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Abstract

We consider several quantities related to weak sequential completeness of a Banach space and prove some
of their properties in general and in L-embedded Banach spaces, improving in particular an inequality of
G. Godefroy, N. Kalton and D. Li. We show some examples witnessing natural limits of our positive results,
in particular, we construct a separable Banach space X with the Schur property that cannot be renormed
to have a certain quantitative form of weak sequential completeness, thus providing a partial answer to a
question of G. Godefroy.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction and statement of the results

If X is a Banach space, we recall that it is weakly sequentially complete if any weakly Cauchy
sequence in X is weakly convergent. In the present paper we investigate quantitative versions
of this property. To this end we use several quantities related to a given bounded sequence (xk)

in X.
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Let clustX∗∗(xk) denote the set of all weak∗ cluster points of (xk) in X∗∗. By δ(xk) we will
denote the diameter of clustX∗∗(xk) (see also (4) below). Further, if A, B are nonempty subsets
of a Banach space X, then

d(A,B) = inf
{‖a − b‖: a ∈ A, b ∈ B

}
denotes the usual distance between A and B and the Hausdorff non-symmetrized distance from
A to B is defined by

d̂(A,B) = sup
{
d(a,B): a ∈ A

}
.

Note that a space X is weakly sequentially complete if for each bounded sequence (xk)

in X satisfying δ(xk) = 0 (this just means that the sequence is weakly Cauchy) we have
d̂(clustX∗∗(xk),X) = 0 (i.e., all the weak∗ cluster points are contained in X, which for a weakly
Cauchy sequence means that it is weakly convergent). It is thus natural to ask which Banach
spaces satisfy a quantitative version of weak sequential completeness, i.e., the inequality

d̂
(
clustX∗∗(xk),X

)
� C · δ(xk) (1)

for all bounded sequences (xk) in X and for some C > 0. The starting point of our investigation
was the following remark made by G. Godefroy in [3, p. 829]:

If X is complemented in X∗∗ by a projection P satisfying∥∥x∗∗∥∥ = ∥∥Px∗∗∥∥ + ∥∥x∗∗ − Px∗∗∥∥, x∗∗ ∈ X∗∗, (2)

then X is weakly sequentially complete and

d̂
(
clustX∗∗(xk),X

)
� δ(xk) (3)

for any sequence (xk) in X.

It can be easily seen that

δ(xk) = sup
x∗∈BX∗

(
lim sup
k→∞

x∗(xk) − lim inf
k→∞ x∗(xk)

)
= sup

x∗∈BX∗
lim

n→∞ sup
{∣∣x∗(xl) − x∗(xj )

∣∣: l, j � n
}
. (4)

The first formula of (4) is used in [1, Section 2.1], the second one in [3, p. 829].
Banach spaces satisfying assumption (2) above are called L-embedded, see [6, Section III.1].

The proof of (3) can be found in [4, Lemma IV.7].
By what has been said above, inequality (3) is a quantitative form of weak sequential com-

pleteness. In [3, p. 829] G. Godefroy mentions that it is not clear which weakly sequentially
complete spaces can be renormed to have such a quantitative form of weak sequential complete-
ness.

The aim of our paper is twofold. On the one hand we show that the answer to G. Godefroy’s
question cannot be positive for all weakly sequentially complete Banach spaces, more precisely
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we construct a weakly sequentially complete space that cannot be renormed in such a way that
(3) holds, see Example 4 below. On the other hand we put inequality (3) into context by studying
some modifications and possible converses, see the following theorem. In particular, we slightly
improve inequality (3) – see (6) in the theorem – but such that now the additional factor 2 is
optimal.

We will use one more quantity (cf. [8] but appearing implicitly in [1]) which in some situations
is more natural than the quantity δ, namely

δ̃(xk) = inf
{
δ(xkj

): (xkj
) is a subsequence of (xk)

}
.

Theorem 1. Let X be a Banach space and (xk) be a bounded sequence in X. Then

δ̃(xk) � 2̂d
(
clustX∗∗(xk),X

)
. (5)

If the space X is L-embedded, then also the following inequalities hold:

2̂d
(
clustX∗∗(xk),X

)
� δ(xk), (6)

2d
(
clustX∗∗(xk),X

)
� δ̃(xk). (7)

Since we have trivially that δ̃ � δ and d � d̂ it is natural to ask whether one of these quantities
can be replaced by a sharper one in the inequalities of the theorem. The following remark and
Example 3 show that this cannot be done in any of the inequalities (5)–(7).

Remark 2. (a) In (6), δ cannot be replaced by δ̃ and in (7) d cannot be replaced by d̂. This is
witnessed by the sequence (xk) in X = �1 such that x2k−1 = 0 and x2k = ek for all k ∈ N. Then
d(clustX∗∗(xk),X) = δ̃(xk) = 0, d̂(clustX∗∗(xk),X) = 1 and δ(xk) = 2.

(b) Inequality (5) is a kind of converse of (3) and holds in all Banach spaces. We note that δ̃

cannot be replaced by δ in (5), in other words, inequality (3) cannot be reversed as it is, neither
in L-embedded spaces. Indeed, let X = �1. We consider the elements xk = 0 and yk = e1, k ∈ N.
Let (zk) be the sequence x1, y1, x2, y2, . . . . Then d̂(clust�∗∗

1
(zk), �1) = 0 because all weak∗ cluster

points of (zk) are contained in �1, but

δ(zk) � lim sup
k→∞

e1(zk) − lim inf
k→∞ e1(zk) = 1.

(c) We further remark that in all inequalities in Theorem 1 the factor 2 is optimal, as witnessed
by the sequence (ek) in X = �1. Indeed, then

d̂
(
clustX∗∗(ek),X

) = d
(
clustX∗∗(ek),X

) = 1 and δ̃(ek) = δ(ek) = 2.

It is also natural to ask whether d̂ can be replaced by d in the inequality (5), i.e., whether
the inequality (7) can be reversed (at least for L-embedded spaces). This is not the case by the
following example.

Example 3. There is an L-embedded space X and a bounded sequence (xk) in X such that
δ̃(xk) = 2 and d(clustX∗∗(xk),X) = 0.
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The negative partial answer to the mentioned question of G. Godefroy is given by the follow-
ing example. In fact, we obtain a slightly stronger result. Not only there is a weakly sequentially
complete Banach space not satisfying (1) for all bounded sequences and some C > 0, but we get
even a weakly sequentially complete space not satisfying a weaker form of (1) – with d in place
of d̂.

Example 4. There exists a separable Banach space X with the Schur property – in particular,
X is weakly sequentially complete – which is 1-complemented in its bidual, such that there is no
constant C > 0 satisfying

d
(
clustX∗∗(xk),X

)
� C · δ(xk)

for every bounded sequence (xk) in X.

We remark that a separable space with the Schur property belongs to the class of so-called
strongly weakly compactly generated spaces (see [9, Examples 2.3]) and thus such a quantitative
form of weak sequential completeness does not hold even for this class of spaces.

2. Proof of Theorem 1

The proof relies on two simple properties of �1-sequences which are formulated in the fol-
lowing lemma.

Lemma 5. Let X be a Banach space and (xn) be a bounded sequence in X. Suppose that c > 0
is such that ∥∥∥∥∥

n∑
j=1

αjxj

∥∥∥∥∥ � c

n∑
j=1

|αj |

whenever n ∈ N and α1, . . . , αn are real numbers. Then

(i) δ(xn) � 2c,
(ii) d(clustX∗∗(xk),X) � c.

Proof. (i) It is clear that the sequence (xn) is linearly independent. Hence there is a unique linear
functional defined on its linear span whose value is c at x2k−1 and −c at x2k for each k ∈ N. By
the assumption, the norm of this functional is at most 1. Let x∗ ∈ BX∗ be its Hahn–Banach
extension. Then x∗ witnesses that δ(xn) � 2c.

(ii) Let x∗∗ be any weak∗ cluster point of the sequence (xn) in X∗∗ and x ∈ X be arbitrary. It
follows from [7, Proposition 4.2] that there is an index m ∈ N such that∥∥∥∥∥

∞∑
j=m

αj (xj − x)

∥∥∥∥∥ � c

∞∑
j=m

|αj |

for every sequence (αj )
∞
j=m with finitely many nonzero elements. In particular, it follows that

the vectors xj − x, j � m, are linearly independent. So, there is a unique linear functional on
their linear span whose value at each xj − x is equal to c. By the above inequality, the norm of
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this functional is at most one. Let x∗ ∈ X∗ be its Hahn–Banach extension. Then we have∥∥x∗∗ − x
∥∥ �

(
x∗∗ − x

)(
x∗) � lim inf

j→∞ x∗(xj − x) = c.

This completes the proof of the lemma. �
Now we are ready to prove Theorem 1.
We start by proving (5): Let (xk) be a bounded sequence in X. We assume that δ̃(xk) > 0 be-

cause otherwise (5) holds trivially. Let c ∈ (0, δ̃(xk)) be arbitrary. The key ingredient is provided
by a result of E. Behrends (see [1, Theorem 3.2]) that yields a subsequence (xnk

) such that∥∥∥∥∥
k∑

i=1

αixni

∥∥∥∥∥ � c

2

k∑
i=1

|αi |

whenever k ∈ N and α1, . . . , αk ∈ R. By Lemma 5(ii) we get d(clustX∗∗(xnk
),X) � c

2 , hence
d̂(clustX∗∗(xk),X) � c

2 . As c ∈ (0, δ̃(xk)) is arbitrary, (5) follows.
We continue by proving (6): We set c = d̂(clustX∗∗(xk),X) and assume that c > 0 because

otherwise (6) holds trivially. Let ε ∈ (0, c) be arbitrary and let x∗∗ be a weak∗ cluster point of the
sequence (xk) in X∗∗ such that d(x∗∗,X) > c − ε

2 . Set x = Px∗∗ and xs = x∗∗ − x where P de-
notes the projection on X as in (2). Then d(x∗∗,X) = ‖xs‖. We claim that there is a subsequence
(xkn) such that ∥∥∥∥∥

n∑
i=1

αi(xki
− x)

∥∥∥∥∥ �
(
c − (

1 − 2−n
)
ε
) n∑

i=1

|αi | (8)

for all n ∈ N and all (αi)
n
i=1 in R

n. This will be proved by G. Godefroy’s ‘ace of � argument’ [6,
p. 170], cf. the proof of [6, Proposition IV.2.5]. Since xs is a weak∗ cluster point of the sequence
(xk − x), there is k1 such that ‖xk1 − x‖ > c − ε

2 which settles the first induction step.
Suppose we have constructed xk1 , . . . , xkn . Let (αl)Ll=1 be a finite sequence of elements of the

unit sphere of �n+1
1 such that αl

n+1 �= 0 for all l ∈ {1, . . . ,L} and such that for each α in the unit

sphere of �n+1
1 there is an element αl such that∥∥α − αl

∥∥
�n+1

1
<

ε

2n+2 supk ‖xk‖ .

Let l ∈ {1, . . . ,L} be arbitrary. Then
∑n

i=1 αl
i (xki

− x) + αl
n+1xs is a weak∗ cluster point of

the sequence (
∑n

i=1 αl
i (xki

− x) + αl
n+1(xk − x))∞k=1 and for its norm we have∥∥∥∥∥

n∑
i=1

αl
i (xki

− x) + αl
n+1xs

∥∥∥∥∥ =
∥∥∥∥∥

n∑
i=1

αl
i (xki

− x)

∥∥∥∥∥ + ∥∥αl
n+1xs

∥∥
�

(
c − (

1 − 2−n
)
ε
) n∑

i=1

∣∣αl
i

∣∣ + ∣∣αl
n+1

∣∣(c − ε

2

)

>
(
c − (

1 − 2−n
)
ε
) n+1∑∣∣αl

i

∣∣ = c − (
1 − 2−n

)
ε.
i=1
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It follows that there is kn+1 > kn such that∥∥∥∥∥
n+1∑
i=1

αl
i (xki

− x)

∥∥∥∥∥ > c − (
1 − 2−n

)
ε

for all l ∈ {1, . . . ,L}. By a straightforward calculation using the choice of the αl and the triangle
inequality we get that inequality (8), with n + 1 instead of n, holds for all α in the unit sphere of
�n+1

1 and hence for all elements of R
n+1.

This finishes the construction. By Lemma 5(i) we get

δ(xkn − x) � 2(c − ε),

hence clearly

δ(xk) � δ(xkn) = δ(xkn − x) � 2(c − ε).

As ε ∈ (0, c) is arbitrary, we get (6).
Finally, let us prove (7): We take any subsequence (xkn) and observe that

2d
(
clustX∗∗(xk),X

)
� 2̂d

(
clustX∗∗(xkn),X

)
� δ(xkn)

by (6). Then we can pass to the infimum over all (xkn). This finishes the proof of the theorem.

3. Proof of Example 3

For n ∈ N set Xn = �n∞ and let X be the �1-sum of all the spaces Xn, n ∈ N. Then X is
L-embedded by [6, Proposition IV.1.5].

Further, let en
1 , . . . , en

n be the canonical basic vectors of Xn and let (xk) be the sequence in X

containing subsequently these basic vectors, i.e., the sequence

e1
1, e

2
1, e

2
2, e

3
1, e

3
2, e

3
3, e

4
1, . . . , e

4
4, . . . .

Then we have δ̃(xk) = 2 as each subsequence of (xk) contains a further subsequence isometri-
cally equivalent to the canonical basis of �1.

It remains to show that d(clustX∗∗(xk),X) = 0. To do so, it is enough to prove that 0 is a
weak cluster point of the sequence (xk). To verify this, we fix g1, . . . , gm ∈ X∗ and ε > 0. Let
K = max{‖g1‖, . . . ,‖gm‖}.

The dual X∗ can be canonically identified with the �∞-sum of the spaces X∗
n, n ∈ N. More-

over, X∗
n is canonically isometric to �n

1. Thus each g ∈ X∗ can be viewed as a bounded sequence
(gn)n∈N, where gn = (gn,j )

n
j=1 ∈ �n

1 for each n ∈ N.

We find N ∈ N such that K
N

< ε and let n ∈ N be such that n > mN . Let k ∈ {1, . . . ,m} be
arbitrary. We have ‖gk

n‖ � ‖gk‖ � K . As ‖gk
n‖ = ∑n

j=1 |gk
n,j |, the set

{
j ∈ {1, . . . , n}: ∣∣gk

n,j

∣∣ � K
}

N
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has at most N elements. It follows that the set{
j ∈ {1, . . . , n}:

(
∃k ∈ {1, . . . ,m}, ∣∣gk

n,j

∣∣ � K

N

)}
has at most mN elements. As n > mN , there is some j ∈ {1, . . . , n} such that |gk

n,j | < K
N

< ε for

each k ∈ {1, . . . ,m}. It means that |gk(en
j )| < ε for each k ∈ {1, . . . ,m}.

Since en
j is an element of the sequence (xk), this completes the proof that 0 is in the weak

closure of the sequence, hence 0 is a weak cluster point (as the sequence (xk) does not contain 0).

4. Proof of Example 4

We recall that βN is the Čech–Stone compactification of N and M(βN) is the space of all
signed Radon measures on βN considered as the dual of �∞.

Let us fix α > 0 and consider the space

Yα = (
�1, α‖ · ‖1

) ⊕1
(
C[1,ω],‖ · ‖∞

)
.

Here ‖·‖1 denotes the usual norm on �1, ω is the first infinite ordinal, C[1,ω] stands for the space
of all continuous functions on the ordinal interval [1,ω] and ‖ · ‖∞ is the standard supremum
norm. Note that we have the following canonical identifications:

Y ∗
α =

(
�∞,

1

α
‖ · ‖∞

)
⊕∞

(
�1[1,ω],‖ · ‖1

)
, and

Y ∗∗
α = (

M(βN), α‖ · ‖M(βN)

) ⊕1
(
�∞[1,ω],‖ · ‖∞

)
.

For k ∈ N, let xk = (ek,χ[k,ω]) ∈ Yα , where ek denotes the k-th canonical basic vector in �1
and χ[k,ω] is the characteristic function of the interval [k,ω]. Let Xα be the closed linear span of
the set {xk: k ∈ N}. We observe that

Xα =
{(

(ηk), f
) ∈ Yα: f (n) =

n∑
k=1

ηk for all n ∈ N

}
. (9)

Indeed, the set on the right-hand side is a closed linear subspace of Yα containing xk for each
k ∈ N. This proves the inclusion ‘⊂’. To prove the converse one, let us take any point ((ηk), f )

in the set on the right-hand side. Since (ηk) ∈ �1, we get

(
(ηk), f

) =
∞∑

k=1

ηkxk ∈ Xα

as the series is absolutely convergent.
It follows that for each ((ηk), f ) ∈ Xα we have

α
∥∥(ηk)

∥∥ �
∥∥(

(ηk), f
)∥∥ � (α + 1)

∥∥(ηk)
∥∥ ,
1 1
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hence Xα is isomorphic to �1. More precisely, the projection on the first coordinate is an iso-
morphism onto �1. In particular, Xα has the Schur property (and thus it is weakly sequentially
complete).

We further observe that X∗∗
α is canonically identified with the weak∗ closure of Xα in Y ∗∗

α ,
thus

X∗∗
α = {

(μ,f ) ∈ M(βN) × �∞[1,ω]:(∀n ∈ N: f (n) = μ{1, . . . , n}) and f (ω) = μ(βN)
}
. (10)

Indeed, the set on the right-hand side is a weak∗ closed linear subspace of Y ∗∗
α containing Xα ,

which proves the inclusion ‘⊂’. To prove the converse one let us fix (μ,f ) in the set on the
right-hand side. Take a bounded net (uτ ) in �1 which weak∗ converges to μ. For each τ there is
a unique fτ ∈ C[1,ω] such that (uτ , fτ ) ∈ Xα . Then (fτ ) is clearly a bounded net in �∞[1,ω].
Moreover, we will show that (fτ ) weak∗ converges to f . Since the weak∗ topology on bounded
sets coincides with the topology of pointwise convergence, it suffices to show that fτ pointwise
converge to f . Indeed,

fτ (n) =
n∑

k=1

uτ (k) → μ{1, . . . , n} = f (n), for each n ∈ N,

fτ (ω) =
∞∑

k=1

uτ (k) → μ(βN) = f (ω).

It follows that Xα is 1-complemented in its bidual. To show that we set

P(μ,f ) = ((
μ{k}), f − μ(βN \ N) · χ{ω}

)
, (μ,f ) ∈ X∗∗

α .

Then P is a projection of X∗∗
α onto Xα of norm one. Indeed, if (μ,f ) ∈ Xα , then μ(βN \

N) = 0 and hence P(μ,f ) = (μ,f ). Further, by (9) and (10) we get that P(μ,f ) ∈ Xα for
each (μ,f ) ∈ X∗∗

α . Thus P is a projection onto Xα . To show it has norm one, it is enough to
observe that, given (μ,f ) ∈ X∗∗

α , we have ‖(μ{k})‖�1 � ‖μ‖, and that f − μ(βN \ N) · χ{ω} is
a continuous function on [1,ω] coinciding on [1,ω) with f and so ‖f − μ(βN \ N) · χ{ω}‖∞ �
‖f ‖∞.

Further, for the sequence (xk), its weak∗ cluster points in X∗∗
α are equal to{

(εt , χ{ω}): t ∈ βN \ N
}
,

where εt denotes the Dirac measure at a point t ∈ βN.
We claim that, for our sequence (xk), we have

d
(
clustX∗∗

α
(xk),Xα

)
� 1

2
and δ(xk) = 2α. (11)

To see the first inequality, we use the fact that the distance of any weak∗ cluster point of (xk)

from Xα is at least d(χ{ω},C[1,ω]) = 1
2 . On the other hand, if t, t ′ ∈ βN \ N are distinct, then∥∥(εt , χ{ω}) − (εt ′ , χ{ω})

∥∥ ∗∗ = ∥∥(εt − εt ′ ,0)
∥∥ ∗∗ = α‖εt − εt ′ ‖M(βN) = 2α.
Xα Xα
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This verifies (11).
Now we use the described procedure to construct the desired space X. For n ∈ N, let αn = 1

n
and let X 1

n
be the space constructed for αn. Let

X =
( ∞∑

n=1

X 1
n

)
�1

be the �1-sum of the spaces X 1
n

. We claim that X is the required space.

First, since each X 1
n

has the Schur property, X, as their �1-sum, possesses this property as

well (this follows by a straightforward modification of the proof that �1 has the Schur property,
see [2, Theorem 5.19]). Hence X is weakly sequentially complete.

Further, observe that

X∗ =
( ∞∑

n=1

X∗
1
n

)
�∞

and X∗∗ ⊃
( ∞∑

n=1

X∗∗
1
n

)
�1

.

Note that the latter space is not equal to X∗∗ but it is 1-complemented in X∗∗ (cf. the proof of
[6, Proposition IV.1.5]). Now it follows that X is 1-complemented in X∗∗.

Finally, fix n ∈ N. We consider a sequence x̂k = (0, . . . ,0,
n-th
xk ,0, . . .), where the elements

xk ∈ X 1
n

, k ∈ N, are defined above. Let y = (0, . . . ,0,
n-th

(εt , χ{ω}),0, . . .), where t ∈ βN \ N, be a

weak∗ cluster point of (̂xk) in X∗∗. Then, for any z = (z(1), z(2), . . .) ∈ X,

‖y − z‖X∗∗ �
∥∥(εt , χ{ω}) − z(n)

∥∥
X∗∗

1
n

� 1

2

by (11). Hence

d
(
clustX∗∗ (̂xk),X

)
� 1

2
.

On the other hand,

δ(̂xk) = δ(xk) = 2

n
,

again by (11). From this observation the conclusion follows.

5. Final remarks

Even though the second part of Theorem 1 is formulated for L-embedded spaces, using results
of A.S. Granero and M. Sánchez we can prove the following variant of Theorem 1.

Let X be a subspace of an L-embedded Banach space Y and (xk) be a bounded sequence
in X. Then

d̂
(
clustX∗∗(xk),X

)
� δ(xk) and d

(
clustX∗∗(xk),X

)
� δ̃(xk). (12)
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To verify the first inequality, we consider x∗∗ ∈ clustX∗∗(xk). Since clustX∗∗(xk) = clustY ∗∗(xk),
using [5, Lemma 2.2] (with X, Y for D, X) and Theorem 1, we obtain

d
(
x∗∗,X

)
� 2d

(
x∗∗, Y

)
� 2̂d

(
clustY ∗∗(xk), Y

)
� δ(xk).

This proves the first statement because x∗∗ ∈ clustX∗∗(xk) was arbitrary. The second one can be
deduced from the first one just as in the proof of Theorem 1.

However, we do not know whether it is possible to obtain not only (12) but (6) and (7) of
Theorem 1 for subspaces of L-embedded spaces.

Up to now we have tacitly assumed that we are dealing with real Banach spaces. In fact, our
proofs work for real spaces but all the results can be easily transferred to complex spaces as well.
Let us indicate how to see this.

Let X be a complex Banach space. Denote by XR the same space considered over the field of
real numbers (i.e., we just forget multiplication by imaginary numbers). Let φ : X∗ → (XR)∗ be
defined by

φ
(
x∗)(x) = Rex∗(x), x∗ ∈ X∗, x ∈ X.

It is well known that φ is a real-linear isometry of X∗ onto (XR)∗. Let us define a mapping
ψ : X∗∗ → (XR)∗∗ by the formula

ψ
(
x∗∗)(y∗) = Rex∗∗(φ−1(y∗)), x∗∗ ∈ X∗∗, y∗ ∈ (XR)∗.

It is easy to check that the mapping ψ satisfies the following properties:

(i) ψ is a real-linear isometry of X∗∗ onto (XR)∗∗.
(ii) ψ is a weak∗-to-weak∗ homeomorphism.

(iii) ψ(X) = XR .

It follows that for any sequence in X all the quantities in question (i.e., δ, δ̃, d and d̂) are the
same with respect to X and with respect to XR . (Recall that δ is defined as the diameter of weak∗
cluster points, which has good sense in a complex space as well, even though in the complex
case only the second formula of (4) works.) If, moreover, we observe that XR is L-embedded
whenever X is L-embedded, we conclude that Theorem 1 is valid for complex spaces as well.

As for Examples 3 and 4, it is clear that they work also in the complex setting – we can just
consider complex versions of the respective spaces.

We finish by recalling that G. Godefroy’s question, for which Banach spaces (3) holds, re-
mains open. In particular, the following question seems to be open.

Question. Let X be a Banach space which is a u-summand in its bidual, i.e., there is a projection
P : X∗∗ → X with ‖I − 2P ‖ = 1. Does (1) hold for X for some C > 0?

We conjecture that the space from Example 4, although it is 1-complemented in its bidual, is
not a u-summand. At least the projection we have constructed does not work.
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