proteins, such as RSK1/2, which target
cytoplasmic effectors or will finally be translocated into the nucleus
to act as a transcription factor [22].

The targets of these transcription factors are transcriptional reg-
ulators such as STAT, Elk-1, CREB or H3 histone that activate transcrip-
tion of early genes. Of these early genes, c-Fos, c-Jun or
c-Myc stimulate the expression of other genes such as cyclin D1 or
CDK6, which control progression in the G1 phase and G1/S transition.
When RTK activation, and therefore that of Erk1/2, is maintained,
expression of the previous proteins is stabilised as c-Fos, which is
phosphorylated on threonine residues by its RSK1/2 and Erk1/2, and
forms the complex AP-1 with c-Jun, which also activates the tran-
scription of target genes (Fig. 2). The MAPK pathway also activates
three additional pathways: p38, JNK and ERK5. In the first pathway,
p38α/β/γ/δ are activated by a MAP2K such as MKK3 or MKK6,
previously activated by a MAP3K such as TAK1, and consequently,
p38 induces the transcription of various genes involved in cell
proliferation, angiogenesis, inflammation and the production of
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immunomodulatory cytokines. In the JNK pathway, the TAK1-,
MEKK1-, or MLK-MAP3Ks activate the MAP2K4 or MAP2K7, which
activates JNK1, 2 or 3, for instance, and lead to the control of cell
apoptosis or the development of the immune system [23]. In the ERK5
pathway, WNK1 activates MEKK2 and 3, which phosphorylate MEK5,
leading to ERK5 activation. The translocation of ERK5 into the nucleus
regulates cell proliferation and survival by activating the transcription
of cyclin D1, for example, allowing G1/S transition in the cell cycle in
the same way as Erk1/2. ERK5 also has more specific substrates, such
as the MEF2 transcription factor family, the pro-apoptotic protein BAD,
connexin 43, etc. [24].

The PI3K/Akt/mTOR pathway controls cell cycle progression, the
cell survival/cell apoptosis balance. Its activation facilitates cell pro-
liferation and migration, the metabolism of glucose, etc. PI3K is a
“lipid” kinase that phosphorylates membrane lipids via its catalytic
p110 subunit (α, β or δ) once recruited by its two SH2 domains from
the p85 regulatory subunit on activated RTKs. PIP2 then forms
phosphatidylinositol 3,4,5-triphosphate (PIP3) by transferring a phos-
phate group, and Akt (PKB, for Protein Kinase B) and PDK-1 then bind
to the membrane, where the PDK-1 is activated by PIP3 phosphor-
ylates Akt (Fig. 2). Activated Akt becomes an activation crossroad for
many proteins, allowing cells to survive by inhibiting, ubiquitinating
and degrading pro-apoptotic proteins such as BAD and p53, and by
inducing the expression of anti-apoptotics such as Bcl-2 or Akt. In
addition, Akt also induces cell proliferation by activating various
cyclins and by inhibiting several cell cycle repressors such as p21 or
p27. Akt also allows the transcription of pro-angiogenic genes such as
VEGF and HIF-1α, which are involved in numerous oncological
processes. In addition, Akt inhibits the glucose metabolism by sup-
pressing GSK3, and regulates the lipid metabolism through mTOR
activation [25].

The role of the Src pathway in signal transmission within the cell
was demonstrated for the first time in fibroblasts stimulated with

PDGF [26]. Src, Fyn and Yes belong to the Src family, activated by RTKs,
and are associated with numerous other kinases such as Ras, PI3K,
PLCγ or FAKs. The members of the Src family therefore have
redundant functions in the intracellular signalling pathways described
below. Src family members are recruited on RTKs (EGFR, FGFR, IGFR,
MCSF-R, HGFR, etc.) after their activation and transmit mitogen signals
inducing DNA synthesis, cell survival, cytoskeleton rearrangements,
cell adhesion and motility, but also control receptor turnover [27]. Src
family members can bind phosphorylated residues by their SH2
domains, resulting in kinase activity after conformational modifica-
tions. This activation is very complex and requires the recruitment of
Ras and Ral GTPases. Several studies have shown that SFKs may
regulate activation of RTKs directly by phosphorylating tyrosine
residues such as tyrosine845, tyrosine1101 and EGFR [28]. c-Src can be
recruited within membrane complexes formed by integrins, and then
phosphorylate these RTKs [29]. Furthermore, the Shp2 protein tyrosine
phosphatase also plays a key role in this activation by blocking the
activities of negative regulators (Csk for instance) [30].

PLCγ and JAK/STAT are additional signalling pathways asso-
ciated with RTK activation. Various RTKs can bind through their
phosphorylated tyrosine residue, the SH2 domains of STAT tran-
scription factors, as demonstrated for MET and STAT3. The activa-
tion of these transcription factors results in their dimerisation and
translocation into the nucleus to activate specific target genes [31].

2.4. Feedback loops controlling RTK activation

RTK activities are tightly controlled by numerous positive or
negative molecular feedback loops that prolong the auto-
activation of the receptors and signal amplitude, by inducing the
production of the ligand for instance. Such feedback loops are
essential for stabilising the RTK system [32]. These controls
include proteins already present within the cell that are mobilised
on activation of RTKs and/or subjected to post-translational
modifications for immediately regulating the signal induced (early
negative feedback) (Fig. 3). They also associate the synthesis of
response elements (late negative feedback) such as IEGs early or
DEGS late genes that regulate the activity of AP-1, c-Myc, p53 or
the MAPKs. Thus, Erk1/2, a downstream protagonist of the MAPK
pathway, directly inhibits (early negative feedback) the phosphor-
ylation of the effector proteins by inhibiting the kinase activity of
upstream enzymes (RAF and MEK) [33]. In addition, the transloca-
tion of Erk1/2 into the core may also activate the expression of
transcriptional repressors, such as phosphatases (e.g., DSPs) to
inhibit MAPK activity (negative feedback late) [34].

By decreasing the amplitude of the signals generated and the
stimulation of cellular activity, adapter proteins such as kinases,
phosphatases and ubiquitin ligases located in the cytoplasm are
the first early negative regulators of RTK activities [35]. The signal
generated is then attenuated, based on the ubiquitination of RTKs
by the E3 ubiquitin ligase c-CBL for instance, which leads to the
endocytosis of the receptors and their degradation in the lysoso-
mal compartment [36]. After activation by the ligand, the RTK is
effectively clustered in clathrin-rich membrane regions and then
internalised in clathrin-dependent endocytic vesicles to reduce the
induced signal [37].

3. RTKs in oncology

3.1. RTK mutations and carcinogenesis

RTKs are involved in numerous pathological disorders, especially in
oncology. Around 30% of RTKs are mutated or overexpressed in
various human cancers (MET, KIT, FLT3, etc.) [38]. Oncogenic mutations
or gene duplications in the juxtamembrane region of KIT and FLT3
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result in constitutive activation of these receptors in the absence of
their ligand, and are consequently directly linked to the carcinogenesis
process [39]. Duplications in the juxtamembrane region of FLT3 are
responsible, for instance, for the constitutive activation of the receptor
in 15–30% of cases of acute myeloid leukaemia [40] and in 65% of
gastrointestinal stromal tumours (GISTs) [41]. Autocrine stimulation or
overexpression of EGFR was also associated with many solid tumours.
Thus, EGFR/ErbB-1 and ErbB-2 are overexpressed in lung [42], breast
[43,44] and prostate [45,46] cancer, and their expression is linked to
marked aggressiveness and poor prognosis. Such observations have
strengthened the therapeutic development of RTK inhibitors in the last
three decades.

3.2. RTK inhibitors and bone cancers

3.2.1. RTK inhibitors target the bone tumour niche
Primary malignant bone tumours (bone sarcomas) and bone

metastases (from breast, prostate carcinomas, etc.) are charac-
terised by their ability to dysregulate their micro-environment and
especially the balance between bone apposition and bone resorp-
tion. Osteoblasts [8,45–51] and osteoclasts [8,52–54] express
numerous RTKs and are then cellular targets of the corresponding
ligands released in the cancer micro-environment. Based on these
observations, the impact of RTK inhibitors has been assessed in
bone remodelling. Recently, Bao et al., using broad kinase inhibitor
screening applied to the mouse MC3T3-E1 osteoprogenitor cell
line, identified two families of inhibitor affecting cell survival
differentially [55]. The first family included pro-osteoblastic drugs
such as lapatinib (EGFR/HER2 inhibitor), erlotinib (EGFR inhibitor)
and sunitinib (FLT3/PDGFR/VEGFR/CSF-1R inhibitor), which stimu-
lated osteoblastic proliferation. In contrast, the second family
grouped together seven kinase inhibitors (GSK1838705A, PF-
04691502, masitinib targeting KIT or XL880 targeting MET and
VEGFR), which inhibited osteoblast viability in a dose- and time-
dependent manner. Nilotinib and CEP-751 may be added to the
second family. Nilotinib potently inhibited osteoblast proliferation [56].
While nilotinib inhibits numerous RTKs (KIT, EPHA3, EPHA8, DDR1,
DDR2, PDGFRB), its effects may be associated with the inhibition of
PDGFR [65]. Pinski et al. demonstrated that proliferation induced
apoptosis, but not quiescent human osteoblasts after treatment with

CEP-751, a trk receptor tyrosine kinase inhibitor [57]. Similarly,
inhibiting IGF1R also led to the inhibition of proliferation and induc-
tion of apoptosis of osteoblasts [58]. Nevertheless, these RTK inhibitors,
due to their multiple targeting, exert very complex effects and can
exert dual activities on bone cells. Imatinib mesylate (Gleevec), which
targets a broad range of tyrosine kinase proteins, including bcr/abl,
c-kit, cFMS and the PDFGR among others, is able to inhibit osteoblast
proliferation and also to activate their activities through the inhibition
of PDGFRβ activity [59]. Gobin et al. confirmed recently this dual
activity depending on the doses of inhibitor used. Low doses of
imatinib mesylate increased the in vitro mineralisation process, and
high doses of the drug markedly affected mineral deposits [60].

RTKs are also expressed by osteoclast precursors and mature
osteoclasts, and numerous studies have shown that RTK inhibitors
strongly affect osteoclastogenesis and bone resorption. Imatinib
mesylate decreases osteoclastogenesis, and increases mature osteo-
clast apoptosis through the inhibition of cFMS signalling [61].
Sorafenib, an RET, and VEGFR inhibitors similarly target osteoclasts
[62]. Dasatinib abolishes osteoclast formation in vitro by inhibiting
cFMS activation, and increases osteoblast activities by repressing
PDGFR signalling [63]. In addition, these authors demonstrated that
the administration of dasatinib in animals resulted in dysregulated
bone remodelling in favour of an increase in bone formation, which
may be associated with the inhibition of osteoclast activity [63]. In
2012, Garcia-Gomez et al. confirmed the anabolic and anti-catabolic
effects of dasatinib [64]. Overall, these works revealed that bone
cells are potential targets for RTK inhibitors, and that using RTK
inhibitors in an oncological bone context will have an impact on the
bone tumour niche.

3.2.2. RTK inhibitors as therapeutic drugs for bone sarcomas
Bone sarcomas derive from the mesoderm, and sarcoma cells

originate from mesenchymal stem cells [65]. Osteosarcoma and
Ewing’s sarcomas are the two main types of bone sarcoma diagnosed
in children and young adults. The peak of incidence for both tumours
is at puberty, suggesting that there is a strong link with bone growth
and the numerous growth factors, hormones and cytokines released
during this period. In this context, RTK inhibitors assessed on bone
cells were also assessed in bone sarcomas (Table 2) [66,67]. Recently,
Rettew et al. identified several RTKs by using a phosphoproteomic

Table 2
Main RTK inhibitors assessed in bone sarcomas.

RTK inhibitor Molecular targets Investigations, Patients, doses References

Imatinib
mesylate
(Gleevec)

PDFGR, c-KIT Pre-clinical in vitro and in vivo assessment [60,69]
Phase II, 189 sarcoma patients (13 ES, 27 OS), 100–300 mg/day of gleevec, orally twice a day
according the body-surface area

[71]

Phase II, 7 ES, 400 mg of gleevec, orally twice daily prescribed with a cycle length of 28 days. [72]
Phase II, 70 patients, 12 ES, 26 OS, 440 mg/m2/day of gleevec [73]
Pre-clinical in vitro assessment (drug combinations) [74]

Dasatinib Src (inhibition of RTK-transduced
signalling pathways) c-KIT, EPHA2, PDGF-β

Pre-clinical in vitro assessment [75]
Pre-clinical in vivo assessment [76]
Phase I, 39 patients (2 ES, 1 OS) of 50, 65, 85, and 110 mg/m2/dose of dasatinib, administered
orally twice daily for 28 days

[77]

Sunitinib FLT3, PDGFR, VEGFR, cFMS Pre-clinical in vitro and in vivo assessment [78]
Phase I, 33 patients (2 ES, 2 OS), from 15 and 20 mg/m2/days of sunitinib with dose escalation [79]

Pazotinib VEGFR, PDGFR, c-KIT Pre-clinical in vitro and in vivo assessment [80]
Phase I, 51 patients (3 ES, 4 OS) (tablet formulation), pazotinib administered once daily in 28-
day cycles at four dose levels (275–600 mg/m2); powder suspension initiated at 50% of the
maximum-tolerated dose for the intact tablet

[81]

Pre-clinical in vitro and in vivo assessment (combination with Topotecan) [82]

Sorafenib RET, VEGFR Pre-clinical in vitro and in vivo assessment [83]
Phase I, 11 patients (2 OS), from 90 mg/m2 to 110 mg/m2 of sorafenib twice daily [84]
Phase II, 35 OS, 400 mg of sorafenib twice daily until progression or unacceptable toxicity [85]

OS: osteosarcoma; ES: Ewing’s sarcoma.
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Table 3
Main RTK inhibitors assessed in carcinoma and associated-bone metastases.

RTK inhibitor Molecular targets Investigations, patients, doses References

Imatinib
mesylate
(Gleevec)

PDFGR, c-KIT Pre-clinical in vivo assessment [103,104]
Phase I, 28 patients (MeCRPC) 400 mg/day of gleevec, combination with zoledronic acid [105]
Phase I, 21 patients (MeCRPC) 600 mg/day of gleevec, combination with docetaxel [106]
Phase II, 144 patients (MeCRPC) docetaxel combined with 600 mg/kg/day of gleevec or
placebo

[107]

Dasatinib Src (inhibition of RTK-transduced signalling
pathways) c-KIT, EPHA2, PDGFR-β

Pre-clinical in vivo assessment [108–110]
Phase I, 16 patients with solid tumours, 100 mg of dasatinib, increased by increments of
50 mg up to a maximum dose of 250 mg for 4 weeks

[111]

Phase II, 47 patients (MeCRPC), 700 or 70 mg/day [112,113]
Phase III, 1522 patients (MeCRPC), 100 mg/day of dasatinib combined with docetaxel [114]

Sunitinib FLT3, PDGFR, VEGFR, cFMS Pre-clinical in vivo assessment [115]
Phase II, 36 patients (MeCRPC), 50 mg/day of sunitinib 4-weeks on followed by 2-weeks
off per cycle up to a maximum of eight cycles prior docetaxel

[116]

Phase III, 873 patients (docetaxel-refractory MeCPRC), 37.5 mg/day of sunitinib with or
without prednisolone

[117]

Phase II, 60 patients (Her-2þ advanced breast carcinoma) 37.5 mg/day of sunitinib
combined with trastuzumab

[118]

223 patients (clear-cell renal cell carcinoma with bone metastases), 50 mg/day, 4 weeks
on, 2 weeks off

[119]

209 patients (renal clear carcinoma, 76 with bone metastases) 50 mg/day, in 6-week
cycles (4 weeks on, 2 weeks off) combined with bisphosphonates

[120]

Sorafenib RET, VEGFR Pre-clinical in vivo assessment [121]
Phase II, 22 patients (MeAIPC), 400 mg/day of sorafenib in 28-day cycles [122,123]
Case report, bone metastases bilateral carcinoma, 400 mg/day of sorafenib [124]

Cabozantinib c-MET, VEGFR2 Pre-clinical in vitro assessment [125–129]
Pre-clinical in vivo assessment [130–132]
Phase I, 11 patients (MeCRPC), 60, 40 or 20 mg of cabozantinib [133]
Phase II, 144 patients (MeCRPC), 40 or 100 mg/day of sorafenib until disease progression
or unacceptable toxicity

[134]

Phase II, 171 patients (CRPC), 100 mg/day of cabozantinib vs placebo [135]
Phase II, 65 patients (MeCRPC) 100 mg/day or 40 mg/day of cabozantinib. [136]

Tivantinib c-MET Pre-clinical in vivo assessment [137,138]

Cediranib VEGFR Pre-clinical in vivo assessment [139]
Phase I, 26 patients (hormone refractory prostate cancer), escalating doses of 1–30 mg/
day of cediranib

[140]

Vatalanib VEGFR Pre-clinical in vivo assessment [141]

Erlotinib EGFR Pre-clinical in vivo assessment [142]
Phase I, 29 patients (MeCRPC), 150 mg of erlotinib daily until disease progression [143]
Phase II, 22 patients (AIPC), docetaxel 60 mg/m2 IV on day 1 and erlotinib 150 mg/day
(days 1–21)

[144]

Gefinilib EGFR Pre-clinical in vivo assessment [145–147]
Phase II, 38 patients (MeCRPC), 500 mg/day of gefitinib [148]
Phase II, 82 patients (hormone-refractory prostate cancer) [149]
Phase II, 37 patients, 250 mg/day of gefitinib combined with docetaxel [150]
Phase I/II, 31 patients (stage IV HER-2þ metastatic breast cancer), 250 mg/day of gefitinib
on days 2–14 combined with trastuzumab and docetaxel

[151]

Phase II, 148 patients (hormone-positive metastatic breast cancer), 500 mg/day of
gefitinib with either anastrozole or fulvestrant

[152]

Phase II, more than 200 patients (hormone receptor-positive metastatic breast cancer),
250 mg/day of gefitinib with or without tamoxifen

[153]

Phase II, 174 patients (hormone receptor-positive metastatic breast cancer), anastrozole
combined with 250 mg/day of gefinitib or placebo

[154]

Lapatinib EGFR, HER-2 Phase II, 29 patients (CRPC), 1500 mg/day of lapatinib [155]
Phase II, 24 patients (Advanced HER2-positive Breast Cancer), 1250 mg/day of lapatinib
and pegylated liposomal doxorubicin

[156]

Phase II, 23 patients (hormonally untreated advanced prostate cancer), 1500 mg/day of
lapatinib

[157]

Vandetanib EGFR, VEGFR, RET Phase II, 39 patients (CPRC), 300 mg/day of vandetanib combined with bicalutamide vs
bicalutamide

[158]

Phase II, 61 patients (hormone-receptor-positive metastatic breast cancer), fulvestran
with either 100 mg/day of vandetanib or placebo

[159]

Dovotinib FGFR, VEGFR Pre-clinical in vitro and in vivo assessment [160,161]

(The list of references and clinical trials of this table is not exhaustive). MeCPRC: metastastic castration-resistant prostate cancer including bone metastasis;
MeAIPC: androgen-independent prostate cancer with bone metastases.
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approach and demonstrated that Axl, EphB2, FGFR2, IGF-1R and Ret
more specifically controlled the behaviour of human osteosarcoma
cells in vitro from a functional point of view [68]. PDGFR was also
identified as a therapeutic target in osteosarcoma, and selective
inhibition of PDGFR activation led to apoptosis of osteosarcoma cells
in vitro [69]. These data were confirmed by a phospho-receptor
tyrosine kinase array kit, which identified seven receptors (PDFGFRβ,
Axl, RYK, EGFR, EphA2,10, and IGF1R) as molecular targets for imatinib
mesylate [60]. In this study, the authors showed that imatinib
mesylate induced anti-proliferatives in pre-clinical models of osteo-
sarcoma, and that of the seven modulated RTKs, PDGFRα appeared as
the main target of the drug. Similar observations were made in
Ewing’s sarcoma [70]. Unfortunately, clinical investigations demon-
strated only low or no efficacy in childrenwith relapse bone sarcomas,
even in patients selected for tumour expression of KIT or PDGFRα
[71–73] (Table 2). Dasatinib and Sunitinib were used in phase I clinical
trials and defined the doses usable in a paediatric context [77,79].
Although no objective responses were observed, four patients with
sarcomas were in a stable condition [79]. Complementary investiga-
tions are needed to evaluate the therapeutic efficacy of dasatinib and
sunitinib in sarcomas. Pazotinib, targeting VEGFR, PDGFR and c-KIT,
and sorafenib, targeting RET and VEGFR, had interesting benefits in
paediatric sarcomas [71,54,85] (Table 2).

Protein assays have identified new RTKs with potential ther-
apeutic benefits. Axl, a TAM (Tyro3, Axl and Mer) receptor tyrosine
kinase, is thus expressed in most osteosarcomas [86] and a
correlation was found between its expression and the clinical
outcome [87,88]. In addition, Fleuren et al. demonstrated that high
Axl expression correlated with worse overall survival compared to
Ewing’s sarcoma patients with lower expression [89] similar to
MET [90]. The MET inhibitor (PF-2341066) then appeared efficient
in a xenograft model of osteosarcoma [91]. EphA2 was the most
abundant surface protein on cancer cells and may be involved in
the pathogenesis of osteosarcoma by modulating bone remodel-
ling and the communications between tumour cells and their
environment [92–94]. Recently, Kuijjer et al. provided an in vitro
rationale for using IGR1R inhibitors in osteosarcoma [95]. How-
ever, IGF1R mRNA expression, cell surface expression, copy num-
ber, and mutation status were not associated with tumour
responsiveness to anti-IGF1R targeting [96]. EGFR are expressed
by osteosarcoma cells, but gefitinib and BIBW2992 targeting the
receptors were not effective on osteosarcoma cells, so the question
of EGFR targeting remains open [97]. Similarly, HER-2 is expressed
by osteosarcoma cells but its prognostic relevance is still con-
troversial [98] and the results for the patients treated were limited
[99]. A randomised study of patients with HER2-positive osteo-
sarcoma would be of major interest for better understanding the
role of HER-2 in the pathogenesis of bone sarcomas, and for
evaluating their therapeutic value. EphA10 and RYK are two other
RTKs expressed by osteosarcoma cells and represent other ther-
apeutic opportunities [100,101].

Overall, these data revealed the potential therapeutic interest
for targeting RTKs in bone sarcomas. Clinical investigations must
nevertheless be adapted to the expression/mutation/activation
state of RTKs, which is the prerequisite for patient enrolment.

3.2.3. RTK inhibitors: therapeutic benefits for bone metastases
As with bone sarcomas, bone metastastic cells, from breast or

prostate carcinoma for instance, dysregulate local bone remodel-
ling and the associated TRKs/growth factors, which in turn facil-
itate tumour development [102]. Consequently, numerous TRKs
and their ligands have been associated with the pathogenesis of
carcinomas and their capacity to form bone metastases. Many
investigations at the pre-clinical and clinical levels have thus been
developed in the last 10 years (Table 3). Unfortunately, whilst most

of the drugs developed had interesting anti-cancer effects on the
primary tumours or/and the establishment of bone metastases, the
results of the clinical trials were often disappointing. Imatinib
mesylate for instance, which is very efficient in soft tissue
sarcomas, had no palliative or clinical activity in metastatic
castration-resistant prostate cancer [105]. Combining it with
bisphosphonates and docetaxel did not improve overall survival
and brings into question the value of PDGFR inhibition with taxane
chemotherapy in prostate cancer bone metastases [105–107].
Similarly, phase III clinical trials did not confirm the combination
of dasatinib (which targets c-KIT, EPHA2, PDGFR) and docetaxel in
chemotherapy-naive patients with metastatic castration-resistant
prostate cancer (Table 3). Sunitinib initially appeared promising in
metastatic castration-resistant prostate cancer [116], however,
the phase III clinical trial did not significantly prolong the
overall survival of patients after failure of a docetaxel-based
regimen [117]. Sorafenib was developed to target RET and
VEGFR [121] and has a moderate activity as a second-line treat-
ment for metastatic castration-resistant prostate cancer [123].
HGFR (c-MET) and its ligand HGF control numerous cellular
signalling cascades that direct cell growth, proliferation, survival,
and motility, and also regulate the epithelial–mesenchymal transi-
tion (EMT) with a strong impact on the development of metas-
tases. Cabozantinib was specifically developed to inhibit the
downstream signalling pathways transduced by c-MET and VGEFR
[125–132]. Cabozantinib is currently approved by the U.S. Food
and Drug Administration for the treatment of progressive, meta-
static medullary thyroid cancer. The clinical evaluation demon-
strated in phase II clinical trials that the use of this drug appeared
clinically relevant in castration-resistant prostate cancer patients,
as it improved bone scans and bone biomarkers, and reduced both
soft tissue lesions and the number of circulating tumour cells
[134,135]. The phase III COMET-II trials indicated that cabozantinib
has not fulfilled the promise reported in the phase II trials (Exelixis
announcement: http://www.exelixis.com/investors-media/press-
releases). Indeed, 50% of patients in the cabozantinib arm reported
a pain response, compared to 17% of patients in the control arm
receiving mitoxantrone/prednisone. This difference in pain
response between the arms was not statistically significant.
Tivantinib, another c-MET inhibitor, has shown promising ther-
apeutic value in pre-clinical models [137,138]. Erlotinib has mod-
erate clinical effect as a single-agent in chemotherapy-naïve
castration-resistant cancer [143] and its combination with doc-
etaxel did not show any added therapeutic value [144]. Genitinib,
lapatinib and vandetanib alone or in combination with other drugs
failed to show significant therapeutic activity compared with the
conventional drugs in breast and prostate cancers (Table 3).
Dovotinib is a recently developed multi-RTK inhibitor (FGFR,
VEGFR) that has shown interesting pre-clinical activity in meta-
static castration-resistant prostate cancer: anti-angiogenic activity,
anti-tumour activity and clinical activity in 34 patients with bone
metastases [160]. However, its combination with histone deacety-
lase inhibitor did not show any additional value [161]. Clinical
trials are required to confirm its therapeutic value.

Although numerous RTK inhibitors initially appeared to be of
great interest, based on pre-clinical assessments, most of them
have not fulfilled the promise hoped in phase I/II studies. The
absence of significant results with their use can be explained by
the multiplicity of their targets and the complexity of the mechan-
isms involved. Indeed, these drugs will affect not only the tumour
cells but also its environment. Thus, the Cabozantinib, like dovo-
tinib for instance for which the clinical activity needs to be
confirmed, affects the coupling between cancer cells and the bone
tumour niche [160,162,163]. The bone tumour microenvironment
(in bone sarcoma and bone metastases) is then described as a
sanctuary that controls at least in part the tumour growth and
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contributes to the drug resistance acquisition [164,165]. By mod-
ulating the tumour microenvironment, RTK could have a positive
and/or a negative impact on the tumour development.

4. Conclusion

In the last 15 years, there have been high expectations in
oncology of therapies with RTK inhibitors. Imatinib mesylate was
the first to show spectacular clinical success in chronic myeloid
leukaemia patients, and has become the first line of treatment.
Gastro-intestinal stromal tumour (GIST) is the second success for
the use of an RTK inhibitor, and imatinib mesylate is the standard
of care in patients who are at high risk for GIST recurrence
following resection [166]. Unfortunately, patients develop resis-
tance and relapse due to protein point mutations and/or the
introduction of molecular feedback loops. Many other RTK inhibi-
tors have shown disappointing results in clinical applications after
encouraging pre-clinical results. In all cases, the efficacy of RTK
inhibitors is linked with their ability to disrupt the crosstalk
between tumour cells and their environment. A better under-
standing of both intracellular signal modulating by these RTK
inhibitors, and the feedback loops developed during the establish-
ment of resistance, will increase the chances of success for these
drugs. In addition, adapted investigational approaches will be
needed to define the expression profile of the RTK genuinely
activated/mutated/expressed in patients before their inclusion in
clinical trials.
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