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1. INTRODUCTION: DEFINITIONS, AXIOMS AND STATEMENT OF RESULTS 

IN [41], Witten has made the remarkable discovery of an intricate relationship between the 
Jones polynomial [15, 163 and gauge theory. (See also the prophetical article by Atiyah [2].) 
Although his approach uses the Feynman path integral of Quantum Field Theory, Witten 
gave convincing arguments that a viable combinatorial approach could be made rigorous 
using the method of surgery. His discovery includes new 3-manifold invariants (sometimes 
called Jones-W&en invariants), whose existence was first proven by Reshetikhin and 
Turaev [30] using quantum groups and Kirby’s surgery calculus [19] (see also [20]). Other 
combinatorial approaches for related invariants were developed by Kohno [21], Turaev 
and Viro 1361, Lickorish [22,23], the authors [lo], Morton and Strickland [29], Wenzl 
[40], Turaev and Wenzl [35]. 

According to Witten, his invariants should belong to a topological quantumfield theory 
(TQFT). This notion was axiomatized by Atiyah et al. [6,3] (see also [38]). In particular, 
the states of a manifold, C, form a hermitian vector space, V(E) (more generally V(x) is 
a module over a commutative ring k with unit and involution), and a cobordism M from x1 to 
& induces a transition (k-linear map), denoted Zy, from V(&) to V(&). One has that V(0) 
is the ground ring k, so that if aA = C (i.e., A4 is a cobordism from 0 to x), one obtains 
a vector Z(M) in V(x), given by Z(M) = Z,(l). Thus, M induces a state of 8M. In 
particular, if M is closed, Z(M) (also denoted by (M) in keeping with the physicists’ 
expectation value notation) lies in V(0) = k, so that TQFTs, by their very nature, yield 
manifold inuariants. 

In this paper, we give a purely topological construction of the TQFTs associated to 
invariants satisfying the Kauffman bracket relations [17], that is, essentially, of the TQFTs 
corresponding to Jones’ original v-polynomial [15]. 

We renormalize the invariants 8, of [lo] to construct a series of invariants ( )p of 
banded links in closed 3-manifolds, and then use these invariants to define, in a “universal” 
way, modules V,(C) (p 2 l), associated to surfaces x (which may have banded links, too). 
Here, for technical reasons, all manifolds are equipped with a p1 -structure (a weak form of 
framing, see Appendix B). We prove the finiteness and multiplicativity properties of the 

V,(x), using the language of bimodules over algebroids. It turns out that the ranks of our 
modules are given by Verlinde’sformula. Thus, we are led to believe that ours is a rigorous 
construction of Witten’s theory for SU(2) (and in some sense also for SO(3), see Remark 
1.17). 

t Supported in part by NSF DMS 88-02818, 91-11663. 
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Finally, we describe an action of a Heisenberg type group T(C) on the modules I&,(Z). 
This action is used to obtain a natural decomposition of V,,(E) into a non-trivial tensor 
product, or into a direct sum of subspaces (whose ranks are computed explicitly), associated 
to spin structures or cohomology classes on the surface. 

Remark. The invariants 8, (and ( ),) are constructed from the Kauffman bracket [17] 
evaluated at a primitive 2pth root of unity. If p = 2r is even, such invariants were first 
constructed by Lickorish [22, 231. They are closely related to the invariants r,(M) construc- 
ted by Reshetikhin and Turaev [30] and Kirby and Melvin [20] from the representation 
theory of the quantum group U,SU(Z) at q = eZniir. If p is odd, the invariant 0, is related to 
the refined invariant r:(M) of [20] (see [9] for details). 

The remainder of this section is a detailed introduction to the results of this paper. This 
introduction has four parts. In Section l.A, we describe what we mean by a TQFT, and, 
more generally, by a quantization functor on a cobordism category. In Section l.B, we state 
the main theorems of this paper. In Section l.C, we state additional properties which serve 
to characterize the theories dealt with in this paper. These are surgery properties and the 
Kauffman bracket relations. Finally, in Section l.D we give an overview of the method of 
proof of our results. This method may be useful in other contexts. 

1.A. Manifold invariants, quantization functors, and TQFT 

Cobordism categories 
Recall that an oriented (n + l)-manifold M with boundary decomposed as 

8M = -X1 u X2, where X1, C2 are oriented n-manifolds, and -X1 means Ci with reversed 
orientation, is called a bordism, or a cobordismt from Ci to & (see [31]). Given a cobordism 
Ml, from X1 to C, and a cobordism MZ, from X to X2, one can glue these together along 
X to obtain a cobordism from Ci to X2. In this way, one may define a category whose 
objects are the oriented n-manifolds, whose morphisms are equivalence classes of cobor- 
disms, and where gluing plays the role of composition. Here, two cobordisms from X1 to CZ 
are called equivalent if they are isomorphic rel. boundary (i.e. the isomorphism is required 
to be the identity on Xi and C,). Taking equivalence classes ensures that composition is 
associative, and the product manifold, [0, I] x C, plays the role of the identity morphism of 
C. Observe that this category has an involution (given by orientation reversal) and finite 
sums (given by disjoint union). 

In practice, manifolds and bordisms generally have additional structure (e.g. they are 
compact, smooth or piecewise linear, they may be equipped with a tangential structure, such 
as a framing or spin structure, and they may contain subobjects such as submanifolds or 
framed submanifolds). 

The main example in this paper is the category Cf’ of smooth closed oriented 2-mani- 

folds with pl-structure (see Appendix B) and containing a banded link (i.e. a set of embedded 
oriented intervals). The bordisms are thus compact smooth oriented 3-manifolds with 

pi-structure containing a banded link. (That is, a set of embedded oriented surfaces 
diffeomorphic to the product of a l-manifold with an interval, meeting the boundary in the 
product of the boundary of the l-manifold with the interval. Only the band, and not the 
l-manifold, called the core of the band, is assumed to be oriented.) We also consider the full 
subcategory C,“’ (even), where objects are restricted to surfaces having a banded link with an 
even number of components. The appropriate notion of equivalence on the bordisms is 

7 We use the prefix co- in cobordism to signify “mutually bordant”. 
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orientation-preserving diffeomorphism (rel. boundary), which restricts to an orientation 
preserving diffeomorphism of the banded links, and such that on the mapping cylinder of 
the diffeomorphism, there is a pl-structure extending the one given on its boundary. Note 
that, in particular, isotopic links (rel. boundary) and homotopic p1 -structures (rel. bound- 
ary) are equivalent. 

Remark. The introduction of pr-structure arises since the invariants we consider turn 

out to have a framing anomaly,? i.e. the invariants themselves depend on the pi-structure 
(albeit in a very weak way, see 1.8). (There is in fact another way of resolving the framing 
anomaly, by explicitly using the signature cocycle; see [38].) See also [4] for an interpreta- 
tion in terms of 2-framings. 

The main aim of this paper is to construct and describe TQFT-functors on the category 
C,“‘. The latter notion makes sense in general on any cobordism category, i.e. a category 
together with an empty object 8 and a notion of disjoint union (denoted by u), orientation 
reoersul (denoted by a minus sign), and boundary (denoted by a), satisfying the obvious 
axioms abstracted from the basic example of manifolds and cobordisms. For the remainder 
of part A of this introduction, let C be a cobordism category. 

Quuntization functors 
Let k be a commutative ring with unit and conjugation denoted by 1 H x Consider 

a functor V: C -+ k-modules, such that 

(Ql) V(8) = k. 

Notation. If A4 is a cobordism, the linear map V(M) is denoted by ZM (for historical 
reasons). Moreover, if M is (or is considered as) a cobordism from 8 to aM, we write Z(M) 
for the element Z,(l) E V(aM). Denote by (M) the element Z(M) E k, if M is a closed 
bordism, i.e. if aM = 0. 

Remark. Since morphisms in C are equivalence classes of bordisms, the function ( ) is 
an invariant of closed bordisms. 

The functor V is called a quantizutionfunctor if it satisfies (Ql) above and the following 
condition (42). 

(Q2) There is u non-degenerate_j hermitiung sesquilinear form ( , )z on V(E), such that if 
aM1 = aM2 = C, then 

@(MI), Z(Mz))x = (MI uz(-Mz)). 

Remark. Condition (Ql) is understood in the following precise sense: the module V(0) is 
equipped with an element 1 E V(X) which is a k-basis. Note that one has the following: 

(8) = Z(8) = Z@(l) = 1 and (1, l),~ = 1. 

t In fact, an early version of [41] inadvertently overlooked this anomaly. Witten’s discovery of the anomaly was 

the cause of some excitement among the experts. 

$ Recall that a form is non&generate if the adjoint mapping is injective. 

$A sesquilinear form is called hermitian if (y,x) = (x, y). 
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We say that V is cobordism generated, or C-generated, if the following property holds: 
(CG) The elements Z(M), with 3M = E, generate V(E). 

We say an invariant ( ) is multiplicative, if the following property holds: 

(m) <M1UM2) = (M1)042) and (8) = 1. 

We say an invariant ( ) is involutive, if the following property holds: 

(i) (-M)=(M). 

The relationship between quantization functors and invariants is contained in the 

following result. 

1.1. PROPOSITION. Zf V is a quantization fun&or on the cobordism category C, then the 

association M H (M) is a multiplicative and involutive invariant. Conversely, given a multi- 
plicative and involutive invariant on the set of closed bordisms of C, there is a unique cobordism 
generated quantization functor on C extending it. 

The proof of this result is straightforward from the definitions and will be left to the 
reader. It uses the universal construction described below. 

The Universal Construction. Denote by Y(X) the k-module freely generated by the set 
of all morphisms M from 8 to X (i.e. such that aM = X). Given an invariant ( ), the formula 

(M,M’)z = (Muz (-M’)) 

extends to a hermitian sesquilinear form (,)z on Y(C). Then V(C) is the quotient of Y(E) 

by the radical? of the form ( , )z, which descends to a nondegenerate form, still denoted by 
(, )z, on V(E). If M is a cobordism from X1 to X2, the assignment M’ H M’ uz, M defines 
a linear map ZM : V(&) --f V(C,), such that (V, Z) is a quantization functor. 

The following proposition is easy to prove using the universal construction. 

PROPOSITION. Let V be a cobordism generated quantization functor. Then V(-E) 

is the conjugate module of V(E), and one has a natural mapping V(-X) + V(X)* 
(where V(E)* denotes the dual module). Furthermore, there is a natural mapping 

V(L) 0 W2) + WI LIX2). 

We say the quantization functor is involutive, if property (I) below holds, and multiplica- 

tive, if property (M) below holds. 

(I) The map V( -X) + V(C)* is an isomorphism. 
(M) The map V(C,) @ V(E,) -+ V(XI u C,) is an isomorphism. 

We also consider the following finiteness property. 

(F) For all E, V(E) is free of finite rank and the form ( , )x is unimodu1ar.f 

Remark. Of course (F) implies (I). One can easily see that (F) and (CG) imply that the 
map V(X,) @ V(X2) + V(E1 UC,) is an isomorphism onto a direct summand. 

t The radical of the form ( , ) is the set of x such that (x, y) = 0 for all y. 
$ A form is unimodular if the adjoint mapping is an isomorphism. 



FIELD THEORIES DERIVED FROM THE KAUFFMAN BRACKET 887 

Definition. A topological quantum field theory (TQFT) on a cobordism category C is 
a cobordism generated quantization functor of C satisfying property (F) (and hence also 

property (I)) and property (M). 

Remark. The above definition generalizes the axioms of Atiyah and Segal for TQFT, to 
more general coefficient rings. Note that if k = C, then we have not required that the vector 
space V(C) be a Hilbert space, since the form ( , )z is not required to be posit&e de$nite. In 
fact, for the V, theories discussed below, different embeddings of the ground ring k, in C lead 
to forms with different signatures (see Remark 4.12). 

1.2. Trace formula for TQFT. Let M be a cobordism from C to X, and let ME be the closed 

bordism obtained by identifying the two copies of E. Then (Mx) = trace&Z,). In particu- 
lar (S’ x C> = rank V(X). 

Proof For a C-generated quantization functor, gluing along X induces maps 

f: V(-XUX)-+k 

CD: V(--Z:UC)+Hom(V(C), V(Z)). 

These satisfy f (Z(M)) = (MZ) and @(Z(M)) = ZM. 0 ne can check that @ 0 p(x @ y)(z) = 

D(x)(z)y, where p: V(-C)O V(X)+ V(--ZJJX) and D: Y(--X)-+ V(C)* are the natural 
maps. It follows that fi p(x 0 y) = D(x)(y) = trace(@o p(x @ y)). Since p is surjective (by 
axiom (M)), we have f = trace 0 @. The result follows. 

1.B. Statement of the main results 

After appropriately renormalizing the invariant 0, of [lo, 93, and changing coefficients 
to a ring k,, defined in Section 2, one obtains the following. 

1.3. THEOREM. There is a series of multiplicative and involutive invariants, ( )r, p a posit- 
ive integer, dejned on the set of closed bordisms of the cobordism category C,“’ (i.e. on the set 

of (equivalence classes of) closed oriented 3-manifolds, equipped with a pI-structure and 
a banded link), and taking values in the ring k,. 

Via Proposition 1.1, the invariant ( )p determines a @-generated quantization functor 
VP. We may now state the main result of this paper. 

1.4. MAIN THEOREM (Existence of TQFT). Let p 2 3. The quantization functor V, satis- 
fies axiom (F). Zf p is even, then axiom (M) holds and hence VP satisfies all the axioms of TQFT. 
If p is odd, then axiom (M) holds provided the link is at least one of the Xi has an even number of 
components. In particular, VP is a TQFT when restricted to the category C,“’ (even). 

Remark. If p = 1 or 2, the quantization functor J$ satisfies axiom (F) but not the 
multiplicativity axiom (M). However, these theories are useful, since they can be used to 
relate the p and 2p theories, if p 2 3 is odd. 

A tensor product formula for odd p 
Set (M )$ = (- 2)-“( M )z, where n is the number of components of the banded link in 

M. This is a multiplicative and involutive invariant and thus, via Proposition 1.1, it 
determines a quantization functor Vi. In Section 6, we prove the following theorem. 
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1.5. THEOREM. Let p 2 1 be odd. There is a natural isomorphism 

.fE: v,,(X) 5 G(E) 0 v,(C) 

such thatf~(Z,,(M)) = Z;(M) 0 Z,(M). (H ere, all modules are considered to be kz,,-modules, 
via a change of coefJicients explained in Section 6.) 

Note that the formula forfx(Z,,(M)) is valid only if M is a manifold with pI -structure 
equipped with a banded link, and not a linear combination of banded links. 

A decomposition formula for even p 
In the last section of this paper, we define a natural action of a Heisenberg type group 

I(X) on the module I&,(C). Let us denote the banded link contained in a surface X by I (of 
course, 1 may be empty). Then the group T(E) is a central extension of Hi(I: - I; Z/2) by 
Z/4. Its action nontrivially decomposes V,,(C) into subspaces, and we have the following 
theorem. 

1.6. THEOREM. (i) Zfp is odd, then the natural action ofT(C) on Vz,(E)factors through an 

action on V;(X). 
(ii) If p E 2 mod4, the natural action of T(C) decomposes V,,(C) into a direct sum of 

subspaces V&,(X:, h), canonically associated to mod 2 cohomology classes h on E - 1. 
(iii) If p = 0 mod4, the natural action of T(C) decomposes V&,(C) into a direct sum of 

subspaces Vz,(C, q), canonically associated to spin structures q on E - 1. 

In fact, the modules V2r(X, h) and V’,(E, q) fit into a refined TQFT associated to 
manifolds equipped with mod 2 cohomology classes or spin structures (see [ll]). 

l.c. Kauflman bracket relations and surgery axioms 

1.7. THEOREM. (i) The quantizationfunctor 5, on the cobordism category C,“‘, satisfies the 
Kauflman bracket relations and the surgery axioms described below. 

(ii) Moreover, every cobordism generated quantization functor, over an integral domain, 

satisfying the Kaufman bracket relations and the surgery axioms, is obtained from one of the 

Vr, by a change of coeficients. 

Kaufman bracket relations 
Definition. Let M be a compact 3-dimensional manifold and let 1 be a banded link in 

aM. Let k be a commutative ring containing an invertible element A. Set 6 = -AZ - A-‘. 

The Jones-Kauffman skein module K(M, 1) (with coefficients in k) is the k-module generated 
by the set of isotopy classes of banded links L in M, meeting 8M transversally in I, 

quotiented by the relations [ 173 shown in Fig. 1. 

% =A)( +A-’ x 

Fig. 1. 
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Conoention. In the figures in this paper, we use the convention that any line is to 
represent a band parallel to the plane, with orientation compatible with that of the plane. 

(In the figure above, the first equation means that a link, which locally (in a ball) is given 
by the left-hand side, may be replaced by the linear combination given (locally) by the 
right-hand side. The second equation means that a link having an unknotted component, 
lying in a disk disjoint from the rest of the link, may be removed at the cost of the factor 
6 = -A2 - A-2.) 

Note. The universal coefficient ring for Jones-Kauffman modules is k = Z[A, A - ‘1, the 
ring of Laurent polynomials in the indeterminate A. 

Notation. Assume that M as above is equipped with a pl-structure. Denote by dp(M, 1) 
the k-module freely generated by the set of (isotopy classes of) banded links L in M, meeting 
X in 1. 

Dejnition. Let V denote a quantization functor on the category C$. We say that 
V satisfies the Kauffman bracket relations (for an element A E k) if for all M, the linear map 
_Y(M, 1) + V(X, I), L H Z(M, L), factors through K(M, 1). 

Note. The induced map K(M, 1) -+ V(C, 1) may depend on the pl-structure on M (see 1.8 

below). 

Surgery axioms 

Let V denote a quantization functor on the category C,“l. We say that V s&&es the 

surgery axioms provided (SO), (Sl) and (S2) below are satisfied. 
Let S3 denote the 3-sphere equipped with a standard pl-structure, i.e. one extending to 

D4. 
(SO) (S3 ) is invertible in k. 
Assume So x D3 and D’ x S3 are equipped with their product orientations (and some 

fixed pr-structure, which is the restriction of a pi-structure on D’ x D3), so that 
~(S”xD3)=,(D1xS2)=SoxS2. 

(Sl) (Index one surgery) There is an element n E k, such that Z(S” x D3) = nZ(D’ x S2) 
in V(S” x S’). 

Assume S ’ x D2 and D2 x S 1 are equipped with their product orientations (and some 
fixed pl-structure, which is the restriction of a pl-structure on D2 x D’), so that 
a( -(S’ x 0’)) = a(D2 x S’) = S’ x S’. 

(S2) (Index two surgery) The element Z(D2 x S ‘) in V(S’ x S’) lies in the submodule 
generated by banded links in the solid torus -(S ’ x D 2). 

Remark. In the above, surgery means surgery in the category of manifolds with pl- 
structure. However, for index 1 or 2 surgery, this essentially makes no difference (see 
Appendix B). 

Remark. Since S 3 is obtained from S3 u S3 by index one surgery, we have 
(S3 uS3) = q(S3). By (SO) and (m), it follows that 

(S3) = ?j+. 
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Let S2 x S1 denote S2 x S ’ equipped with a pi -structure with a-invariant zero (see Appen- 
dix B). Applying (Sl) to the above, we find 

(S2xS’) = 1. 

Remark. The surgery axioms can be expressed in terms of the invariant ( ) on closed 
3-manifolds (equipped with p1 -structures and banded links) as follows. We assume axioms 
(CG) and (m). 

1. Using (CG), we see that axiom (Sl) is equivalent to the following: if M’ is obtained 
from M by index one surgery, then 

(M) = rl<M’). 

2. Axiom (S2) is equivalent to the existence of a linear combination o = xi AiLi of 
banded links in the solid torus -(S’ x 0’) such that the following holds. Let 
4: -(S’ x D2) + M be an embedding corresponding to a framed knot K c M (disjoint 
from the given banded link in M). Let M’ be the result of index two surgery along 

K (equipped with the same banded link as M). Then 

where Mi is the manifold M with 4(Li) adjoined to the banded link in M. 

1.8. Dependence on the pl-structure. If the quantization functor V satisfies the surgery 
axioms, then the associated invariant ( ) depends affinely on the pl-structure in the 
following sense. There is a Z-valued homotopy invariant, CJ(CI), of pi -structures c( on closed 
3-manifolds (see Appendix B). Let S: denotes the 3-sphere with a pi-structure with 
a-invariant 1. Axioms (m), (SO), (Sl) imply that taking connected sum with S: (which 
increases a(a) by 1) multiplies the invariant by 

cc) K=-=tp&). 
<s3> 

It follows that if Ml and M2 differ only by their pl-structures, c1i and c(~, then 

042) = 
,&z) - +,)(M1). 

If Ml and M2 are as above, but have boundary E, an analogous formula holds for the 
elements Z(Mi) E V(X). As for the module V(E), it is independent of the pi-structure up to 
a noncanonical isomorphism.? 

Remark. If K: # 1, one says that the quantization functor V has aframing anomaly. This 
is the case for the functors VP (except for some low values of p). The uniqueness part of 
Theorem 1.7 shows that a quantization functor satisfying the surgery axioms and the 
Kauffman relations must generally have a framing anomaly. 

The surgery axioms serve to reduce the universal construction (Proposition 1.1) to 
a more manageable setting. We need the following lemma. 

TIndeed, since any two pl-structures on Z are homotopic, the identity cobordism, equipped with some 
pl-structure, induces an isomorphism between the modules associated to different pi-structures. Note, however, 
that the isomorphism, induced by a nontrivial self-homotopy of a pI-structure, induces the multiplication by 
a power of K. This shows that (in general) only the projectiuization of V(Z) is canonical. 
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LEMMA. Let MO and MI be compact oriented -l-manifolds with boundary IX (not necessar- 

ily connected). Assume MI is connected. Then MI can be obtained from MO (up to oriented 

d$eomorphism rel. C), by index 1 and 2 surgeries. 

After connecting up the components of MO by index 1 surgeries, the proof proceeds by 
attaching standard handlebodies to the components of X to obtain closed manifolds, and 
then using the Kirby moues to show that such manifolds are attainable by index 2 surgery on 
the complement of a standard collection of embedded handlebodies in the 3-sphere. 

Using this lemma (and the fact that one may change the pl-structure up to homotopy by 
connected sum with a 3-sphere, with appropriate pl-structure), one easily obtains the 
following proposition. 

1.9. PROPOSITION. Let M be a compact oriented 3-manifold with p,-structure and with 
boundary E. Zf V satisfies the surgery axioms, and M is connected, then the natural map 
Y(M, 1) + V(C, l), L H Z(M, L), is surjective. 

Moreover, if M’ denotes another connected compact oriented 3-manifold with boundary 
IX (with a p,-structure on M’ inducing the same p,-structure on E), then the kernel of the above 

map is the left kernel of the sesquilinear form ( , )cM,Mp,: .5?(M, 1) x 9(M’, I) -+ k given by 

(L, L’)CM,M,, = ((M uZ - M’, Lu, - L’)). 

Remark. This result is a key property of a quantization functor satisfying the surgery 
axioms, since it says that the module V(X) can be computed using banded links in any two 
connected 3-manifolds, M and M’ with boundary X. If V satisfies also the Kauffman bracket 
relations, then one may replace Z’(M,l) by K(M,l) in 1.9. 

For example, if X is connected, we may take for M and M’ two handlebodies H, H’, such 
that S3 = H uI: - H’. Assume X is equipped with the empty link. Then the module V(C) is 
the quotient of the module K(H) by JY, where Jf denotes the left kernel of the pairing 
K(H) x K(H’) + k given by 1.9. If the skein variable A is a primitive 2pth root of unity for 
some p 2 1, in an integral domain k, then the quantization functor V is VP (up to change of 
coefficients), and it follows from the Main Theorem 1.4 that K(H)/&” = V(C) is free of finite 
rank (given in 1.16 below). (A different proof of the finite-dimensionality of K(H)/N at 4rth 
roots of unity has been given by Lickorish [24]. In the case where X has genus one, this 
result goes back to [22,23, lo].) 

I.D. The splitting theorem and the introduction of colors 

In the remainder of this section we will discuss certain aspects of the proof of the Main 
Theorem 1.4. In doing so, we will also discuss general methods involving the decomposition 
of a TQFT, which may be of use when studying TQFT in other contexts. 

The proof of the finiteness and tensor product axioms rely heavily on certain properties 
of the Jones- Wenzl idempotents in the Temperley-Lieb algebra. (See Section 3 for a dis- 
cussion of these notions.) In the algebra we develop to decompose the quantization functors 
VP, these idempotents play a central role. Geometrically, this involves splitting surfaces 

along curves and 3-manifolds along surfaces. Algebraically, this leads naturally to the 
notion of an algebroid. 

Definition. An algebroid is by definition a k-linear category, i.e. the morphism sets are 
k-modules and composition is k-bilinear. 
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We choose to use the terminology algebroid instead of k-linear category, because we 
wish to stress the analogy with a1gebras.t In particular, we shall use the notions of 1ef and 
right modules over an algebroid, tensor product of modules over an algebroid, and Morita 

equivalence of algebroids. (These notions are defined in Appendix A.) 
As a particular example of our methods, consider the multiplicative axiom (M). The map 

V(E1) 0 I%) + I% LIE 1 2 is an isomorphism if and only if V(Xi uXZ) is generated by 

split objects MI u MS. Reducing a given bordism M, with 8M = X1 u X2, to a split object, 
involves first splitting M along a surface, say C, reducing the genus of X via surgery (this uses 
axiom (S2)) to obtain a sphere, which may have bands running through it, reducing the 
number of bands to zero (this is where the idempotents play a role, and where the p even and 
odd theories differ) and finally using axiom (Sl) to obtain the splitting. 

This reduction process can be expressed algebraically as a Morita equivalence. Let A(@) 

be the algebroid whose objects are the objects of the category C,“’ (i.e. closed surfaces 
equipped with pi-structures and banded links), and whose set of morphisms from Z to Z’ is 
the module V( - Z u C’). Then one has an isomorphism (this is a special case of the general 
splitting theorem 1.12 below) 

where V(C, )_ (resp. _ V(Xc,)) is considered as a right (resp. left) module over the algebroid 
A(0). Here, if a denotes an object C of A(@, then V(X1)a (resp. .I’(&)) denotes the module 
T/(X1 UC) (resp. V(--CM&)). (Note that one has I’(&)0 = V(Xi) and 0I/(&) = V(C,).) 

Now since tensor products of modules are preserved under Morita equivalence (see 
Appendix A) axiom (M) is seen to be a consequence of the following property: 

(ME) The algebroid A(0) is Morita equivalent to k. 

(Here k denotes the k-algebroid consisting of one object and whose morphism set is k.) 
Using this algebraic language, we have that the multiplicativity property claimed in the 

Main Theorem 1.4 is a consequence of the following. 

1.10. THEOREM. Axiom (ME) holds for the Vp theory on the category Cl’, fp 2 4 is even, 

and on the category Cl’ (even), ifp 2 3. 

The above result is a particular case of a more general result concerning splitting 
surfaces along curves. We now describe this in more detail. 

Gluing along objects with boundary 
In the following, we will assume the objects and bordisms of the cobordism category can 

be split along subobjects. (This holds for the category C,“’ (C;’ (even)) studied in this paper.) 
This means that one has a more general gluing operation, where now one can glue bordisms 

along pieces of their boundary, such that the pieces themselves are allowed to have 
boundary. The objects with boundary will be viewed as cobordisms between subobjects, 
and we assume they can be glued together in the usual way. For example, an object of the 
cobordism category will be viewed as a cobordism from the empty subobject to itself. 

t Just as a groupoid may be thought of as a “group with many objects”, an algebroid may be thought of as an 
“algebra with many objects”. 
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Associated algebroids and bimodules 

In what follows, we will study a cobordism generated quantization functor V, such that 
the objects and bordisms of the category can be split along subobjects. To a subobject I we 
associate a category A(I) as follows. The objects of A(I) are the cobordisms from I to 0. 
For example, in the case of C,“‘, the subobject I is closed l-manifold (with pi-structure), and 
an object of the category A(I) is a surface (with pi-structure and a banded link) with 
boundary -I. If a = C, and b = C2 are two objects of A(I), the set of morphisms from a to 
b, denoted by .A(lY),, is by definition the module V( -Xi ur C,). 

Suppose that X is an object with boundary, such that 8Z = -I, MI,, and let a = C1 
(resp. b = X2) be an object of A(r,) (resp. A&)). We set 

One has the following easy consequence of the universal construction of 1.1. 

1.11. PROPOSITION. Let C1 and C2 denote objects with boundary with 8X, = -r, u r and 
8& = - r u r,. Then one has bilinear gluing maps 

.?I), x b%Wc -+ .VI ur WC 

J(r), x N-), + .W), 

.A(0 x 6VZ)C + aW’Z)c 

x(&)b X bA(r)c -‘aV(%)C 

such that -A(I)_ is an algebroid and _V(C,)_ is a A(r,) x A(T)-bimodule. 

The following result is an almost formal consequence of the definitions. 

1.12. GENERAL SPLITTING THEOREM. Let X1 and Z2 denote objects with boundary, with 
&XI = -r, u r and 8X2 = --rU I-,. Then the natural map 

_V(C,)_ @ _V(C*)_ + _V(Cl Uy X2)_ 

AK) 

is an isomorphism of A( I, ) x A( lYz)-bimodules. 

Proof Let tl = Xi and /? = C; denote objects, respectively, in A(r,) and A(&). We let 
6 = - C, ur, C; , and we denote by E the element of a V(C, ), induced by the bordism 
(-C; ur, C,) x [0, 11, where the points of I x [O, l] are identified with I via the projection. 

One has a canonical isomorphismf: aV(E1 ur &)B H aV(C2)8, and one checks that the 

map E @f is an inverse to the natural map 

.WI)- 0 -V*)B -+afV~ vi- x2),. 
A(r) 

q 

Reducing the algebroid A#‘) 
In what follows, we will work with the quantization functor V, on the category 

Csl associated to the invariant ( )P of Theorem 1.3. The algebroid of a closed l-manifold 
I’ with pl-structure will be denoted by A,(I). 

We say that an algebroid A is completely reduced, if the set of morphisms between an 
object and itself is a free module of rank 1, and the set of morphisms between different 
objects is the zero module. 
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Our study of the V, theories boils down to the following. 

1.13. MORITA REDUCTION THEOREM. Let l? be a closed 1-man$old with m components, 

m 2 0. Suppose p 2 3. Then the algebroid A,(I) is Morita equivalent to the completely 

reduced algebroid on n”’ (resp. 2n”) objects, ifp is even (resp. odd), where n = [(p - 1)/2]. 
If p 2 3 is odd, the algebroid A,,(I) breaks up into a disjoint union of even and odd pieces, 

A:(I) and A:(r), each of which is Morita equivalent to the completely reduced algebroid on 
n”’ objects. 

Note that if I = 8, then 1.13 says that axiom (ME) holds, if p 2 4 is even, and the 
cobordism category is C,“l. Axiom (ME) also holds if p 2 3 is odd, and the cobordism 
category is Cg’ (even), because the even part, A:(I), is the algebroid associated to the 
quantization functor V, restricted to the cobordism category C,“’ (even). Hence, in these two 
cases, the quantization functor V, satisfies the tensor product axiom (M). 

However, if p 2 3 is odd and the cobordism category is C;‘, then 1.13 says that axiom 
(ME) fails to hold. In fact, the tensor product axiom (M) also fails to hold. Here is an 
example. Let X be the 2-sphere equipped with a banded link with p - 2 components. Since 
p - 2 is odd, Vp( -X) and V,(X) are zero. But V,( -C u Xc) x k, is nonzero (see 3.9). 

Remark. The objects of the completely reduced algebroids correspond, in the VP theory, 
to Jones-Wenzl idempotents, and the above theorem is a reformulation of certain of their 
properties. We think that the above theorem should generalize to other theories based on 
other specializations of the 2-variable Jones-Conway (HOMFLY) polynomial and the 
2-variable Kau@an polynomial, using appropriate Jones-Wenzl idempotents. 

Morita reduction of the splitting theorem 

Let us now apply the Morita reduction theorem to the splitting theorem. A Morita 
equivalence between algebroids A and A is a functor, from A-modules to A-modules, which 
is an equivalence of categories (see Appendix A). Thus, if a& = -I, u I, the Morita 
equivalence of 1.13, applied to the algebroids A,(T, ) and A,(I), sends the bimodule 
_ V,(& )_ to a bimodule _ <(Xi)_ over the “Morita-reduced” algebroids. Similarly, if 
a& = -I u I,, we have a bimodule _I@,)_. Again, since tensor products are preserved 
by Morita equivalence, for p 2 3 the splitting theorem gives natural isomorphisms 

(Here, i (resp. j, k) are objects of the completely reduced algebroids associated to I, (resp. 

I, I,), and the right hand side is precisely the tensor product of the modules i f$&)_ and 
_<(ZZ)k over the completely reduced algebroid associated to I.) 

Colored links 

The above form of the splitting theorem (valid for p 2 3) leads naturally to the notion of 
colored links, where the colors are the finitely many objects of the completely reduced 
algebroid of S ‘. 

Let 1 c Z be a banded link. Let I0 be a sublink. By a coloring c of lo, we mean the 
assignment of a number. between 0 and n - 1 (resp. 2n - l), if p = 2n + 2 is even (resp. 
p = 2n + 1 is odd), to the components of lo. Given such a coloring, we will define a module 
V,(X, 1, c) c V,(X, I,), where 1, denotes the link obtained from 1 by replacing each component 
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of I,, by the number of parallel copies assigned by the coloring. (One may as well color all 
uncolored components with the color 1, and remove all components with the color 0, since 
this yields the same link 1, and the same module V,(C, I, c).) These submodules are defined by 
projectors obtained from the Jones-Wenzl idempotents, and we will show that these 
projectors are orthogonal. Moreover, the induced forms on these modules remain uni- 
modular. 

The reason for introducing colored links is that they allow us to state the Morita- 
reduced version of the splitting theorem without explicitly mentioning the Morita equi- 
valence. Indeed, if 8X = -I, u I, we have an isomorphism 

where the left hand side is the module obtained by Morita reduction, the right hand side is 
the &-module associated to the closed surface iXj obtained as follows. We “cap OR” the 
boundary circles of Z by gluing in standard disks, containing standard colored banded 
links, whose colors are indicated by i and j. 

Let I be a simple closed curve on the surface disjoint from the (colored) link in C. 

Consider the result of doing surgery on I, i.e. cutting E along I and gluing in standard disks 
along the boundary curves. Suppose each disk contains a standard l-component banded 
link. We denote by iX(I)j the surface (containing the original link) obtained by coloring one 
of the new components with the color i and the other with the color j. 

1.14. COLORED SPLITTING THEOREM. Let r c C be as above. The natural gluing map 

induces an orthogonal decomposition 

where the sum is over all colors i given below. Moreover, the sesquilinearform on each factor is 

the form induced on that factor, multiplied by the invertible scalar (S3)P(i). (Here 
(i) = (- l)‘[i + 11, where [n] = (A2” - A-2”)/(A2 - II-~).) 

If p = 2n + 2 is even, the sum is over all colors i, with 0 I i I n - 1. 
If p = 2n + 1 is odd, the sum is over all colors i, with 0 I i I 2n - 1, and parity given as 

follows. The colors are even, except if X(r) breaks up into a disjoint union X,’ u C”, with r as 

the boundary of each, such that both X:’ and Z” contain an odd link (i.e. the sum over all colors 
is odd). In this case the colors are odd. 

Using the above result, one can decompose E into elementary cobordisms. The unravel- 
ing of the VP theories is thus completed once we have established the following result. 

1.15. THEOREM. Let S2(i, j) (resp. S’(i, j, k)) be the 2-sphere with a 2-component (resp. 

3-component) banded link, colored with the colors i, j (resp. i, j and k), where the colors are <n, 

ifp = 2n + 2, and are <2n, ifp = 2n + 1. Then the modules V,(S’(i, j)) and VP(S2(i,j, k)) are 
free of rank given below and the sesquilinear forms on these modules are unimodular. 

1. rank V,(S’(i, j)) = 0, if i #j. 
2. rank V,(S2(i,i)) = 1. 
3. rank V,(S2(i, j, k)) = 1, if(i, j, k) is p-admissible (i.e. i + j + k is euen and the triangle 

inequality Ii-jl<k<i+j holds and i+j+kcp-2, if p is even, and 
i + j + k < 2p - 2, if p is odd.) 

4. rank V,(S2(i, j, k)) = 0, otherwise. 
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Proofofthe Main Theorem 1.4. By 1.10 (which is a special case of 1.13), Axiom (ME) is 
satisfied and hence Axiom (M) holds. Using 1.14 repeatedly, we obtain a finite orthogonal 
decomposition of V(C) into pieces, which by 1.15 are free of rank 1, and on which the 

induced form is unimodular. Hence, V(C) is free of finite rank, and the form (, )z is 
unimodular. 

1.16. COROLLARY. Let p 2 3. Set d,(p) = rank I$(&), where Y& is a closed surface of 
genus g equipped with the empty link. 

(i) For g 2 1, one has 

d,(p) = (:)“-’ ‘(~$~“’ (sin T)“” 

(ii) Moreooer, fir g 2 2, one has d,(p) = ( -p)“C,(p), if p is even, and d,(p) = 
(-~)~C,(2p), ifp is odd, where 

29-2 t 
~ eP’-1’ 

Remark. (i) If p = 2k + 4, then 1.16(i) is Verlinde’s formula [37] for the dimension of 
a certain vector space, denoted by Z,(C,) in [32], arising from the SU(2) Wess Zumino 
Witten model at level k. In fact, one may conjecture the existence of a natural isomorphism 
v,(X)@C xZ,(X). 

(ii) Note that rank(V,,(C,)) = 2grank(V,(C,)), if p is odd. (This is not a coincidence. 
Indeed, this follows from 1.5 and the fact that rank(V;(C,)) = 2g, see Section 6.) 

(iii) We have d,(p) = 1 and d,(p) = [(p - 1)/2]. For fixed parity ofp and g 2 2, d,(p) is 
a polynomial in p of degree 3g - 3, as follows easily from l.l6(ii). 

(iv) In 4.11 and 4.14, we shall describe a basis of V,(X) in terms of colorings of certain 
trivalent graphs (compare [21]). We shall also give a formula which allows one to compute 
the signature of the hermitian form ( ,)I: on V,(C), in the case where coefficients are 
extended from k, to C. 

Remark. We also give a “Verlinde formula” (see 7.16), for the ranks of the modules 
associated to surfaces with spin structure (in the case where the link is empty). For example, 
in the case of the &-theory, the modules Vs(Cs, q) of Theorem 1.6(iii) have rank one, if the 
spin structure q has Arf invariant zero, and rank zero otherwise. In particular, 
rank( Vs(C,)) = 2g-1(2g + 1) is the number of spin structures on Xg with Arf invariant zero. 

Remark. These theorems, taken together, show that the modules V,(X) form part of 
a modularfunctor, in the sense of Segal. In fact, a decomposition of X into pairs of pants, 

together with the colored splitting theorem, yields a decomposition of the module V,(X) as 
a direct sum of tensor products of elementary modules. Other authors (e.g. [21,28,12]) use 
such a decomposition as the d&&ion of the T/-modules. In such an approach, the difficulty 
is to show that the modules are well defined, i.e. independent of the particular decomposi- 
tion of C. 

1.17. Remark. In the Witten-Reshetikhin-Turaev theory, one decorates (or colors) the 
links with representations. In their language, our colors correspond to irreducible repres- 
entations of SU(2). Note that if p is odd, the multiplicativity axiom of TQFT only holds 
when restricted to the category C,“’ (euen). This means that in this case, for a TQFT, we must 
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restrict to even colors, which correspond to the representations which lift to SO(3). In this 
sense, we think we have constructed Witten’s theory for SU(2) (p 2 4 even) and SO(3) 

(p 2 3 odd). 

2. THE INVARIANTS ( )p 

The universal ring k,. We will denote by k, (p 2 1) the following ring: 

k, = zCA,~,d-‘ll(cpz,(A),rc~ - 4 

where cp&A) is the 2pth (reduced) cyclotomic polynomial in the indeterminate A, where 
d=pforp~(1,3,4,6},d=1forp~{1,3,4},d=2forp=6,andwhereu=A~6~P~P~1~‘2 
for p $ { 1,2), u = 1 for p = 1, and u = A for p = 2. Thus, A is a primitive 2pth root of unity. 
Note that IC is determined by the choice of A up to multiplication by a 6th root of unity. The 

ring k, has an involution defined by sending A to A- ’ and IC to IC- ‘. 
DefinerlEkpbyvl=lc3,ifp=1,andq=(1-A)IC3/2,ifp=2,and,ifp23, 

~7 = (AIc)~(A” - A-2)p-‘g(p, 1) 

where g(p, 1) = 3 I?= 1 (- 1)“‘Am2. (If A = eni’p, then g(p, 1) = &eaiC1 -PV4 (see [7]).) Us- 

ing g(p, l)g(p, 1) = P and dp, 1) = A p(p-1”2g(p, l), one checks that q is invertible in k,, and 

q = rj. 
The inuariant Op. Let M be a connected oriented 3-dimensional closed manifold, and let 

K be a banded link in M. We recall the definition of the invariant O,(M, K) [10,9]. Recall 
that M is orientation-preserving diffeomorphic to a manifold S3(L) obtained from S3 by 
surgery on a framed link L c S3. Moreover, up to isotopy, we may as well suppose that the 
link K is contained in S3 - L c M. Let W, denote the four-ball with two-handles attached 

along L. Then we have M = S3(L) = 8 W,. Let b+(L), b_(L), b,(L), denote the number of 
positive, negative, zero eigenvalues of the framing matrix of L. Then the signature of W, is 
given by signature( W,) = b+(L) - b_(L), and the first Betti number of S3(L) is given by 

bl(S3(L)) = b,(L). 
In [lo, 91, a certain element R, in the Jones-Kauffman module of the solid torus was 

defined. (It is described in 5.8.) We denote by L(l2,) u K the element of K(S3) obtained from 
L u K by inserting a copy of R, in a neighborhood of each component of the framed link L. 

The Kauffman bracket is an isomorphism ( ) : K(S3) 5 k,. (Here ( ) is normalized so that 
(0) = 1, where 8 d enotes the empty link.) Let U, denote the unknot with framing E. 

The invariant 0p(S3(L), K) is defined by the expression 

O,(S”(L),K) = W u L(Q,)) 
(u,(np)>6+~~)(U_1(~p))b-(~)’ 

(In [lO,9], (Ku L(R,)) is denoted by (Q,, . . ..Qp.z, . . ..z)L”K. and (u,(fl,,)> is denoted 

by (PQ,).) One has (see [lo]) 

(u,(n,)> = q-i!? (E = +l) (*) 

B,(S’ xS2) = (&l(Q,)> = (Ui(Q,)><U-,(Qp)). (**) 

Dejnition of ( ), 
In this and subsequent sections, an oriented manifold, of dimension less than or equal to 

three with p1 -structure and banded link, will simply be called a man$old with structure. (A 
manifold with structure of dimension less than or equal to one has no link.) Note that the 
boundary of a manifold with structure is again a manifold with structure. 
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Let M = (M, ~1, K) be a closed 3-manifold with structure (where CI is a pr-structure and 
K is a banded link). Let (M, K) = uy= 1 (Mi, Ki), where Mi are the connected components of 
M. We define 

CM), = +dW + h(WKW fi ep(Mi, Ki) 
i=l 

where b,(M) is the ith Betti number, and a(~) E Z is defined in Appendix B. The invariant 
( )p is multiplicative, and lies in the ring k, defined above. It is also involutive, since v] = q 

and 8,(-M, -K) = O,(M,K), see [10,9]. 

Notation. The quantization functor corresponding to the invariant (M), will be 
denoted by V,. The sesquilinear forms ( , )E on the modules V,(C) will simply be denoted by 
(, )p, as Z is usually clear from the context. 

Proof of 1.7 (i). It is clear that Vp satisfies the Kauffman relations. Axiom (SO) holds 

because (S3), = n. For (S2), we put 

wp = VR,. 

We claim that Z&D2 x S1) E l$(S’ x S’) is the same as the image of the element o, of 
K( -S’ x 0’). Indeed, using ( * ), one has 

((S3(L),,, K)), = q’ + b,(s3(~))~o(a)ep(S3(L), K) = ylc - (P1(~,a),[~l)(L(~p) u K) 

which implies that for all M with i?M = S 1 x S I, 

(Z,(D2 x S’),Z,(M)), = (&4-S’ x D2,qJ,Zp(M)),. 

Since the form ( , )p is nondegenerate, it follows that axiom (S2) is satisfied. 
Let us now show (Sl). It is sufficient to show index one surgery on M multiplies the 

invariant by q-l. Performing a p,-surgery of index one on M means either replacing two 
components of M by their connected sum, or replacing a component Mi by Mi#(S’ x S’). 
Since the invariant 19~ is multiplicative under connected sums, it is clear that in the first case, 
the invariant ( )I, picks up a factor v] - l as claimed. In the second case, it gets multiplied by 

r$p(S2 xS’). By (*) and (**), we have 0,(S2 x S’) = qe2, hence the invariant ( )p is 
multiplied by q -l in this case also. 

Proof of 1.7 (ii). Suppose we are given a cobordism generated quantization functor 
V over an integral domain k, satisfying the surgery axioms and the Kauffman relations for 
an element A E k. As in l.C, observe rl = (S3), and define K = q-‘(S:). Recall that the 
surgery axioms imply affine dependance on the pl-structure (see 1.8). By the uniqueness 

result of [10,9], axiom (S2) together with the Kauffman relations imply that the skein 
variable A E k is a primitive 2pth root of unity for some p. Moreover, B&M, K) lies in 
a subring Ai c k, (defined in [lo, p. 697]), and there is a ring homomorphism f: 14; + k 
(satisfyingf(A) = A) and a ;1 E k such that if M is connected then 

((M, CI, K)) = q~~‘~)~~~(~)f(6P(fvf, K)). 

It also follows from [lo] that for o, the linear combination of banded links implementing 
(S2), we may take 

0 = nn P’ 
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(In fact, the uniqueness result of [ 10,9] needs the hypothesis that ((S 3, U,(o))) be invertible 
for E = f 1. But this follows from lc3’ = q- ’ ((S 3, U,(o))). To see this equality, perform 
p,-surgery on S3 along U, and note that the result is the 3-sphere with a pl-structure with 
a-invariant 3~) 

Since ~~ = ((S3, U,(o)))/((S3, U_,(o))) = (U,(&,))/(U_,(~,)), it follows from the 
formula for (U&,)) given in [lo] that ICY = u, where u is as in the definition of k,. Next, 
recall that S2 x S ’ can be obtained from S3 both by index one surgery and by index two 

surgery (on U,, the unknot with framing zero.) Using formula (**) above, this implies that 
q is related to the skein variable A as in the definition of k,, and that A = ‘I. Finally, since the 
number called d in the definition of k, is invertible in AL, it has to be invertible in k also. This 
shows that f extends to a ring homomorphism f: k, + k satisfyingf(lc) = rc, and one has 
(M ) = f( (M ),) for all connected M. By multiplicativity, this formula extends to noncon- 
netted M. Since the quantization functor V is determined by the invariant ( ), this 
completes the proof of the uniqueness part of Theorem 1.7. 

3. THE TEMPERLEY-LIEB ALGEBROID, THE JONES-WENZL IDEMPOTENTS, AND MORITA 

REDUCTION OF THE ALGEBROID Ap(l-) 

Our goal in this section is to prove the Morita Reduction Theorem 1.13. 

Notation. For n I 0, let I, be a standard banded link with n components in the standard 
disk D 2 (with boundary S’, and a standard pl-structure), and let a, = (- D2, -In) be the 
corresponding object in A,(S’).t 

The Temperley-Lieb algebroid. Let k be a commutative ring endowed with an invert- 
ible element A E k. The Temperley-Lieb algebroid, T with coefficients in k, is defined as 
follows: 

- the objects of T are the nonnegative integers; 
~ for m,n 2 0, the k-module ,T, is the Jones-Kauffman module K(D2 x I, 

-1, x 0 u 1, x 1) with coefficients in k, i.e. the k-module generated by banded (m, n)- 
tangles in the box 0’ x I meeting the boundary in a standard link with m components in 
0’ x 0 and a standard link with n components in D2 x 1, quotiented by isotopy and the 
Kauffman bracket relations. 

The product oTb 0 J + .T, is given by the standard product of tangles: one puts the 
tangle u over the tangle u and one gets a new tangle uu. 

Remark. An (m, n)-tangle is represented by a diagram in the square I x I with m standard 
points in the top edge and n standard points in the bottom edge. For n 2 0, the algebra “T, is 
the classical Temperley-Lieb algebra, as considered by Lickorish [22,23]. 

The sesquilinearform ( , ). Let T be the Temperley-Lieb algebroid with coefficients in k. 
There is a sequilinear form (, ) defined on ,,,Tn as follows. Let u and v be represented by 
diagrams U and V. Let r be the image of V by a reflection along a vertical axis. Then (u, u) 
is the Kauffman bracket of the diagram obtained by connecting U and V with m + n extra 

strands without crossing. Figure 2 gives an example. 
The form (, ) is hermitian and satisfies 

(u x u’, v x 0’) = (u, v) (u’, v’) 

t Recall that an object of A,(S ‘) is a cobordism from S’ to 0, whence the minus signs. 
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Fig. 2. 

where u and u are elements of iTj, u’ and o’ are elements of i,T~, and where the symbol x is 
the juxtaposition map from iTj @ i,T~ to i+i,Tj+j,. 

The Jones- Wenzl idempotents. The module ,T, has a standard basis given by diagrams 
without crossings and closed loops. There is a standard augmentation character E : ,,T, + k, 
whose value is 1 on the identity element and 0 on the other basis elements. Note that E is 
a ring homomorphism. If k is good enough, for instance, if k is a field and A is not a root of 
unity, the algebra ,T, is semisimple, and the character E is represented by an augmentation 
idempotent fn, i.e. for all x E .T, 

fnx = xfn = 4x)fn. 

These idempotents were first discovered by Jones [14]. There is a recursive formula for 
these idempotents, due to Wenzl [39] (see also [22]): 

for all n 2 0, where 1, denotes the identity of qTq, e is the unique (2,2)-tangle distinct from 
l2 without any crossing (e = El)), and [n] = (A2” - Ae2”)/(A2 - K2). 

3.1. Iff. exists (with coefficients in k), then it is easily established by induction that 
(fn, 1,) = (- l)“[n + 11. It follows that for ail u E ,T,, one has 

Ku> = (- 1)“Cn + 1144. 

3.2. LEMMA. Let T be the Temperley-Lieb algebroid with coejicients in the ring k,. 

(i) If p I 2, all idempotents fn exist in the ring T Q Q. 
(ii) Ifp = 2,fo,fi ,f2 exist in T. 

(iii) If p 2 3 is odd, then fO, fi, . . . ,f,_ 1 exist in T. 
(iv) Zfp 2 4 is even, thenf,,f,, . . . . j&2j,2 exist in T. 

Proof. This follows from Wenzl’s recursion formula. It suffices to check that [n] is 
invertible in the required range. 

Note. In the ring k,, one has [n] = n if p = 1, [n] = (- 1)“n if p = 2, and if p 2 3, then 
[n] is invertible in k, except if 2n is divisible by p, in which case [n] = 0. 

Convention. For the remainder of this section, we assume p 2 3. (The cases p = 1 and 
2 are different and will be treated in Section 6.) We denote by 4 the number n, if p = 2n + 2 is 
even, and 2n, if p = 2n + 1 is odd. 
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Since the invariant ( )p satisfies the Kauffman bracket relations, we have an obvious 
morphism 

@:T+A,(S’), %,~:,JY,~A,(S’),/ 

By 1.9, the map (I$,,, is surjective for all m, n 2 0. Moreover, we have that 

(%,“(4>%l,“(4)p = W)&V) 

where ( , )p is the canonical sesquilinear form on Ilp,(S1)a. = V,( - a, u a,). 

By 3.2, we have the idempotentsfi, 0 I i < q in T. For simplicity of notation, we will 
continue to denote byfi the image m(h) E (IiA,(S1)ai of the idempotent fi E i7;. 

Notation. Let Si = --a,, u ai = (S’, li) be the sphere S2 with a standard banded link with 
i components. (This is an object of A,(0).) 

For 0 I i I q, letf;’ E K(S2 x I, - li x 0 u Ii x 1) be obtained in the obvious way fromf;:, 
i.e. f;:’ is the image off; under the inclusion D2 x I c S2 x I. The induced element of 
siA,,(0)si = V,( -si u Si) will again be denoted simply by fi’. 

For 0 I i I q, let ef E K(S2 x S ’ ) be the “closure” ofA’, i.e. the element obtained from 
h’ by identifying both copies of Si. 

3.3. PROPOSITION. (i) The idempotent f, is zero in a,Ag(S1)a,. 
(ii) ((S2 x S1,ef))p = 1, if either i = 0, or if p is odd and i = p - 2, and 

( (S2 x S ‘, ef)),, = 0 otherwise. 

Proof: (i) Since [q + l] = 0 in k,, we have, by 3.1, that (f,, u) = 0, for all u E 4T4. Hence 
( f4, u)~ = 0, for all u E apAp(S ‘),,. Since the form ( , )p is nondegenerate, the result follows. 

The proof of (ii) is deferred to 5.9. 

Notation. Let r be a nonempty closed l-manifold with structure, with m components 
r I, . . . , r,. For each component l-j, choose an annulus (with pl-structure) with boundary 
- rj u S ‘. Then for each multi-index i = (i 1, . . . , i,), with all ij 2 0, the objects Ui, of Ap(S ‘), 
defined above, induce (glue the annuli to the disks) an object ai = ai in A,,(r).? The 
object ai is the disjoint union of m disks (with boundaries --I-,, . . . , -r,), equipped with 
standard banded links with i 1, . . . , i, components. Moreover, if iI, . . . , i, < q, the elements 

A,, . . . 4. ’ d m uce an idempotent, denoted by Ei, in the algebra niAp(T)ai. 
Let A;(r) be the full subcategory of A,(r) generated by the set of objects C, where the 

number of components of the link in E is congruent to E mod 2. The algebroid A,(r) is the 
disjoint union of AZ(r) and A:(r). 

The following result says that these algebroids are all finitely generated. 

3.4. THEOREM. (i) If p is even, then the algebroid AJ0) is generated as a two-sided ideal by 
the identity element lg of the empty surface. If p is odd, then the algebroid A:(0) is generated as 
a two-sided ideal by the element 10, and A;(0) is generated as a two-sided ideal by the 

idempotent fd- 2 E sp-2Ap(0)sp_2. 
(ii) Let r be a closed l-manifold with structure with m > 0 components. Then the algebroid 

A,,(T) is generated as a two-sided ideal by the idempotents Ei, such that i = (iI, . . . , i,) satis$es 
ij < q. 

t Strictly speaking, the object ai(T) depends on the choice of the annuli. We suppress this from our notation. 
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Moreover, if p is odd, then for any m-tuple k = (k,, . . . , k,) E (0, l}“, such that 
1 kj E ~mod2, the algebroid A;(I) is generated as a two-sided ideal by the idempotents Ei, 

where i = (iI, . . . , i,) satisfies 0 I ij < q and ij c kj mod 2 for all j. 

The proof uses the following general lemma. 

3.5. LEMMA. Let r be a closed 1-mani$old with structure, and let Z be any nonempty 
surface with pl-structure and boundary r. Let I be a collection of banded links in E, such that 

each banded link 1 c E is isotopic to a member of I. For i E I, denote by ‘Cli the corresponding 

object of A(I). Then A(I) is generated, as a two-sided ideal, by the identity elements l,{. 

Remark. (i) Let Cr, . . . , Z,,, be the components of E. Then the hypothesis means that for 
all nl, . . . ,n, 2 0, I contains a banded link having precisely nj components in Ej. 

(ii) Let A’(I) be the algebroid defined by setting 

Obj(A’(I)) = I, Vi, j E I: iA’(IY)j = aiA(I),j 

In view of the theorem in Appendix A, the lemma implies that the algebroids A(I) and 
A’(I) are Morita equivalent. 

Proof of 3.5. Let 01 = C’ and fl= C” be two objects of A(I). The surface with pl- 

structure -E’ u C bounds a connected 3-manifold with pr-structure M and -X u Z” 
bounds a connected 3-dimensional manifold with pr-structure M’. Since E is nonempty, the 
manifold W = M uz M’ is connected, and by 1.9, every element of V( -X’ vi- E”) is 
represented by a linear combination of banded links in W. Such a banded link L will meet 
C in a certain banded link 1, which we may isotope to a banded link in the set 1. Hence, every 
element of .A(I’), is a linear combination of elements of the form Al,>p. This proves the 
lemma. 0 

Proof of Theorem 3.4. We first give the proof of the first part of (ii) in case l7 is S’ (cf. 
[23]). Let li be the identity element of n,AP(S1)(Ii. Since D2 is nonempty, we know by Lemma 
3.5 that A,(S’) is generated as a two-sided ideal by the set { li: i 2 O}. Note that lo = f0 and 
1 1 = fi . Next, for 2 I i < q, the element li -A is a linear combination of tangles of the form 
uu, where u is an (i, i - 2)-tangle and u an (i - 2, i)-tangle, and for i 2 q, the same statement 

holds for li -f, x li-4. But f, x li_q is zero for i 2 q. (Indeed,& is zero by 3.3(i), and the 
proof generalizes: for i 2 q and w E aiAp(S1)a,, there is a w’ E a,Ai,(S1)o, such that 
(f, x li--q, w) = (f,, w’) = 0. Hence& x li-q is zero.) By induction on i, it follows that all 1; 
lie in the two-sided ideal generated by fO, . . . ,f,_ 1. This proves the case where I = S r. 

We now prove (ii). By Lemma 3.5, we know that A,(I) is generated as a two-sided ideal 
by the identities of the objects ai (with all ij 2 0). Hence, the first part of the result follows 
from the case I = S ‘. 

In case p is odd, we improve this as follows. By the above, we know that A;(r) is 
generated by the idempotents ai where i = (il , . . . , i,) satisfies 0 I ij < q and C ij E E mod 2. 
We claim that it is sufficient to prove the theorem in the case m = 2. Indeed, let us define the 
defect of Ei to be one-half the number of indices j such that ij f kjmod 2. We must show that 
all ai lie in the ideal generated by those with defect zero. But the result in the case m = 2 
implies that for all d > 0, the idempotents with defect d lie in the ideal generated by those 
with defect d - 1, and the theorem follows by induction on the defect. 

Thus assume m = 2, and consider an idempotent e(i,,i,) such that il f kz and i2 f kz. 
This is an element of q,,,g,,AJQ,il ,>). We think of aci,,i,) as the disjoint union&, uh,, because 
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it is represented by the disjoint union of two tubes D2 x I, one of which is equipped withf;, , 
and the other withf;:*. Now ((S’ x S ‘, eh _ 2))P = 1 by 3.3(ii), hence +l,i2) is also represented, 
by the disjoint union of the above two tubes with S2 x S’ equipped with eh_,. We now cut 
this into two parts, such that the first half is an element of 

This shows that s(ii,i2) lies in the two-sided ideal generated by the identity 
li, u li,u 1i_2fl lb_2 (where li_2 is the identity of s~_~). But we may view li,u lb_2 as 
lying in *,(I,) (v = 1,2). Applying the first part of part (ii), we see that li,u lb_2 lies in the 
ideal generated by thefj, and since p - 2 is odd, we only need thefj, such thatj - k, mod 2. 
Thus, we have shown that qi,,i,) lies in the ideal generated by the s(j,,jl), withj, E k,mod 2. 
This completes the proof of (ii). 

We now give the proof of(i). It follows from Lemma 3.5 and (ii) that A,(0) is generated as 
a two-sided ideal by fd, . . . ,f;- 1. Note thatfd lies in the ideal generated by le. We claim that 
f;’ = 0, unless p is even and i = 0, or unless p is odd and either i = 0 or i = p - 2. Indeed, for 

all u E ,iA,(0),, = I$( -si u si), we have 

<fi’tu)p = <A’, l,a)ps(u) = ((S2 x S’,ef)),Gu). 

Since ( , )p is nondegenerate, the claim follows from proposition 3.3(ii). This shows (i). Cl 

3.6. Dejinition of the reduced algebroid &,(r). Let I- be a closed l-manifold with 
structure, with components I-,, . . . , r,. Recall that for i = (iI,. . . , i,), we have defined an 
object ai of A,(T), and if all ik -c q, we have an idempotent Ei in the algebra ,,A,(I),i. If I’ is 
empty, we define as = 8, ~0 = 10, and, if p is odd, ag, = s~_.~ and ~0, = f;_2. 

The elements of the algebroid &,(I’) are the elements of the modules 

where the sets of objects are given as follows. 
Let p be even. If I = 0, there is a single object 0. If I has m > 0 components, the sets of 

objects is the set of all m-tuples i = (iI, . . . , i,) satisfying 0 I ik < q, for all k. 

Let p be odd. The algebroid &(I) breaks up into the disjoint union of even and odd 
pieces, &:(I’) and A;(I). If I = 0, there is a single even object 0, and a single odd object 0’. If 
r#@,chooseanm-tuplek=(k,,... ,k,)E{O,l)” such that C kj = s mod 2. The objects of 
ii;(I’) are the m-tuples i = (i 1, . . , i,), with 0 I ij < 4 and ij E kj mod 2, for all j. 

Note. The algebroid A,(I) has n”’ (resp. 2n”) objects, if p is even (resp. odd), where 
n = [(p - 1)/23. For simplicity, our notation ignores the dependence on the choice of the 
two m-tuples k E (0, l}” in the p-odd case. 

3.7. THEOREM. Suppose p 2 3. Let I? be a closed I-manij%d with structure. The algebroids 
A,(r) and d,(r) are Morita equivalent. If p is odd, then for E E (0, l}, the algebroids A:(r) and 

xi(r) are Morita equivalent. 

Proof It is a general fact that whenever an algebroid A is generated by a set of 
idempotents Ei, then it is Morita-equivalent to the algebroid A defined as above. This fact is 
proven in Appendix A. Thus, the theorem follows directly from 3.4. 

A k-algebroid A is called completely reduced if iAi = k, for all objects i of A, and iAj = 0, 

for all i # j. 

The following result completes the proof of Theorem 1.13. 
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3.8. THEOREM. Let r be a closed 1-manijiold with structure, and let p 2 3. Then the 
algebroid a,(r) is completely reduced. (In particular, ifp is odd, then both &i(r) and a:(r) 
are completely reduced.) 

Proof Suppose I = S’. The module iA,(S’)j =fi iA,(S’)jfi is the quotient offi ,qfj by 
the radical of the sesquilinear form (,). If i # j, then fi iTj fj is zero, since the fi are 
augmentation idempotents. If i = j, then f;- iT fi is a free k,-module generated by fi, and 
(J,fi) = (- l)j[i + 11. Since this is invertible in k,, we have ia,(Si)i N k, as required. Thus 
the theorem holds if I = S’. 

It follows from the above and 3.3(ii) that ia,(8)i 2: k,, for i = f~ or i = 0’. Thus the 
theorem is clear for I = 0. 

By 3.7 and the computation of 8,(O), the tensor product axiom (M) holds (over the 
category C,“l (even) if p is odd). Let i and j be objects. The object ai is the disjoint union of 
objects ai,, . . . , ain in A,(I, ), . . . , A& I,), and aj is the disjoint union of ajl, . . . , ajm. Applying 
the tensor product axiom (if p is odd, we may assume that the objects i and j have the same 
parity, in which case, by assumption, the parity of ik and j, are the same, so that -aii u aj, 
has an even link), we have 

aiAp(I)oj = V,( -ai U aj) N V,( -ai, U aj,) 0 ...@I V,( -ain U aj,). 

The theorem now follows from the case where I = S’. 0 

3.9. Remark. We have shown that the tensor product axiom (M) holds, if p 2 4 is even 
and the cobordism category is C,“‘, or if p 2 3 is odd and the cobordism category is 
C,“’ (euen). Here is an example showing that it does not hold if p 2 3 is odd and the 
cobordism category is C,“‘. 

Let I: be the 2-sphere equipped with a banded link with p - 2 components. Since p - 2 
is odd, I$( -C) and V,(X) are zero. We claim that V,( - 2 u X) x k,. This can be seen as 
follows. Note that X is the object s~_~ of A,@). We have shown that the idempotentfd-, is 
the generator of sI_IAp(0)sI_I which by definition is I$( - Z u C). Hence V,( -X u Z) z k, as 
claimed. 

4. COLORED STRUCTURES 

In this section, we prove the Colored Splitting Theorem 1.14, and Theorem 1.15. Taken 

together, these theorems allow one to totally decompose the VP theory into its elementary 
building blocks. 

Convention. In this section, we again suppose p 2 3. All colors are assumed <q, where 
q=n,ifp=2n+2,andq=2n,ifp=2n+l. 

We begin by enlarging the category of manifolds with structure and we extend the 
invariants ( )p to this larger setting. This will make it possible for us to interpret the 
module si ai l$( C)aj sj as the I$-module of a colored object. It will also make it possible for us 
to describe an explicit basis of the modules V,. 

4.1. Notation and definitions. Let P denote the pair of pants surface, i.e. P is a compact 
connected surface of genus 0 with three boundary components, i.e. aP = S 1 JJ S 1 u S l. 
(There is no banded link in P.) A triple i = (iI, iZ, ia) of colors is said to be an admissible 
triple if il + i2 + i3 is even and I iI - i2 I I i3 I iI + i2 (the triangle inequality) is satisfied. If 
i = (iI, i2, i3) is an admissible triple, let ui denote the element of az;:, + i2 + i, fi, xf;:, xf;:, 

COT,+i2+ia~ depicted in Fig. 3. 
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(In Fig. 3, the numbers a, b,y of connecting strands are determined by i1 = p + y, 
iz = y + cc, i3 = a + f?.) 

We may also view Ui as an element of K(B, - (li, u Ii, u li,)), where B is the 3-ball with 
boundary decomposed as 8B = P u -(D2 u D2 u D2). Let us denote by o<(P)~ the sub- 
module 

@V,(P),, Ei C Vr(P U Ui, U CZiz U ais). 

The induced element (where the colors are ~4) in Eli will again be denoted by ui. 
Since the AV are augmentation idempotents, it is clear that o<(P)i is generated by Ui. 
Set 

(iIri2,i3) = (-l)a+B+Y 
[a + B + y + l]![a]![fi]![r]! 

[il]![i2]![i3]! 

where a, /I, y are determined as above, and [n]! is the quantum factorial [n] ! = 

Cl1 PI ... Cnl. 
For a color i, we set (i) = (J,fi) = (- l)i[i + 11. 

4.2. LEMMA. (Ui, Ui)p = (S3)r(il,i2,i3). 

Proof: We have (Ui,ui)p = (S3)P(~i, Ui) where (,) is the sesquilinear form defined in 
Section 3. By Theorem 1 of [26], one has (ui,Ui) = (iI,i2,i3). E 

4.3. COROLLARY. An admissible triple i = (iI, i2,i3) has the property that (ui,ui)r is 
nonzero in k, if and only if iI + i2 + i3 < 2q. Moreover, if (ui, ui)r is nonzero, then it is 
invertible. 

Proof. This follows from the previous lemma, since in k,, we have that [i] is invertible if 

0 I i I q, and [q + 1] = 0. 0 

Definition. An admissible triple i = (iI, i2,i3) is called p-admissible if iI + i2 + i3 < 2q. 

Since the form ( ,)P is nondegenerate, we thus have the following. 

4.4. THEOREM. Let P be a pair of pants surface. Let i = (iI, i2, i3) be an admissible triple of 
colors (assumed < q). Then the module 0 Vr(P)i is free of rank one, generated by ui, whenever i is 
p-admissible. Otherwise, tic( = 0. 

Fig. 3. 
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4.5. DEFINITION. A banded 3-valent graph in a 3-manifold M is a graph G, contained in 
an oriented surface SC c M, such that 

(i) G meets aM transversally in the set of vertices of G of degree 1. 
(ii) every vertex of G contained in the interior of M is of degree 2 or 3. 

(iii) the surface SC is a regular neighborhood of G in SC, and SC n 8M is a regu- 
lar neighborhood of G n aM in SC n aM. (Note that SC n aM is a banded link in aM.) 

The set of vertices of G of degree 1 is called the boundary of G and denoted by aG. 
An admissible coloring cr of G is a function from the set of edges of G to the set of colors 

such that the colors of the edges meeting at each 2-valent vertex coincide, and the colors of 

the edges meeting at each 3-valent vertex form an admissible triple (see 4.1). 
A colored graph is a banded 3-valent graph with an admissible coloring. 

Note. In this paper, we will consider colored graphs only through their expansions (see 
below). However, one could also have built the theory directly out of colored graphs using 
colored Kaufman relations (see [26] for a derivation of these relations). 

4.6. Dejnition. A surface with colored structure (X, 1, i) is a surface with structure (X, 1) 
such that each component of 1 is labelled by a color. (Here 1 is a banded link in E and i is 

a coloring of the components of 1.) 

A 3-manifold with colored structure M = (M, a, G, a) is a 3-manifold M equipped with 
a p1 -structure a and a colored graph (G, a). 

The cobordism category C;:bc. The boundary of a 3-dimensional manifold with colored 
structure is a surface with colored structure. As in the case of manifolds with structure, one 
can cut and paste colored manifolds. We denote by Cftbc the cobordism category of surfaces 
with colored structure such that the colors satisfy 0 I i < q. 

Remark. A manifold with structure is a particular case of a manifold with colored 
structure, by making the color everywhere equal to one. Conversely, colored structures may 
be “expanded”, in the following way. 

4.7. Dejinition. The expansion of a colored link (1, c) in a surface Z is the link 1, which is 
obtained from 1 by replacing each component by as many parallel copies as indicated by the 
color of that component. If Z denotes the manifold with structure and c is a coloring of its 
link, we will denote by EC the manifold with structure obtained by expanding its link. 

The expansion of a colored graph (G, 0.) in M is the element of K(M, I,), where 1 c aM is 
the link SC n aM, defined as follows. 

Choose a homeomorphism from a regular neighborhood N of G in M to SC x I such 
that SC is sent to SC x {i). Consider first the case where G is a Y-shaped graph with exactly 
one trivalent vertex and three boundary vertices. Then we may identify SC x I (hence N) 
in a standard way with the 3-ball B = D3, whose boundary is decomposed as 
aB = P u - (0’ u D* u D*), and we define the expansion of G, with edges colored by 
iI, i2, i3, to be the linear combination of banded tangles in N corresponding to the element 

U(i,,i2,i3) E K(R - (li, U li2 U li,)). (Think of a(i,,i,,i,) as “drawn” on the surface SC.) The 
expansion of an Z-shaped graph with just one edge colored by i and two boundary vertices is 
defined in a similar way, so as to correspond to fi E K(D* x I, - li x 0 u Ii x l), and the 
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expansion of an O-shaped graph with just one edge colored by i and one 2-valent vertex is 
defined so as to correspond to the “closure” offi in K(D’ x S’). Now any banded trivalent 

graph G in M is covered by a union of Y-, I-, and O-shaped pieces, and since the f;: are 

idempotents, the above (well-)defines an element of K(M, l,), for every admissible coloring 
of G. 

Remark. In the above, we have used the fact that thefi are left fixed by the orientation 
preserving homeomorphism of 0’ x I which reverses the orientation of both factors. 

4.8. Dejinition. Let M = (M, a, G, 0) be a closed 3-manifold with colored structure. 
Assume the colors are <q. We define (M )p to be the ( ),-invariant of (M, a) equipped with 
the expansion of (G, 0). 

The extended invariant ( )p on manifolds with colored structure is a multiplicative and 
involutive invariant on the set of closed bordisms of the cobordism category C&‘. Hence it 
determines, by Proposition 1.1, a cobordism generated quantization functor on Citbc. Since 
the invariant of a closed S-manifold with colored structure is the same as that of its 
expansion, the associated module V;(X) for a surface with structure (considered as a surface 
with colored structure) is the same as the module V,(z). Hence, the superscript c is 
superfluous and will be omitted in what follows. Again we will write the associated 
hermitian form, ( , )z, simply as ( , )p. Every 3-dimensional manifold M with colored 
structure induces an element Z,(M) E V,(dM). 

For each l-manifold with structure F, there is an algebroid A;(F) whose objects are 
surfaces with colored structure and boundary F, and to each cobordism with colored 
strucure C from I’, to F, there is a Ai x A;(&)-bimodule -V,(X)_. 

Remark. Let C = (X, 1, i) be a closed surface with colored structure, where i = (iI, iz, . . . ) 

are the colors of the components of 1. Let X,, be the expansion of X:, i.e. the surface with 
structure obtained by replacing, for all j, the jth component of I by ij parallel copies. Then 
V,(X) is canonically isomorphic to a submodule of I$(&). 

There is a colored trivalent graph (Fig. 4) in the manifold D2 x I which is a cobordism 
from D2 with a standard l-component banded link, colored with the color ii, to its 
expansion, i.e. ij parallel copies of this link, and whose expansion is the element A,. 
Embedding a copy of this graph in X x I, for each component of I, one obtains a colored 
graph G and hence a (colored) cobordism W from C to its expansion Xc, whose expansion ci 
is an idempotent. This ai induces a projector Zei (considered as a homomorphism of V,(C,)). 
Note that the reflection (in the I factor) of this graph yields a graph G’ and hence 
a cobordism IV’, whose expansion is also the idempotent &i. It is easy to check that the 
induced map Zw, is a surjection, the induced map Z w is a section and the composite 

1 
1 sz 1 

ij 1 

Fig. 4. 
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mapping .Zw, u w is the projector ZEi onto the module si I$(&) (since the expansion of these 
graphs is si). Thus, the map Zw provides an isomorphism from V,(X) onto the submodule 

si I$(&). 

Notation. Let I be a l-manifold with structure. For every coloring i = (iI, . . . , i,) of the 

components of I, we define an object bi = b,(I) of A;(I) to be the object act,.,. ,i) of A,(I) 
(i.e. each component of I bounds a disk with a l-component banded link) and whose link is 
labelled with the coloring i. If I = 8, we set be = 8, and, if p is odd, we let be, be the 2-sphere 

equipped with a l-component banded link colored by p - 2. 
Note that the expansion of bi is the surface Ui, defined in Section 3. 

4.9. PROPOSITION. The algebroid A;(I) is Morita-equivalent to the completely reduced 
algebroid 2\,,(r). 

Proof Using 3.7 and the graphs G and G’, one sees that A;(I) is generated as 
a two-sided ideal by the identities of the objects b,(I), where i runs through the objects of 

$(I). The result now follows from 3.8. 0 

Proof of Theorem 1.15. Since &(S’(i,j)) 1: iAs(S’)j N i~p(S’)j, parts 1 and 2 of 1.15 
follow, since the algebroid x,(S ’ ) is completely reduced. Since V,(S2(i, j, k)) = g<(P)(i,j,k), 
parts 3 and 4 of 1.15 follow from 4.4. 0 

Proof of the Colored Splitting Theorem 1.14. First suppose that the surface X(I), 
obtained from 2 by cutting along I, breaks up into a disjoint union C’ u X”, with I as the 
boundary of each. Applying the Splitting Theorem, Morita equivalence, and the fact that 
tensor products are preserved under Morita equivalence, one obtains 

where the sum is over all colors <q. 
If p is even, then I$,@;) @ V,(iC”) is isomorphic to I$(iX(I)i), by the tensor product 

formula. Now suppose p is odd. If the links in X’ and C” have different (total) parity, then 
all terms of the expression are zero. Otherwise the links in C’ and E” have the same parity, 
and the sum is only over the i terms of that same parity (the terms involving the other 
parity vanish). Since the links in iC’ and Xf’ are now even, we again have I$(&!) 
@ V,(iC”) M c(iE(r)i). 

Now suppose that I does not separate Xc. We proceed as follows. Let I’ be a parallel 
copy of I in X. Then I and I’ cut E into two surfaces, X(r) and I x I. We may consider 
C(T) as a cobordism from 8 to I lJ - I, and E x I as a cobordism from I u -I to 8. The 
splitting theorem for I u -I yields the decomposition 

V,(C) = @ W(rki, j,) 0 V,h, j,(r X 1)) 
Kj) 

where the sum is over all colorings (i, j), if p is even, and over all even colorings, if p is odd. 
(We have applied 3.7 and 3.8, where in Definition 3.6, the 2-tuple k is taken to be (0, O).) Now 
Vp(ci,j,(I x I)) is isomorphic to iA(r)j which is zero if i # j, and isomorphic to the ground 
ring k, if i = j. But it is clear that 

&P(Qi,iJ = %WM. 

(On the left hand side, C(I) is considered as a cobordism from 8 to I IJ -I, whereas on the 
right hand side, E(r) is considered as a cobordism from r to I.) 
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This establishes the decomposition. 
To prove the remainder of the theorem, consider elements u E I$(iZ(r)i), u E V,( jZ(I)r). 

Let u (resp. v) be represented by a manifold M (resp. N). The image u’ of u (resp. u’ of u) in 
V,(Z) is represented by the manifold M’ (resp. N’) obtained from M (resp. N) by identifying 
two disks each containing a l-component link colored by i (resp. j). The product (u’, u’)~ of 
the images is the ( ),-invariant of the manifold with colored structure M’uz -N’. This 
manifold contains the surface with colored structure S2(i,j), which is the union of the two 
disks each with a l-component banded link colored by i, resp. i. Since, by 1.15, 
I$(S’(i, j)) = 0 if i #j, it follows that the product (u’, u’)~ is zero. Thus, the decomposition 
is orthogonal. 

Now suppose i = j. Then I/,(S’(i, i)) is free of rank 1. The product (u, u)~ is represented 

by the manifold M u,~(r), - N. Note that this can be obtained from M’ ux -N’ by doing 
surgery on the sphere S’(i,i), i.e. one removes X0 = S2(i,i) x I and replaces it with 
Xi = bi x I x So. Now an easy calculation shows that 2(X,) = (S3),(i)Z(Xo). This 
shows that the form induced on each factor corresponds, up to the unit (S3 ),(i ) in k,, with 
the usual form. This proves 1.14. 0 

4.10. COROLLARY. Let r be a closed l-manifold with structure. Then V,(S’ x lJ has 

a canonical basis (ei} (where the colors are <q and, in addition, are even if p is odd), where ei is 

represented by the 3-manifold with colored structure S’ x hi(T). Moreover, this basis is 
orthonormal with respect to ( , )P. 

Proof This follows directly from the Colored Splitting Theorem 1.14. 0 

Remark. In the language of Section 3, ei is represented by the closure of the idempotent 
si. In particular, if I = S’, then ei is represented by the closure off;. 

4.11. THEOREM. Let E = (E, 1, i) be a connected closed surface with colored structure. 
Assume all colors are <q, and, in addition, are even, if p is odd. Let H be a handlebody whose 
boundary is C, and let G be a banded 3-valent graph in H such that dG = 1 and such that H is 

a tubular neighborhood of G. For each p-admissible coloring a of G, compatible with the 
coloring i of aG, let u, denote the element induced by the manifold with colored structure 
(H, a, G, a). Then the elements uO, where all colors are <q, and, in addition, are euen, ifp is odd, 

form an orthogonal basis of V&E). Moreover, one has 

where v runs through the set of vertices of G, and e runs through the set of edges of G. 

Here, we denote by a(v) the (set of) color(s) of the edge(s) meeting at the vertex v. (The 
notation (i ) and (iI, i2, i3 ) were defined in 4.1. A 2-valent vertex has only one color.) 

Proof: This follows from 1.14 by cutting and pasting. The formula for (u,,, u,)~ follows 
from the following four facts: 

It is true for the Y-, I -, and O-shaped graphs (see 4.7). 
It is multiplicative for disjoint unions. 
By 1.14, it is preserved if we identify two 1-valent vertices to obtain a 2-valent vertex. 
Finally, if two different edges meet at a 2-valent vertex, then we can suppress the 

by identifying the two edges, and the formula remains valid. cl 
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4.12. Remark on signatures. Using the formula given in 4.11, one can compute the 
signature of the form ( , )p, in the case where coefficients are extended from k, to C. While 
the dimension of V,(X) clearly depends only on E and p, the signature of ( , )p also depends 
on the given homomorphism k, + C. Actually, it depends only on C, the sign of (S3), = r] 
and the root of unity A2 E C. 

If ): is a torus S1 x S1 without link, the rank of V,(E) is equal to n = [(p - 1)/2], and the 
form ( , )p is positive definite. But, if E is a surface of genus 2 without link, the signature of 
the form ( , )p takes, for p = 5, the values + 5, &- 3, depending on the sign of q and the sign of 
the real part of A2. 

4.13. More on the p-odd case. If p is odd, it remains to describe a basis of the modules 
VP associated to surfaces X = (X, I, i) with colored structure, and colors <q = 2n which are 
not necessarily even. In analogy with Theorem 4.11, this can be done in the following way. 
Choose a banded trivalent graph G such that X is the boundary of a tubular neighborhood 
of G. For each p-admissible coloring o of G, compatible with the given coloring of 8G = I, 
and with colors <q, we have the element u, E V,(E) represented by the colored graph (G, cr) 
in its tubular neighborhood. We associate to g a cellular l-chain y(a) E C1 (G; Z/2) by setting 
y(cr) = C, o(e)e (the sum is over all edges e of G). The boundary of y(a) is the O-chain 

@(a) = Ever 0 E Co(G; Z/2). 

4.14. THEOREM. Assume p is odd. Let C = (C, 1, i) be a surface with colored structure (with 

colors <q), and choose G as above. Let y E C,(G;Z/2) such that ay = EVE, i,v. Then the u,, 

with y(o) = y, form a basis of V,(X). 

Proof Theorem 1.15 implies the result in the case where E is S2 equipped with 
a 3-component colored link (with colors <q). In the general case, we proceed as follows. 

Denote by H the regular neighborhood of the graph G, with aH = X. Let 

B = Br u a** u B, c H be a separating surface such that each Bi is a 2-disk meeting 
transversally an edge ai of G, and such that aBi = Bi n X is a l-manifold 6 c E - 1. Set 
vi = 1, if the edge ai is contained in the chain y, and vi = 0, otherwise. Set 
& = vr + ... + v, E Z/2. We apply the Splitting Theorem 1.16 to cut ): along 

r = l-r u ... u r,. For parity reasons, the tensor product is only over the subalgebroid 
A;“(r). But this algebroid is Morita-equivalent to the completely reduced algebroid A;(r) 
(where the m-tuple k of Definition 3.6 is chosen to be k = (vl, . . . , v,)). The theorem now 

follows by induction. Cl 

4.15. Remark. Call two colors i,, i: complementary if i, + i: = p - 2. The theorem 
implies that the rank of VP@, 1,i) does not change if one replaces two colors by their 
complementary colors. 

5. THE VERLINDE FORMULA 

We again suppose p 2 3, and we set q = n, if p = 2n + 2, and q = 2n, if p = 2n + 1. 

5.1. PROPOSITION. Let Z be a compact surface with structure with boundary -r u r’. 
Then the morphism Zsl Xxj+om &(S’ x I-) to V,(S’ x r’) induced by the cobordism S1 x X is 

given by 

Zslxz(ei) = 1 (rank V,(iZj))ej 

where (ei} and {ej} denote the orthonormal bases as given in 4.10. 
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Proof: Denote by iXj the closed surface with colored structure -hi(T) u X u bj(r’). 
Then 

(Zsl xx(ei),ej)p = (S’ X iXj)p = rank Q(iCj) 

by 1.2. Since the ej are an orthonormal basis, the result follows. 0 

Note also the following “curve pinching” theorem. 

5.2. COROLLARY. Let r be a closed l-manifold on the cobordism with structure EC, and let 
ix(r), denote the result of replacing r x I by bi x aZ. Then 

ZS’ x z = 1 ZS’ x J(r), 

(where the sum is over all colors <q, if p is even, and over all even colors <q, if p is odd). 

ProoJ: Applying 1.14 to kV,(X)j yields 

kVp(x)j = @ kVp(iWMj, 

whence the result follows from 5.1. q 

5.3. Hochschild homology. (See Appendix A). Let r be a closed l-manifold with struc- 
ture. By 1.14 and Morita equivalence, we have 

~(9 x r) N 
i 

H&0-)) N H,(A;(r)) if p is even 

H&(r)) N H,(A;O(r)) if p is odd. 

Under this isomorphism, the basis element ei of I/,@’ x r) corresponds to the identity of the 
object b,(r). Now if C is a cobordism from a closed l-manifold r with structure to a closed 
l-manifold I-’ with structure, the morphism Zz from A;(r) to A;(Y) induces a morphism 
Ho(ZZ) between Ho modules. It is easy to see that under the above isomorphism, H,(Zx) 
corresponds to Zsl X z. Using the description of Z sl X~ in Corollary 5.1, we may thus restate 

the main result of Theorem 1.14 as follows. 

5.4. COROLLARY. Let r be a closed l-manifold with structure contained in a closed surface 

C with colored structure. Let C(T) be the surface obtained by cutting C along r. Then V,(C) is 
isomorphic to H,(A,(T), -V,@(T))_), ifp is even, and to Zfo(A,O(r), _&,(X(T))_), ifp is odd. 

Moreover, its rank is the trace of the morphism H,(Zx(r)). 

5.5. Notation. In the remainder of this section, we abbreviate the module V,(S’ x S’) by 
I$. Recall from 4.10 that Vp has a basis {ei}, where the colors i are <q, if p is even, and are 
even and <q, if p is odd. 

Let P> (resp. P<) be the pair of pants surface considered as a cobordism from S’ u S’ to 
S ’ (resp. from S ’ to S ’ u S ’ ). The surface P< us1 L1 so P>, is a cobordism from S ’ to S ’ of 
genus one, which will be denoted simply by P4 u P>. 

The “multiplication map” Zs 1 x p, : Vp 0 V, + VP will simply be denoted by (a, b) H ab. 
Let C(k) denote the cylinder S’ x I equipped with a one-component banded link colored 

by k. (C(k) is a cobordism from S’ to S’.) 

5.6. PROPOSITION. In the module V,, one has 

Zs1xP,(eiC3ej)= 1 ek 
(i. j. k) padmiss. 
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ZsLxPx(ei) = C ej @ ek 

(i, j, k) padmiss. 

ZS’ x ~(k)(x) = ekx, ZS’ x (P< “P,,W = K-7 

where K = 1 ef E VP. (Here the colors are <q, ifp is even, and are even and <q, ifp is odd.) 

Proof: The first three equations follow immediately from 1.15, together with 5.1. For the 
last equation, one may apply 5.2 to show 

ZS’x(P<uP,) = CZSlx(Z(j)uZ(j)) 

and then use the third equation. 0 

5.1. COROLLARY. Let K = C ej E I$ (the sum being over all colors <q, ifp is even, and 

over all even colors <q, ifp is odd ). Let C = (Z, 1, i) be a closed connected surface with colored 

structure, such that the components of 1 are colored by i = (il, . . . , i,). Then 

rank V,(C) = tracevpg)(ei, . . . einKB- ‘) 

where g is the genus of C. 

Proof: This follows from 5.4 and 5.6, since we can cut the surface into pieces isomorphic 

to P< u P> and to Z(ij). 0 

Remark. An alternative proof is to apply 4.11. Think of C = (Z, I, i) as the boundary of 
a tubular neighborhood of the graph shown in Fig. 5. 

Let Ni be the matrix of the multiplication by ei on I$, with respect to the basis given by 

the ei. It follows from 5.6 that (iVi)ij is equal to 1, if (i,j, 1) is p-admissible (with colors <q, if 
p is even and even colors <q if p is odd), and zero otherwise. An elementary argument (see 
[I, formula (5.8)]) shows that the number of such colorings, compatible with the given 
coloring of the boundary, is equal to the trace of Ni, . . . Nim(C (Ni)2)“-‘. The result follows. 

5.8. Some resultsfrom [lo]. Before giving the proof of 1.16, we describe the module I$in 

more detail. The canonical surjection 

K(D’xS’)+ V,= V,(S’xS’) 

is actually a ring homomorphism, the multiplication on K(D2 x S ’ ) again being induced by 

S’ x P> . (This multiplication is the same as the one studied in [lo]. Also, the sesquilinear 
form on K(D2 x S’) becomes the bilinear form on K(S’ x D2), considered in [lo], after 
identifying these modules and their conjugates. Hence, the module VP is, up to change of 
coefficients, the V, of [lo].) Let z E K (D2 x S * ) be represented by a standard band. Then z” 
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means n parallel standard bands, and it is well known [33] that K(D2 x S ‘) is isomorphic to 
the polynomial algebra Z[A, A-‘] [z]. It has a basis of manic polynomials ei of degree i in 

z which satisfy e. = 1 (the empty link), el = z and zej = ej+ 1 + ej- 1. (If one substitutes 
z== --y--y-‘, then ei-1 = (-l)‘-‘(Y’ - Y-‘)/(Y -Y-l).) 

Note. The element ei is represented in K(D2 x S ‘) by the closure of the idempotent fi, 
provided the latter exists. (This follows by induction from Wenzl’s formula.) Thus, the 
notation is consistent: the image of ei in the module VP is the previously defined ei (see 4.10 
and the remark following it.) 

In the module VP, the element QP of [lo] can be written 

n-l 

Qp = 1 (ei)ei = f ,i (ei)ei. 
i=O r-l 

Here n = [(p - 1)/2] is the rank of the module I$ The notation (x), for x E K(D2 x S’), 
means (U,(x)), where U. is the framed unknot with zero framing in S3, and U,(x) denotes 
the result of putting a copy of x in a neighborhood of U,. We have (ei) = (- l)i [i + 11. 

Let t be the self-map of K(D2 x S’) induced by one positive twist, and let c be the result 
of adding a meridinal band. In [lo], the ei were constructed as an eigenbasis of K(D2 x S’) 
for both t and c, with eigenvalues pi = (- 1)‘A” + 2i under t, and li = -(AZif2 + A-2i-2) 
under c. There is a bilinear form, denoted by (, ) in [lo], on K(D2 x S’), given by 

CGY> = WhY)) 

where H(x, y) means the Hopf link (with each component framed with zero framing), where, 
the first component is replaced by x, and the second component is replaced by y. One has 
(c(u), o) = (u, zv) for all U, u E K(D2 x S ‘). Since ( , ) induces a nondegenerate bilinear 
form on VP [lo], it follows that the self-map of V, given by multiplication by el = z has 
eigenvalues lo, . . ., A,_ 1. 

Here is an eigenbasis for this self-map. Set Vj = ~~~~, (ej,ei)ei. Then (using 
zej=ej+; +ej-i and ei+zp=ei), we have 

ZVj = i .f (t?j, Zei)C?i = f ,$ (C(f?j),f?i)ei = AjVj. 

z-1 l-1 

5.9. Proofof3.3(ii). We have ((S’ x S’,eb)), = 1 since eA is represented by the empty 
link. We can obtain S2 x S ’ by surgery on the framed unknot in S 3 with framing zero. It 

follows that 

((S’ xS’,ef)>p = tt<H(C+ei)) = f12<flp,ei). 

But (Q,,ei) = (Vi). NOW lo(Vi) = b(Vi) = (ZUi) = Ai( and since lo,... ,A”-1 are all 
distinct and nonzero, this implies (Q,,ei) = (Vi) = 0, for i = 1, . . . , n - 1. If p 2 4 is even, 
this is exactly what was to be shown. If p = 2n + 1 is odd, then e,,+i = e,- 1 -i in VP (see 
[lo]), hence ((S2xS1,e:+i))P= ((S2~S’,e~-i-i))P. The result follows. 0 

5.10. Proofofthe Verlinde Formula 1.16. By 5.7, we have rank(V,(X,)) = tracevP(Kg-I). 
This is easy to compute in terms of the eigenbasis vo, . . . , v,, _ 1. 

Note that in the module VP, we may write K = a 1;:; ’ et. Since ZVj = iljVj, we have 
Kaj = K(;lj)vj, where we think of K as a polynomial in z. NOW 
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d,(P) = tqWgml) = i K(Aj-l)g-l = (-PI”-’ j$l (A*j _ Al-*j)*g-2. 

j=l 

Since A is a primitive 2pth root of unity, and n = [(p - 1)/2], this is precisely formula 
1.16(i). 

By the residue theorem (cf. [42, p. 1593, [32, p. 140]), one has (for 2g - 2 > 0) 

i . ‘_ . _ = -PRes,=o 
1 

if p is even 

j=l (A*’ - A *Jp * (2 sinh(t))28-2 
if p is odd. 

(Use the form dz/(z(zP - l)(z - z -1)2g-2) and the change of variable z = et.) This shows 

l.l6(ii). 0 

5.11. Remark. Let p = 2r and let C&r - 2) be Ee equipped with a l-component link 
colored by I - 2. If r is odd, then V,(C,(r - 2)) = 0. If r is even, then 

rank Vp( E,(r - 2)) = trace v,(e,- 2 K g-l)=(~)“-1~~(-l)j-1(sin~~-2g. 

If r = k + 2, this is precisely Thaddeus’ formula for the dimension of a certain vector space, 
denoted by &(E,) in [32], arising from Thaddeus ’ “twisted version” of the SU(2) Wess 
Zumino Witten model at level k. 

6. A TENSOR PRODUCT FORMULA FOR ODD p 

In this section we assume p 2 1 is odd, and we study the relationship between the Vp and 

the V2p theories. In particular, we give the proof of Theorem 1.5. We also study the 
V, theories for p = 1 and p = 2. 

Convention. For the rest of this section, the coefficient ring will be k2p. Modules over 
k2 and k, will be considered as modules over klp using the ring homomorphisms i, and jp, 

defined below. 
The following is easily verified. 

6.1. LEMMA. There are well-defined homomorphisms i,: k2 + kzp, j,: k,+ kzp, P odd, 

such that il = id, jl(K) = 1 and for p > 1, i,(A) = Ap2, iP(lc) = xPp, j,(A) = A’ + pz, and 
jP(x) = rcl+p. 

Definition. Define an invariant (M); E k2 as follows. If M = (M,a, K) is a closed 
3-manifold with structure, we put 

CM)2 

04); = (_2)#K 

where #K is the number of components of K. As usual, we extend the definition linearly to 
the case where K is a linear combination of banded links in M. Note, however, that ( ); 
does not satisfy the Kauffman bracket relations. 
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6.2. PROPOSITION. Zf M = (M, IX, K) is a closed 3-manifold with structure, then 

i,(<MX)j,((M),) = CM& 

proof. It is shown in [9] that 

i,,(Q2(M, K 1) j,(O,(M, K 1) = ~I(M, K)&(M,K). 

The result follows because 8i (M, K) = ( -2)#K , iP(rc) j,(k) = rc, and i,,(n) j,(n) = n. (The last 

equality follows from iP( (u@,) >) j,( (U,(Q,))) = <U,(%,) > (see C9, p. 501) and formula 
(*) of Section 2.) Cl 

Remark. If we define j;: kz + ke by jj(A) = A9 and j;(k) = K, then j&(( );) = ( )6. 

6.3. Clearly, the invariant ( ); is multiplicative and involutive, and hence, by 1.1, for 

every surface C with structure, we have a kz-module V;(z) (with V;(C) @k, ke z 6(C)). 
Moreover, the same holds for surfaces with colored structure, where a color is an element of 
(0, l}. The basis elements of Vs(X) given by admissible colorings of a certain graph G by 0 or 
1 (see 4.11) are represented by manifolds with structure, and it is easy to see that they also 
give a basis of Vi(X). If Eg,Zn is a surface of genus g equipped with a link having 2n 

components, then 

rank Vi@:,,,,) = 2g. 

Indeed, an admissible coloring of G (with colors in (0, 11) with value one on I = JG can be 
identified with a cellular l-chain y E Ci (G; Z/2) with 13y = CVsl u E Ca(G; Z/2), and the set of 
such 1 -chains is affinely isomorphic to Hi (G; Z/2), which has 2g elements. 

The proof of Theorem 1.5 uses the following lemma whose proof is elementary. 

6.4. LEMMA. Let *Y-, W be free modules equipped with hermitian sesquilinearforms ( , )v, 

( , )w, and let f: V - W be a form-preserving linear map. Let (V, ( , )“) be the quotient of 

Y by the radical of ( ,)y.. Suppose that ( ,)w is nondegenerate. 
Suppose either that f is surjective, or that V and W are free of jinite rank and ( , )” is 

unimodular and furthermore that rank(W) I rank(V). 
Then f induces an isometry (V, (, )“) 5 ( W, ( , )w). 

Proof of Theorem 1.5. We apply the lemma to V = V&(X, I), the kz,-module freely 
generated by the set of manifolds with structure M with i3M = (Z, I), so that V = V&,(X, 1). 

We set W = V;(E:, 1) 0 V,(X, l), and define f by f (M) = Z;(M) @ Z,(M). The form on W is 
nonsingular, and f is form-preserving by 6.2. 

In case p = 1, we will show that f is surjective, so that the first part of the lemma applies. 
In case p 2 3, we will show that rank(W) = rank(V). Since ( , )” is unimodular, the second 
part of the lemma applies, and the theorem follows in that case as well. 

The case p 2 3. By 4.11, a basis Bzp (resp. 99;) of I& (X1 1) (resp. Vi@, 1)) is given by the 
2p-admissible colorings with colors <p - 1 (resp. with colors in (0, l}) of a certain banded 
trivalent graph. The map r~ t-+ y(o) (see 4.13) is a surjection WzP + a;, and by 4.14, each 
fiber of this map corresponds to a basis of V,(C,l). This implies 

as required. 

rank( V,,(C, 1)) = rank( Vi@:, l))rank(V,(C, 1)) 

The case p = 1. We need the following lemma. 
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6.5. LEMMA. Let T be the Temperley-Lieb algebroid with coeficients in k, . Then for all i, 
j 2 0, the hermitian sesquilinear form ( , ) on iTj9 dejined in Section 3, is nondegenerate. 

Proof. It suffices to prove the lemma after extending coefficients to kI @ Q. Then the 
idempotentsf;, exist for all i 2 0, and T is generated by thefi as a 2-sided ideal (see the proof 

of 3.4). Hence, T is Morita equivalent to the completely reduced algebroid F given by 

if i=j 

if i # j. 

Now let iTj’ denote the quotient of iTj by the radical of the sesquilinear form ( , ). Since the 
family of radicals is a 2-sided ideal I of T, the modules iTj give rise to an algebroid T’ = T/Z. 

Again, T’ is generated by thefi, and since (&,h) # 0, T’ is also Morita equivalent to f 
More precisely, the quotient map T -+ T’ is a Morita equivalence, that is, an equivalence of 
categories {T - modules} 5 {T’ - modules}. But this equivalence sends the map 0 + I to an 
isomorphism. Hence I = 0 and T = T’, as required. 0 

6.6. PROPOSITION. Zf (I& 1) is a closed surface with structure, and the link 1 c X has 
m components, then VI (E, 1) is isomorphic to the Temperley-Lieb module OT, (with coefficients 

in k,). (Of course, this is zero, if m is odd.) 

Proof Let M be a connected 3-manifold with structure with boundary (C, 1). Let D c C 
be a (collection of) disk(s) containing 1, and let B c M be a 3-ball such that B n C = D. Then 

we have an obvious map Q, : J, x K(B, I) + K(M, I) + VI (X, I). This map is surjective, since 
the invariant ( )1 on closed 3-manifolds with structure depends (up to an invertible scalar) 
only on the number of components of the banded link. Also, @ transforms the form ( , ) on 

oT,, into the nondegenerate form ( , ) 1 on VI (C, I). Since ( , > is nondegenerate, by Lemma 
6.5, 0 is an isomorphism. 0 

Remark. The proof also shows that if I is a closed l-manifold with structure, then the 

algebroid A1 (I) is Morita equivalent to the Temperley-Lieb algebroid T (with coefficients 
in k,). 

Proof of 1.5 in the case p = 1. We must show that the mapf:Yz(X) + V;(C) 0 h(C) is 
surjective. We distinguish 3 cases. 

Suppose C is a surface of genus g with empty link. Then VI(X) has rank one, and we can 
choose a generating set of structured manifolds Mi for V;(E) such that Zi (Mi) is invertible. 
(For example, the basis described in 6.3 will do.) Then the Mi also generate Vi(C) @ VI(E). 

Similarly, if (X:, 1) is a surface of genus 0 with link 1 (with an even number, say 2n, of 
components), then V;(E, I) has rank one, and we can choose manifolds Mj (with Z;(Mj) 

invertible) which generate VI (E, I) and hence Vi(C, 1) @ VI@, 1). (For example, the basis 
elements of VI (2, 1) corresponding, as in 6.6, to the standard basis of the Temperley-Lieb 
module 0T2n, will do. To see that Z; of such an element is invertible, one may take its 
double, which is S3 with a bunch of unlinked and unknotted circular bands, and the 
( );-invariant of that double is invertible.) 

Finally, if (C, I) is a surface of genus g with link, then (C, I) is the connected sum of X1 and 
(&,I), where Xc, has genus g and no link, and X2 has genus 0. Since V$(E, I) 
= V;(C,)@ V;(&,l)and VI(X,l) = V,(X,,)@ V,(E,,l), which iseasilyestablished, wesee 

that the manifolds Mt,j, the boundary connected sum of Mi with Mj, are generators for 

v;(%00 v,(%I). 
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6.7. The case p = 2. The b-modules can be computed from the formula v2 = Vi 0 k; 
using the calculation of Vi (see 6.3) and of VI (see 6.6). One can show that if F is a l-manifold 
with structure with m components, then the algebroid AZ(F) is Morita equivalent to the 
disjoint union of 2” algebroids T(i), indexed by the colorings i E (0, I}” of F, and T(i) is 

isomorphic to the even or odd part of the Temperley-Lieb algebroid T (with coefficients in 
k2) according to the parity of il + ... +. i,. 

7. A NATURAL DECOMPOSITION OF THE MODULES 4,(Z) 

In this section, we prove Theorem 1.6 and we calculate the ranks of VSk_4(C,h) and 

v,/c(& 4). 

7.1. Definition. Let I: be an oriented surface. Denote the (antisymmetric) intersection 
form on HI@; Z) by (x, y) H x-y. The Heisenberg group H(Z) is defined as follows. 
The underlying set is Z x H1(C; Z), with multiplication given by (n,x)(m, y) 

= (n + m + x - y,x + y). We will denote the element (1,0) by u, and for x E HI@; Z), we 

write [x] = (0, x). Thus u is central, and [x] [y] = u”Y[x + y]. 

Let F(C) denote the quotient of H(C) by the subgroup generated by u4 and the elements 
[2x] = [xl’, where x E II,@; Z).t The following is easily verified. 

7.2. PROPOSITION. There is a commutative diagram of short exact sequences 

o-+ z + H(C) + H1(C;Z) -+ 0 

1 1 1 
0 + z/4 -+ r(x) + ~,(x;z/2) + 0. 

We will see that the group F(Z) acts on V,,(Z). For this, we need a description of F(C) in 
terms of banded links. 

7.3. Dejinition. Let Y’(Z) be the set of framed links (i.e. banded links with oriented 
cores) in C x I. Elements of S?+(X) are represented by oriented link diagrams on C. Putting 
one diagram above the other gives Y’(C) the structure of a monoid, with the empty link as 
identity element. Let a’(X) be the quotient of Z x =.5?‘(E) by isotopy and the following 
skein relations. We write (n, E) E Z x T’(C) as u”E, and employ the equality as shown in 
Fig. 6. Then the relations are as shown in Figs 7 and 8. Here, the links are supposed to be 
identical except where depicted, and in Fig. 8, the orientations are arbitrary. 

Note that d+ (C) is again a monoid. (We will soon see that it is, in fact, a group 
isomorphic to the Heisenberg group H(Z).) 

Let 6(C) be the quotient of a’(X) by the relations u4 = 1 and u”E = u”E’, if E and E’ 

are framed links with the same underlying banded link (i.e. E and E’ are the same up to 
changing some of the orientations of the cores of the bands). a(X) is again a monoid (which 
will turn out to be isomorphic to F(C)). 

t If Z has strictly positive genus, then u“ is already contained in the subgroup generated by the elements [2x]. 
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Fig. 6. 

up x =?IFtE ) ( (forE=*l) 

Fig. I. 

Fig. 8. 

7.4. PROPOSITION. Define @: Z x Y’(C) + H(X) by setting @(u”E) = u”+N(E)[e], where 

N(E) is the algebraic number of crossings of E, and e is the class of E in H1(X;Z). Then 
Q, induces a commutative diagram of morphisms of monoids 

C?+(X) 5 H(X) 

1 1 

b(C) 4 I-(X) 

Proofi It is easy to see that @ is well defined and surjective. Next, assume @(u”E) = 
@(u“‘E’). Applying the first relation, we may assume E, E’ are embedded in E, and (hence) 
n = n’. Since E, E’ are embedded, and represent the same class in H1(C;Z), they are 
cobordant in X x I, and we can go from one to the other by a sequence of surgeries. Thus, 
one verifies that E, E’ represent the same object in b+ (z). Hence, @induces an isomorphism 
b+(E) 2 H(X). We leave it to the reader to show that CD also induces an isomorphism 

b(X) 5 I-(C). 
Consider a surface with structure X = (C, 1), or surface with colored structure 

LX = (X, 1, i). Assume p 2 2. Here is how I-(X - 1) acts on I&,(C). Set b = (- 1)Pe,_2. If E is 
a banded link in (C - 1) x I, set 

M(E)=(CxI,lxIuE(b)) 

where E(b) is E with all components cabled by b. This is a linear combination of cobordisms 

with structure from C to itself, and it induces an endomorphism q(E) = ZMcE) of 

I&l(C). 0 

7.5. PROPOSITION. Assume p 2 2. Then cp induces an isometric action of I’(X - I) on 

V,,(C), with the central element u acting as q(u) = (- l)P+‘APz 

Proof: We first show that 40 induces an action of &“(E - I) z H(X - I). If E is a framed 
link, we define q(E) as above, forgetting the orientation of the core of E. It is clear that this is 
an isotopy invariant. Since the I/,,-module of a 2-sphere with four points colored by p - 2 
has rank one, the equality shown in Fig. 9 holds. 
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X E = <;;I:> ) ( = -AC”’ ) ( 
Fig. 9. 

P = (-l)‘(-A’r+( 
> 

Fig. 10. 

4 ) 0 > = 4 ) > 
Fig. 11. 

In the figure all bands are colored by p - 2. (The coefficient is the ratio of the brackets of the 
closures of the two links.) Now if E has m components, then E(b) = (- l)pmE(e,_2). Hence, 
the above implies the equality shown in Fig. 10 since this move changes the number 

of components by f 1. Also, we have the equality given in Fig. 11 because 

(h) = (- 1)J’(e,_2) = 1. Thus, we have verified relations (i) and (ii) of 7.3, hence 40 induces 
an action of &‘+(C - I) z H(X - 1). It is clear that this is a group action. If [x] E H(Z - I) is 
represented by an embedded link E in C, then the double of the cobordism M(E) acts as the 
identity on I&,(E), because ei_, = e,, = 1 in V&,(S1 x S’). This implies (p([2x]) = (p([x]‘) 
=: id, hence the action factors through I(C - I) as asserted. Finally, it is clear that 

z M(E) = Z-M(E), hence (p([x]) = (p([x])*. Since cp([x]) has order two, this implies that 
cp([x]) is an i’sometry. This completes the proof. Cl 

7.6. Remark. (i) This action may also be described as follows. Assume x E Hi (C - 1; Z) 
is represented by an oriented simple closed curve y on C - 1. Choose a handlebody H with 
boundary E such that y bounds a disk D c H, and construct a basis (u,) of V,,(E), as in 4.11, 
by admissible colorings e of a banded graph G. We may assume that G meets D transver- 
sally in an edge e. Then 

q(CxlN47) = (- lP%. 

Indeed, cp( [Ix])(u,) is represented by a colored graph G’, which is the union of G, colored by 
(T as before, and a meridinal circle, colored by p - 2, up to sign, around the edge e. Since the 
expansion of the edge e is fate), which is an augmentation idempotent, cp( [x])(u,) is simply 
u,, multiplied by a coefficient C depending only on the color o(e). We may compute C in the 
special case where G itself is a circle. Thus, 

c = (-1)P <c+j, e,-2) 

<ed4 > 

= (- 1)Pe,(,,(L,_2) = (- l)‘@‘. 

(Here, (,) is the bilinear form defined in 5.8. See the computation in 5.10 and recall that 
AzP = -1.) 

(ii) The curve y also induces a Dehn twist t, in the extended mapping class group J?(C) 
(see Appendix B), and using the equation tei = piei (see 5.8), one finds that 

t&T) = L&(e)%. 
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But pf” = (- l)i (since AZP = - 1). Hence, in End( V,,(X)), we have 

cp(Cxl) = t;*. 

Proofof Theorem 1.6. We begin with a study of the action cp of T(C - I) on V,,(C). Note 
that q(u) may have order four, two, or one, according to the value of p. 

The case p - 1 mod 2. Then q(u) has order four. By Theorem 1.5, we have a natural 
isomorphism V,,(X) 5 V;(X) @ V,(C). If E is a framed link in (E - I) x I, we set 
q’(E) = ZMTCEj, where M’(E) = (): x I, I x I u E( -2)). One verifies that this induces an 
action cp’ of I(C - 1) on V;(C). 

7.7. PROPOSITION. Let z = (C,l) be a surface with structure. Zfp 2 3 is odd, then the 

action cp of l-(X - 1) on V&(X) z V;(z) @ V,(X) is of the form cp’ @ id. 

Proof. Let E be a banded link in (E - I) x I. If we assume, for simplicity, that E is 

connected, then the complement of a tubular neighborhood of E is a cobordism M from 
S’ x S ’ to -I: u C. By naturality, we have a commutative diagram 

l&(&S’ x S’) 5 v&S’ x S’) 0 v,(S’ x S’) 

12, l&f@& 

Vz,(-XUU) 5 v;(-zuX)@ V,(-zuz:). 

The isomorphism in the top row sends ep_ z to .z @ 1, as is easily established using the facts 
that z2 = 1 in Vi and that ep_2 = e. = 1 in l$,, if p is odd. Since q(E) = (- 1)PZM(ep_2) = 
-ZM(e,_2) in End(V@)) = fiP(--C u Xc), and q’(E) = -Z,(z), we have q(E) = 

q’(E) 0 id. The result follows. cl 

7.8. Remark. (i) In the preceding discussion, the case p = 1 was excluded for simplicity 
only. Obviously, we may define an action of I-(X - I) on h(E) x V;(X) @ V,(X) by setting 
q=cp’Qid. 

(ii) One can show that the action of l-(X - 1) on V;(X) is irreducible. 

The case p = 2mod4. Then q(u) = 1, and the action of r(E - I) factors through an 
action T of Hl(X - I; Z/2). The characters of this group are linear forms 
h : Hl (C - 1; Z/2) + Z/2, with associated isotypic component given by 

l&,(X, h) = {u E V&,(X): z,(u) = (- l)h% for all a E Hl (C - 1; Z/2)}. 

Setting p = 4k - 2, we thus have the following theorem. 

7.9. THEOREM. Let X be a closed surface with (colored) structure. Let k 2 1. Then there is 

a canonical decomposition 

KU-&) = @ I/,,-Gh) 

where the sum is over all cohomology classeshh E H ‘(IS - 1; Z/2) (oiewed as linear forms on 
Hl(C - l;Z/2)). 

The case p E Omod 4. Then cp(u) = - 1, and the action of r(z - 1) factors through an 
action r of I’(2 - 1) = T(I: - l)/u2. Note that this group is the Heisenberg group asso- 
ciated to H1(C - 1; Z/2) equipped with the mod2 intersection form. In particular, for 
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a E H1(X - 1;2/2), there is a well defined [a] E I’(Z - I), and we have z[,+~] = 

(-- lYb%7]~[b]. Hence, the relevant characters of I’@ - I) are given by functions 
q: H1(X - 1; Z/2) + Z/2 such that q(a + b) = q(a) + q(b) + aa b, with associated isotypic 

components given by 

I&(X, q) = {u E V&(X): z~.,(u) = (- l)q% for all a E H1(E - 1; Z/2)}. 

Setting p = 4k, we thus have the following theorem. 

7.10. THEOREM. Let C be a closed surface with (colored) structure. Let k 2 1. Then there 
is a canonical decomposition 

where the sum is over all ZjZvalued quadratic forms q on H1(C - 1; Z/2) inducing the 
intersection form (i.e. such that a-b = q(a + b) - q(u) - q(b)). 

7.11. Remark. Let a E HI@ - 1; Z) be represented by an oriented simple closed curve 
y around a component of the link I c X. Assume this component is colored by i (with i = 1 if 
(&I) is a surface with structure). Then [a] acts by (- l)i (cf. 7.6), hence V,,(C,q) (resp. 
I&_.& h)) is zero except if q(a) = imod 2 (resp. h(a) = imod2). 

7.12. Comment. There is a canonical bijection between the set Spin@ - 1) of spin 
structures on C - I and the set of Z/2-valued quadratic forms q on HI (C - 1; Z/2) inducing 
the intersection form (see [13]). Hence, Theorem 7.10 can be viewed as a canonical 
decomposition of I&(C) into submodules associated to spin structures. 

7.13. Computation of the ranks of I/,,_,(Z,h) and V&&q). We now compute the 
dimensions of these submodules in the case where E = &, i.e. a closed surface of genus 
g 2 1 equipped with the empty link. 

Recall that rank(I@,)) = d,(2p) = traceh,(Kg-l), where K = IT:,” ei E I&,. (Here, 
as in Section 5, V&, stands for V,,(S 1 x S I).) If we identify C, with the boundary of a regular 
neighborhood of the graph G in Fig. 12, a basis is given by all 2p-admissible colorings 

(4l,&, ...,lg-2,j l,...,jg-l,j;,...,j~-~ ) of G (with colors <p - 1). 
For E E (0, l}, let @‘(2p) be the number of 2p-admissible colorings (with colors < p - 1) of 

G, for which the colors ji are even, and the color l,, has parity E. These colorings give a basis 
of a submodule I$@,) of I’,,@,). If g = 1, we abbreviate I’!&) by I$. This is the 
submodule of I& generated by the ej, where j has parity E, or equivalently, the submodule 

10 

il j2 j,-1 

Fig. 12. 
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generated by polynomials in z whose degree in z has parity E. Set 

p-2 

K,= c ej2. 

j=O 
j even 

Note that multiplication by K. preserves both Vi: and I’:‘;. 

7.14. LEMMA. For E E (0, l}, we have Sf’(2p) = tracey;;(Ki-l). Moreover, ifp = 2s is 
even, then 

dg(2p) = 2Q632p) + s9-l = 2Q632p) + (1 - 2Q)sQ_1. 

Proof The first statement can be proven by an elementary counting argument, as in 
[l, formula (5.8)] (cf. 5.8). 

Next, assume p = 2s. Recall that the module V2, has a basis uo, . . . , uP_2 with zUj = ~jvj 
(see 5.8). For E E (0, l} we set vj’“’ = Vj + (- l)“v,-2 _j. One verifies that v:‘, . . . , v,‘?, form 
a basis of I’;‘, and vt’, . . . , v~!‘~ form a basis of I’:‘;. Since K. is a polynomial in z2, and 
z2vF’ = lfv:) and Jp-2-j = -Lj, we have K~v~’ = Ko(Aj)v,!“‘, whence 

6:‘(2p) = i Ko(~j-i)g-l = Sj”(2p) + Ko(ls_l)g-l. 
j= 1 

Proceeding as in 5.10, we find that 

-P 
Ko(~j_l) = Sii (e2i(nj_l))2 = sii (,““;;; 1 ;,;;,,i+i, 2 = (A2’ - A-2j)2 ) i 

ifj<s 

i=O i=O 
s if j = s. 

It follows that Ko(/l- 1) = &K(Aj- I), for 1 I j I s - 1, and Ko(A.,- 1) = s = K(l,- l). Since 

zs- 1 s-1 

dg(2p) = C K(~j_l)‘-’ = K(;1,-1)‘-’ + 2 C K(Aj_l)g-l 
j=l j=l 

the result follows by an easy computation. 0 

7.15. Notation. It is well known [13] that two quadratic forms with the same Arf 
invariant are in the same orbit under the action of the diffeomorphism group of C,. Hence, 
the rank of I&(&,4) depends on q only through its Arf invariant. We set 

dr’(8k) = rank( l&(X,,, qs)), where qE has Arf invariant E E (0, l}. 
Similarly, any two nonzero mod 2 cohomology classes are in the same orbit under the 

action of the diffeomorphism group of C,. Hence, the rank of I&&,, h) is the same for all 
nonzero cohomology classes h E H ‘(Xg; Z/2). We denote this rank by dj”(8k - 4), and let 
dr’(8k - 4) be the rank of V,,_,(E,,O). 

7.16. THEOREM. For k 2 1 and E E (0, 1}, one has 

df’(8k) = 2-2g(dg(8k) + (2k)g- ‘(( - 1)“2g - 1)). 

Proof Choose simple closed curves c(~, a,, . . . , ag _ 1 on Ze such that a0 is a meridian 
around the arc of the graph G colored by IO, and, for i 2 1, ai is a meridian around the arc 
colored by ji. Let ai E Hl(Eg;Z) be the class of C(~. It follows from 7.6(i) that Vg’(X,) is 
precisely the submodule of j&&) fixed by [ao], . . . , [a,_ 1]. But this is the orthogonal sum 
of 2g submodules of the form Vsn(Zg, q), where the quadratic forms q all have Arf invariant 
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zero. Hence, 

dF’(Sk) = $rank VLi’(C,) = &8:‘(8k). 

Thus, the result for Arf invariant zero follows from Lemma 7.14. Now there are 
2g-‘(2g + 1) quadratic forms with Arf invariant 0, and 2g-‘(2g - 1) quadratic forms with 
Arf invariant 1, whence 

d,(8k) = 2g-‘(2g + l)d;‘(8k) + 2g-‘(2g - l)d;“(8k). 

This implies the formula for Arf invariant one. 

Example. For k = 1, one has d:‘(8) = 1 and d:“(8) = 0, and 

rank V,(E,) = d,(8) = 2g-1(2g + 1) 

is the number of spin structures on X, with Arf invariant zero. 

7.17. THEOREM. For k 2 1, one has 

dj”(8k - 4) = 2-2g(dg(8k - 4) - (2k - l)g- ‘) 

d;‘(8k - 4) = dj1’(8k - 4) + (2k - l)g- ‘. 

Proof: One proceeds as above to show that I’:‘;@,) is the orthogonal sum of 2g 
submodules of the form V&E,, h), where the linear forms h are all nonzero. Hence, 
df’(8k - 4) = (1/2g)6L”(8k - 4) and the result follows from Lemma 7.14 by a compu- 
tation. q 

APPENDIX A: ALGEBROIDS AND MORITA EQUIVALENCE 

Dejinition (see Mitchell [27]). Let k be a commutative ring. A k-algebroid (or a k- 
category or a k-linear category) is a category A (which is supposed to be small, or, at least, to 
have a small skeleton) such that each morphism set is endowed with the structure of 
a k-module in such a way that the composition law is k-bilinear. 

Remark. A k-algebroid with only one object is a k-algebra. For this reason, the 
morphisms of a k-algebroid A will be called elements of A. 

Definition. Let A be a k-algebroid. A left A-module is a functor from A to the category of 
k-modules, such that the induced maps between the morphism sets are k-linear. A right 
A-module is a left A”P-module. If A’ is another k-algebroid, a A x A’-bimodule is a functor 
from the category A x (A’)Op to the category of k-modules. 

Notation. For convenience, for objects a and b in a k-algebroid A, we will denote by 
,,A* the k-module Hom,,(a, b), and the composite Bo c( of two morphisms a E aAb and B E ,,A, 
will be written $I. Then the composition law is a map from aAt, OkbAc to pA,. 

Similarly, if M is a left or right A-module and a is an object in A, the k-module M(a) will 
be denoted by 0 M or M,,. If M is a A x A’-bimodule, a is an object in A and b an object in A’, 
the k-module M(a, b) will be written II Mb. If a is a morphism in a A* and u is an element in 
*M, the image of u by the map M(a) will be written au. Similar notation will be used for right 
modules and bi-modules. 
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Remark. If A is a k-algebroid, the category of left or right A-modules is an abelian 
category. It has almost all the properties of the category of modules over a ring or an 
algebra. The same holds for bimodules. 

Dejinition. Let A be a k-algebroid. Let M be a right A-module and let N be a left 
A-module. The tensor product ofM with N is the k-module, denoted by M 0~ N, which is 
the quotient of the k-module 

where the sum runs over all objects in A (or, if A is not small, in a small skeleton of A), by the 

submodule generated by the relations 

UCrQV-U@UV 

where a and b are objects of A, u E M,, v E ,,N, and u E ,,Ab. 

Remark. If M and N are bimodules over k-algebroids, the left action on M and the right 
action on N induce a bimodule structure on M QA N. If A is a k-algebroid, tensorization on 
the right (or on the left), by A over A, is naturally equivalent to the identity functor. 

Dejnition. Two k-algebroids A and A are said to be Morita equivalent, if there is 
a functor F, from the category of left A-modules to the category of left A-modules, which is 
a k-linear equivalence of categories. 

If A is a k-algebroid, and (ui} are elements in A, we can define the two-sided ideal 
generated by these elements, i.e. the sub-bimodule of A generated by (ni}. 

The following result is a key technical ingredient of this paper. Let A be a k-algebroid. 
Let {ai}ic, be a family of objects in A, and, for each i E I, let si be an idempotent in the 
algebra a,A,i. Denote by A the following k-algebroid. 

The objects of A are the elements of the index set I, and the morphisms are defined by 

iAj = siaiA,,sj, 

Let i E I, and let a be an object in A. Let E be the A x A-bimodule defined by i E, = Ei aiAa 
and let E’ be the A x A-bimodule defined by .Ef = aAai~i. 

THEOREM. Suppose that the idempotents si generate A as a two-sided ideal. Then the 
bimodule E 0~ E’ is isomorphic to A and E’ QA E is isomorphic to A. 

Consequently, tensoring (on the left or right), by the modules E and E’, yields inverse 

Morita equivalences of the algebroids A and A. Moreover, these equivalences are compatible 
with tensor product. 

Proof The correspondence eiu Q V&j H EiUUEj defines an isomorphism E QA E’ 5 A. 
The correspondence asi Q cifi H x&i/3 gives rise to a morphism cp: E’ Q* E + A. By 

assumption, for all objects a of A there exist finitely many elements ai E aA,i and elements 
/Ii E a,A,, such that 

1, = C Cli&i/Ii. 

Let a and b be objects in A. Let f be the morphism 
f(a) = xi nisi Q EiPix. One checks that f and cp are 
isomorphism. 

from oAb to ,,E’ QAE, defined by 
mutually inverse. Hence cp is an 
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Definition. If A is a k-algebroid, and M a A-bimodule, the Hochschild homology module 

HO(A, M) is the quotient of the module O,,M, by the relations 

uv = vu 

for all u E aAb and all v E bMa. A Morita equivalence induces an isomorphism between 
Hochschild homology modules. 

The module HO(A, A) is simply denoted by H,(A). 

APPENDIX lk p, -STRUCTURES 

For the relevant classical algebraic topology, see for instance [31]. 
A pi-structure up to homotopy is the analogue of a spin structure, where the second 

Stiefel-Whitney class w2 is replaced by the first Pontryagin class pi. For 3-manifolds, it is 
equivalent to Atiyah’s “2-framings” [4]. 

Dejnition. Let X be the homotopy fiber of the map pi : BO + K(Z,4) corresponding to 
the first Pontryagin class of the universal stable bundle y over BO. Let yx be the pull-back of 
y over X. A p,-structure on a manifold M is a fiber map from the stable tangent bundle of M, 

TM, to Yx. 

Remark. (i) Such a structure induces a lifting of a classifying map of zy. Note that we 
did not say “homotopy class of map”. This allows manifolds with pi-structure to be glued 
along parts of their boundary. 

(ii) Notice that as we have just defined it, a pi-structure on M does not include an 
orientation of M. Hence, a pi-structure on an oriented manifold M canonically induces one 
on -M (the same manifold with opposite orientation). 

(iii) There is an obvious notion of pl-surgery, that is, we demand that the trace of the 
surgery has a pi-structure. Notice, however, that if M2 is obtained from MI by (ordinary) 
surgery of index one or two, then every pi-structure on MI extends over the trace of the 
surgery (uniquely up to homotopy), and hence determines a pl-structure on M2 (uniquely 
defined up to homotopy). 

Notation. If M 3 is an oriented closed 3-manifold, then there is a compact oriented 
4-manifold IV, with ~5 W = M. If a is a pl-structure on M, let pl( W, a) E H4( W, M; Z) denote 
the obstruction to extending it to W. Define 

a(~) = 3 signature(W) - (pl(W,cr),[W]) EZ. 

(Here [ W] denotes the fundamental class and ( , ) denotes evaluation of cohomology on 
homology.) By Hirzebruch’s signature theorem, this number is independent of W. (This is 
equal to 3 times Aityah’s (T [4].) 

The following facts are easily proven using obstruction theory. 

PROPOSITION. (i) The set of homotopy classes (rel. boundary) of pI-structures, on an 
oriented, compact, connected 3-manifold, is ajinely isomorphic to Z. Moreover, if the manifold 
is closed, then the map cr is such an a&e isomorphism. 

(ii) On manifolds of dimension less than or equal to two, p,-structures are unique up to 
homotopy. 
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Remark. The cobordism group @, of oriented 3-manifolds with pi-structure, is 
isomorphic to Z/32, the isomorphism being induced by the invariant c. 

The extended mapping class group. (Cf. [4].) Let C be a closed oriented surface with 
pi-structure and banded link. We define s(X) to be the set of equivalence classes 
represented by the mapping cylinders, M,, of orientation preserving diffeomorphisms, 1; 
from the surface to itself, which send the given banded link to itself, preserving its 
orientation, together with a pl-structure on the mapping cylinder, extending the given 
pl-structure on the two copies of I: in M,. (Here equivalence is as in the definition of C,“‘.) If 
Z is connected, the forgetful map is an epimorphism from A@(Z) to the classical mapping 
class group A(C) (without pr-structure), with kernel Z. 
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