Lower bounds for essential dimensions via orthogonal representations

Vladimir Chernousova,*,1, Jean-Pierre Serreb

a Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
b Collège de France, 3, rue d’Ulm, 75231 Paris, Cedex 05, France

Received 22 October 2005
Available online 1 December 2005
Communicated by Eva Bayer-Fluckiger

1. Introduction

Let us first recall what is the essential dimension of a functor, cf. [BR 97,R 00]. Let k be a field, and let \mathcal{F} be a functor from the category of field extensions of k into the category of sets. Let F/k be an extension and let ξ be an element of $\mathcal{F}(F)$. If E is a field with $k \subset E \subset F$ we say that ξ comes from E if it belongs to the image of $\mathcal{F}(E) \to \mathcal{F}(F)$. The essential dimension $\text{ed}(\xi)$ of ξ is the minimum of the transcendence degrees E/k, for all E with $k \subset E \subset F$ such that ξ comes from E. One has $\text{ed}(\xi) \leq \text{tr.deg } F$. If there is equality, we say that ξ is incompressible. The essential dimension $\text{ed} (\mathcal{F})$ of \mathcal{F} is

$$\text{ed}(\mathcal{F}) = \max \{ \text{ed} (\xi) \},$$

the maximum being taken over all pairs (F, ξ) with $k \subset F$ and $\xi \in \mathcal{F}(F)$.

Along similar lines, the essential dimension $\text{ed}(\xi; p)$ of $\xi \in \mathcal{F}(F)$ at a prime number p is

$$\text{ed}(\xi; p) = \min \{ \text{ed}(\xi_K) \},$$

* Corresponding author.
E-mail address: chernous@math.ualberta.ca (V. Chernousov).

1 Supported by the Canada Research Chairs Program and by NSERC’s Grant G121210944.

0021-8693/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
where ξ_K is the image of ξ in $\mathcal{F}(K)$, and the minimum is taken over all extensions K/F with $[K:F]$ finite and prime to p. The essential dimension of \mathcal{F} at p is
\[
ed(\mathcal{F}; p) = \max\{\ned(\xi; p)\}
\]
the maximum being taken over all pairs (F, ξ) with $\xi \in \mathcal{F}(F)$. It is clear that $\ned(\mathcal{F}) \geq \ned(\mathcal{F}; p)$.

We will apply this to the functor \mathcal{F} defined by:
\[
\mathcal{F}(F) = H^1(F, G) = \{\text{isomorphism classes of } G\text{-torsors over } F\},
\]
where G is a smooth linear algebraic group over k. The essential dimension $\ned(G)$ of G (respectively the essential dimension $\ned(G; p)$ at p) is $\ned(\mathcal{F})$ (respectively $\ned(\mathcal{F}; p)$). If ξ is a versal G-torsor, in the sense of [GMS 03, p. 13], one has
\[
\ned(G) = \ned(\xi) \quad \text{and} \quad \ned(G; p) = \ned(\xi; p).
\]
In case we feel the need to be precise about F, we write \ned_F instead of just \ned.

Assume k is algebraically closed. If $\text{char}(k) = 0$, Reichstein and Youssin have given a very efficient lower bound for $\ned(G; p)$, namely:
\[
\text{If } G \text{ is connected and contains a finite abelian } p\text{-group } A \text{ whose centralizer is finite, then one has } \ned(G; p) \geq \text{rk}(A), \text{ where } \text{rk}(A) \text{ denotes the minimum number of generators of } A \text{ [RY 00, Theorem 7.8].}
\]

The proof of Reichstein–Youssin uses resolution of singularities, hence does not apply (for the time being) when $\text{char}(k) > 0$. What we do in the present paper is to prove most of their results relative to $p = 2$ in arbitrary characteristic (except characteristic 2) by using orthogonal groups and quadratic forms (especially “monomial” quadratic forms, cf. Section 4). For instance:

(1.1) If G is semisimple of adjoint type, and -1 belongs to the Weyl group, then
\[
\ned(G; 2) \geq \text{rank}(G) + 1.
\]
This is the case $G = G^\circ$ of Theorem 1 of Section 2. Note that it implies
\[
\ned(E_8; 2) \geq 9 \quad \text{and} \quad \ned(E_7; 2) \geq 8.
\]

(1.2) $\ned(\text{Spin}_n; 2) \geq \lfloor n/2 \rfloor$ for $n > 6$, $n \neq 10$, the inequality being strict if $n \equiv -1, 0 \text{ or } 1 \pmod{8}$, cf. Theorems 11 and 12.

(1.3) $\ned(\text{HSpin}_n; 2) > n/2$ if $n \geq 8$, $n \equiv 0 \pmod{8}$, cf. Theorem 13.

Of course, these results give lower bounds for $\ned(G)$ itself, for instance $\ned(E_8) \geq 9$.

\[^2\text{It seems likely that a similar method can also be applied in characteristic 2, but we have not checked all the necessary steps.}\]
2. The main theorem

In what follows, we assume char(k) ≠ 2 and k algebraically closed.

Let G^o be a simple algebraic group over k of adjoint type, and let T be a maximal torus of G^o. Let $c \in \text{Aut}(G^o)$ be such that $c^2 = 1$ and $c(t) = t^{-1}$ for every $t \in T$ (it is known that such an automorphism exists, see e.g. [DG 70, Exposé XXIV, Proposition 3.16.2, p. 355]). This automorphism is inner (i.e. belongs to G^o) if and only if -1 belongs to the Weyl group of (G, T). When this is the case, we put $G = G^o$. If not, we define G to be the subgroup of Aut(G^o) generated by G^o and c. We have

- $G = G^o$ for types $A_1, B_r, C_r, D_r \ (r \text{ even}), G_2, F_4, E_7, E_8$;
- $(G: G^o) = 2$ and $G = \text{Aut}(G^o)$ for types $A_r \ (r \geq 2), D_r \ (r \text{ odd}), E_6$.

Let $r = \dim(T)$ be the rank of G.

Theorem 1. If G is as above, we have $\text{ed}(G; 2) \geq r + 1$.

The proof of Theorem 1 consists in:

(a) construction of a G-torsor θ_G over a suitable extension K/k with tr.deg$_k(K) = r + 1$, see below;
(b) proof that the image of θ_G in a suitable $H^1(K, O_N)$ (cf. Section 3) is incompressible (Sections 4–6); this implies that θ_G itself is incompressible, and Theorem 1 follows.

Let us start with part (a). Let R be the root system of G with respect to T, and let R_{sh} be the (sub)root system formed by the short roots of R. Let $\Delta = \{\alpha_1, \ldots, \alpha_r\}$ be a basis of R_{sh}. The root lattices of R and R_{sh} are the same; hence Δ is a basis of the character group $X(T)$. This allows us to identify T with $G_m \times \cdots \times G_m$ using the basis Δ.

Call A_0 the kernel of “multiplication by 2” on T. Let $A = A_0 \times \{1, c\}$ be the subgroup of G generated by A_0 and by the element c defined above. The group A is isomorphic to $(\pm 1)^{r+1}$.

Take $K = k(t_1, \ldots, t_r, u)$ where t_1, \ldots, t_r and u are independent indeterminates. We have $H^1(K, A) = H^1(K, \mathbb{Z}/2\mathbb{Z}) \times \cdots \times H^1(K, \mathbb{Z}/2\mathbb{Z})$. Identify $H^1(K, \mathbb{Z}/2\mathbb{Z})$ with $K^\times / (K^\times)^2$ as usual. Then u and the t_i’s define elements (u) and (t_i) of $H^1(K, \mathbb{Z}/2\mathbb{Z})$. Let θ_A be the element of $H^1(K, A)$ with components $((t_1), \ldots, (t_r), (u))$. Let θ_G be the image of θ_A in $H^1(K, G)$. We will prove in Section 6:

Theorem 2. (K, θ_G) is incompressible, and remains so after any field extension of K of odd degree.

Note that Theorem 2 implies Theorem 1 since tr.deg $K = r + 1$.

Remark. (i) It would not be useful to take A_0 instead of A. Indeed, A_0 is a subgroup of T and $H^1(K, T) = 1$ by Hilbert Theorem 90. Hence the image in $H^1(K, G)$ of any element
of $H^1(K, A_0)$ is trivial. In particular, the class θ_G defined above is killed by the quadratic extension $K(\sqrt{u})/K$.

(ii) Suppose that $G = G^\circ$, i.e. that c belongs to G°. The subgroup A constructed above is the same as the one described in [BS 53, p. 139], for compact Lie groups. It is also the same one (with the same θ_G) as in Reichstein–Youssin theory [RY 00].

3. An orthogonal representation

Proposition 3. There exists a quadratic space (V, q) over k, and an orthogonal irreducible linear representation

$$\rho : G \to O(V, q)$$

with the following property:

\begin{itemize}
 \item[(*)] the nonzero weights of T on V are the short roots and they have multiplicity 1.
\end{itemize}

Proof. Let B be a Borel subgroup containing T. This defines an order on the root system R. Let β be the highest root of R_{sh} with respect to that order. It is a dominant weight. We choose for V an irreducible representation $L(\beta)$ of G° with highest weight β. By a well-known criterion [St 67, Lemmas 78, 79, p. 226], $L(\beta)$ is an orthogonal representation of G°. Since $R_{sh} \cup \{0\}$ is R-saturated in the sense of [Bo 75, VIII, Section 7.2], the nonzero weights of $L(\beta)$ belong to R_{sh}, hence are conjugate to β by the Weyl group. This implies that they have multiplicity 1, so that (*) is fulfilled.

It remains to show that this orthogonal representation of G° extends to an orthogonal representation of $\text{Aut}(G^\circ)$, and hence of G. This can be done in the following way:

If $\text{Aut}(G^\circ) = G^\circ$, there is nothing to prove.

If $\text{Aut}(G^\circ) \neq G^\circ$, the roots have the same length, so that β is the highest root of R, and $V = L(\beta)$ is essentially the adjoint representation of G°. More precisely, if \tilde{G}° denotes the universal covering of G°, one can take for V the image of $\text{Lie}(\tilde{G}^\circ)$ in $\text{Lie}(G^\circ)$, with the obvious action of $\text{Aut}(G^\circ)$. One puts on V the “normalized Killing form” $q(x, y)$. That form is defined first over \mathbb{Z}, in which case it is equal to $\text{Tr}(\text{ad}(x) \cdot \text{ad}(y))/2h$ where h is the Coxeter number (see [GN 04, Sel 57, SpSt 70]); it is then defined by base change for every simple group scheme, and the computation of its discriminant done in the references above shows that it is nondegenerate. □

Example. (a) When the roots of R have the same length, we have $V = \text{Lie}(G^\circ)$, except for:

- type A_n when p divides $n + 1$;
- type E_6 when $p = 3$.

In both cases, V has codimension 1 in $\text{Lie} G^\circ$.

(b) When the roots have different length, then:
• If G is of type G_2, then $V = L(\omega_1)$, where ω_1 is the first fundamental weight (in Bourbaki’s notation); its dimension is 7.

• If G is of type F_4, then $V = L(\omega_4)$; its dimension is 26 if $p \neq 3$ and 25 if $p = 3$.

• If G is of type $B_r, r > 1$, then $V = L(\omega_1)$ is the standard representation of $G = SO_{2r+1}$ of dimension $2r + 1$.

• If G is of type $C_r, r > 1$, then $V = L(\omega_2)$ is the standard representation of $\tilde{G} = Sp_{2r}$; one has $\dim V = 2^{r^2} - r - 1$.

When $p \mid r$, V is a subquotient of $\wedge^2 (V_1)$ of dimension $2^{r^2} - r - 2$.

4. Monomial quadratic forms

Consider the following general situation. Let A be an abelian group of type $(2, \ldots, 2)$ and rank s and let $\lambda: A \to O(V, q)$ be an orthogonal representation of A. As above, take $K = k(t_1, \ldots, t_s)$, where t_1, \ldots, t_s are independent indeterminates, and define $\theta_A \in H^1(K, A)$ as in Section 2. Let $\theta_O = \lambda(\theta_A)$ be the image of θ_A in $H^1(K, O(V, q))$. Let $X(A) = \text{Hom}(A, \mathbb{Z}/2\mathbb{Z})$ be the character group of A. Let X_λ be the subset of $X(A)$ made up of the characters whose multiplicity in λ is odd.

Theorem 4. The integers $ed(\theta_O)$ and $ed(\theta_O; 2)$ are both equal to the rank r_λ of the subgroup of $X(A)$ generated by X_λ.

Note that $\theta_O \in H^1(K, O(V, q))$ may be interpreted as a quadratic form (namely, the twist of q by θ_O); we will denote this form by q_O; it is well defined up to K-isomorphism. To prove Theorem 4, we first need to compute explicitly q_O.

4.1. Computation of q_O

If $\alpha \in X(A)$, let V_α be the corresponding weight subspace of V. We have an orthogonal decomposition $V = \bigoplus_\alpha V_\alpha$; put $m_\alpha = \dim V_\alpha$.

Let $\alpha_1, \ldots, \alpha_s$ be the canonical basis of $X(A)$ corresponding to the projections $A = \mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$. Any element $a \in A$ acts by multiplication by $\alpha(a)$ on V_α. Hence twisting $q|_{V_\alpha}$ by θ_O we obtain a quadratic form $\langle t^\alpha, t^\alpha \rangle$ of dimension m_α, where $t^\alpha = \alpha(a) = t_1^{n_1} \cdots t_s^{n_s} \in K^\times$ for $\alpha = n_1 \alpha_1 + \cdots + n_s \alpha_s$. Hence q_O can be written as

$$q_O = \bigoplus m_\alpha \langle t^\alpha \rangle,$$

where $m_\alpha \langle t^\alpha \rangle$ means the direct sum of m_α copies of the 1-dimension form $\langle t^\alpha \rangle$. Note that, because -1 is a square, we have $\langle t^\alpha, t^\beta \rangle = 0$ in the Witt group $W(K)$, so that the formula can also be written as

$$q_O = \bigoplus_{\alpha \in X_\lambda} \langle t^\alpha \rangle \quad \text{in } W(K),$$

where the sum is over the set X_λ defined above.
Examples. Let \(\rho : G \rightarrow \text{O}(V, q) \) be as in Proposition 3 and let \(\lambda \) denote the composition \(A \rightarrow G \xrightarrow{\rho} \text{O}(V, q) \).

(a) If \(G = G_2 \) and \(V \) is as defined in Section 3, then

\[
q_O = \langle u, t_1, t_2, u t_1, t_1 t_2, u t_1 t_2 \rangle = \langle \langle u, t_1, t_2 \rangle \rangle - \langle 1 \rangle,
\]

where \(\langle \langle u, t_1, t_2 \rangle \rangle \) is the generic 3-Pfister form.

(b) Similarly, in the case of \(G = F_4 \) (and \(p \neq 3 \)), \(q_O \) is

\[
q_O = q_3 \otimes (q_2 - \langle 1 \rangle) \oplus \langle 1, 1 \rangle,
\]

where \(q_2 \) (respectively \(q_3 \)) is a generic 2-Pfister form (respectively 3-Pfister form). When \(p = 3 \), the term \(\langle 1, 1 \rangle \) is replaced by \(\langle 1 \rangle \).

(c) In case \(G = E_8 \), \(q_0 \) can also be computed. One finds:

\[
q_O = 8 \langle 1 \rangle \oplus \langle 1, u \rangle \otimes \left(\bigoplus_{(m)} \langle t_1^{m_1} \cdots t_8^{m_8} \rangle \right),
\]

where \(m = (m_1, \ldots, m_8) \) runs through the 120 octuples of 0, 1’s such that

\[
m_1 m_2 + m_3 m_4 + m_5 m_6 + m_7 m_8 \equiv 1 \pmod{2}.
\]

4.2. Monomial quadratic forms

A rank \(n \) quadratic form \(f(X_1, \ldots, X_n) \) over \(K = k(t_1, \ldots, t_s) \) is called *monicomial* if it is a diagonal form

\[
f(X) = \sum a_i X_i^2,
\]

with \(a_i \in K \) and if each coefficient \(a_i \) is a monomial in \(t_1, \ldots, t_s \) with exponents in \(\mathbb{Z} \) (“Laurent monomial”). As usual, we write such a form as \(f = \langle a_1, \ldots, a_n \rangle \).

Examples. (a) The generic 2-Pfister form \(\langle 1, t_1, t_2, t_1 t_2 \rangle \) is monomial over \(k(t_1, t_2) \).

(b) The form \(q_O = \bigoplus_{a} \langle t^a \rangle \) defined above is monomial.

Let \(f = \langle a_1, \ldots, a_n \rangle \) be monomial. After dividing the \(a_i \)'s by squares, we may assume that they are “square-free,” i.e. for every \(i \) and \(j \), the exponent of \(t_j \) in the monomial \(a_i \) is 0 or 1. We can then write \(f \) as:

\[
f = \bigoplus m_f(\mu)(t^\mu),
\]

where the exponent \(\mu = (\mu_1, \ldots, \mu_s) \) belongs to \(\{0, 1\}^s = (\mathbb{F}_2)^s \), \(t^\mu \) means \(t_1^{\mu_1} \cdots t_s^{\mu_s} \), and \(m_f(\mu) \) is \(\geq 0 \). We say that \(f \) is *multiplicity free* if it is square-free and \(m_f(\mu) = 0 \) or 1 for every \(\mu \).
Proposition 5. A multiplicity free monomial quadratic form \(f \) over \(K = k(t_1, \ldots, t_s) \) is anisotropic.

Proof. Let \(v \) be the valuation of \(K \) with value group \(\mathbb{Z}^s \) (with lexicographic order) which is trivial on \(k \) and such that

\[
v(t_1) = (1, 0, \ldots, 0), \ldots, \quad v(t_s) = (0, \ldots, 0, 1)
\]

(see [Bo 64, Chapter 6, §10]). If \(f \) represents 0 we get an equation

\[
\sum \mu \phi_{\mu}(t)^2 = 0,
\]

where the nonzero terms have different \(v \)-valuations (and even different valuations in \(\Gamma/2\Gamma \)). This is only possible if all the terms are 0.

Alternate proof: use the fact that \(f \) is a subform of a generic \(s \)-Pfister form, and that such a form is anisotropic, cf. [Pf 95, p. 111]. □

Let \(f \) be a monomial square-free quadratic form over \(K \), and let \(X_f \) be the subset of \((\mathbb{F}_2)^s \) made up of the \(\mu \)'s such that \(m_f(\mu) \) is odd. Let \(e = e_f \) be the rank of \(X_f \), i.e. the dimension of the \(\mathbb{F}_2 \)-subspace of \((\mathbb{F}_2)^s \) generated by \(X_f \).

Proposition 6. The integers \(ed(f) \) and \(ed(f; 2) \) are both equal to \(e \).

Note that for \(f = q_o \) the rank of \(X_{q_o} \) is obviously equal to that of \(X_\lambda \), hence Theorem 4 follows from Proposition 6.

Remark. One may wonder whether the equality \(ed(f) = ed(f; 2) \) remains true for an arbitrary quadratic form \(f \). It is not hard to see that it does if \(ed(f; 2) \leq 2 \), but we do not know what happens for larger values of \(ed(f; 2) \).

5. Proof of Proposition 6

We use induction on the number \(s \) of the indeterminates \(t_1, \ldots, t_s \), the case \(s = 0 \) being obvious. Since \(-1\) is a square in \(k \), each pair \(\langle t^\mu, t^{t^\mu} \rangle \) is hyperbolic, and can be replaced by \(\langle 1, -1 \rangle = \langle 1, 1 \rangle \). Hence every monomial quadratic form \(f \) can be written as \(f = \langle 1, \ldots, 1 \rangle \oplus q \), with \(q \) multiplicity free. Since \(X_f = X_q \) or \(X_q \cup \{0\} \), we have \(e = \text{rank}(X_f) = \text{rank}(X_q) \).

We now make a further reduction on \(f \). In order to state it, let us say that \(q \) is \(e \)-reduced if the set \(X_q \) contains the first \(e \) basic vectors

\[
x_1 = (1, 0, \ldots, 0); \quad x_2 = (0, 1, \ldots, 0); \quad \ldots; \quad x_e = (0, \ldots, 1, \ldots, 0).
\]

This amounts to saying that

\[
q = \langle t_1, \ldots, t_e, a_{e+1}, \ldots, a_n \rangle,
\]
where the \(a_i \), for \(i > e \), are pairwise distinct square-free monomials in \(t_1, \ldots, t_e \) of total degree \(\neq 1 \).

Lemma 7. There is an automorphism of the extension \(K/k \) which transforms \(q \) into an \(e \)-reduced form.

Proof. Note that \(GL_s(\mathbb{Z}) \) acts in a natural way on the set of monomials with exponents in \(\mathbb{Z} \). This gives a natural embedding of \(GL_s(\mathbb{Z}) \) into \(Aut(K/k) \). Moreover, the natural map

\[
GL_s(\mathbb{Z}) \to GL_s(\mathbb{F}_2)
\]

is surjective, since \(GL_s(\mathbb{F}_2) = SL_s(\mathbb{F}_2) \) and

\[
SL_s(\mathbb{Z}) \to SL_s(\mathbb{Z}/m\mathbb{Z})
\]

is well known to be surjective for any \(m \). By the very definition of \(e \), the set \(X_q \) contains \(e \) elements \(z_1, \ldots, z_e \) which are linearly independent over \(\mathbb{F}_2 \). Hence there exists \(\phi \in GL_s(\mathbb{Z}) \subset Aut(K/k) \) whose reduction mod 2 transforms the \(z_i \) into the first \(e \) basic vectors \(x_1, \ldots, x_e \). It is clear that \(\phi(q) \) is \(e \)-reduced. \(\square \)

We now use the “residue operators” of the local theory of quadratic forms (see e.g. [L 73, Chapter VI, §1.5]). Recall that, if \(v \) is a discrete valuation of a field \(K \), with residue field \(\bar{K} \), one may write any quadratic form \(q \) over \(K \) in the form

\[
q = \langle u_1, \ldots, u_m, \pi u_{m+1}, \ldots, \pi u_n \rangle,
\]

where the \(u \)'s are units, \(\pi \) is a uniformizing element and \(m \) is an integer with \(0 \leq m \leq n \).

One defines the first residue \(\partial_1(q) \) of \(q \) as the class in the Witt group \(W(\bar{K}) \) of the quadratic form \(\langle \bar{u}_1, \ldots, \bar{u}_m \rangle \), where \(\bar{u}_i \) denotes the image of \(u_i \) in \(\bar{K} \); similarly, the second residue \(\partial_2(q) \) of \(q \) is the class in \(W(\bar{K}) \) of \(\langle \bar{u}_{m+1}, \ldots, \bar{u}_n \rangle \). It is known [L 73] that the class of \(\partial_1(q) \) does not depend on the choice of \(\pi \), nor on the choice of the diagonalization of \(q \); as for the class of \(\partial_2(q) \), it is only defined up to similarity (i.e. up to multiplication by a 1-dimensional quadratic form).

Proposition 8. Let \(v \) be a discrete valuation on an extension \(L \) of \(k \) trivial on \(k \), let \(\bar{L} \) be its residue field, and let \(\phi \) be a quadratic form over \(L \). Let \(e \) be a positive integer. Assume:

(a) \(\partial_2(\phi) \neq 0 \) in \(W(\bar{L}) \).
(b) \(ed_L(\psi; 2) \geq e - 1 \) for every quadratic form \(\psi \) over \(\bar{L} \) belonging to the Witt class of \(\partial_1(\phi) \).

Then \(ed_L(\phi; 2) \geq e \). (Both \(ed \)'s are relative to \(k \), viewed as a subfield of \(L \) and of \(\bar{L} \).)
5.1. Proposition 8 implies Proposition 6

We apply induction on e. The case e = 0 or 1 is trivial. Let us assume e > 1. We may suppose that f is of the form \(f = (1, \ldots, 1) \oplus q \), where q is e-reduced and multiplicity free. Since the exponents \(\mu \) appearing in \(X_f \) are sums of the \(x_i \) (1 \(\leq i \leq e \)), the \(t^\mu \) appearing in \(q \) belong to the subfield \(k(t_1, \ldots, t_e) \) of \(K \). This shows that \(ed(f) \leq e \).

It remains to show that \(ed(f'; 2) \geq e \). To do so, consider the valuation \(v \) on \(K \) associated to the indeterminate \(t_1 \). Such a valuation is characterized by the properties:

\[
v(t_1) = 1;
v(x) = 0 \quad \text{if} \quad x \in k(t_2, \ldots, t_e)^	imes.
\]

Moreover, we have \(\tilde{K} = k(t_2, \ldots, t_e) \).

Let us write \(f \) as \(f = \phi \oplus (1_1) \otimes \phi' \), where \(\phi, \phi' \) are monomial quadratic forms over \(k(t_2, \ldots, t_3) \). The second residue of \(f \) with respect to \(v \) is given by \(\partial_2(f) = \partial_2(q) = \phi' \). Since \(q \) is multiplicity free, so is \(\phi' \). It is clear that \(\phi' \neq 0 \), and hence \(\phi' \) is anisotropic, by Proposition 5. Since the Witt class of \(\phi' \) is \(\partial_2(f) \), we have checked condition (a) of Proposition 8.

Let us look at condition (b). Of course \(\phi \) is a representative of \(\partial_1(f) \). Moreover, it is clear that \(\phi \) can be written as \(\phi = m(1, 1) \oplus \psi \), where \(m \) is an integer \(\geq 0 \) and \(\psi \) is a multiplicity free \((e - 1) \)-reduced monomial quadratic form over \(\tilde{K} \), hence is anisotropic, by Proposition 5. Since \((1, 1) = (1, -1) \), this shows that any quadratic form \(\psi \) over \(\tilde{K} \) which belongs to the Witt class \(\partial_1(f) \) is isomorphic to \(m(1, 1) \oplus \psi \), hence is \((e - 1) \)-reduced. We may thus apply the induction assumption to \(\psi' \), and deduce that \(ed_{\tilde{K}}(\psi'; 2) \geq e - 1 \). By Proposition 8, we get \(ed_K(f'; 2) \geq e \), as required.

Proof of Proposition 8. Let \(L' \) be an odd-degree extension of \(L \), and let \(F \) be a subfield of \(L' \), containing \(k \), and such that \(\phi \) is \(L' \)-isomorphic to a quadratic form \(\phi_F \) over \(F \). We have to show that \(\text{tr.deg}_k(F) \geq e \). We distinguish two cases:

(i) The case \(L' = L \). Let \(w \) be the restriction of \(v \) to the subfield \(F \). There are three possibilities:

\begin{enumerate}
\item[(i1)] \(w \) is trivial on \(F \) (i.e. \(v(x) = 0 \) for every \(x \in F^\times \)). In that case, the coefficients of \(\phi_F \) are \(v \)-units, and this implies that \(\partial_2(\phi) = 0 \), which we assumed is not true.
\item[(i2)] The value group \(v(F^\times) \) is a subgroup of even index of \(v(L^\times) = \mathbb{Z} \). The same argument as for (i1) shows that \(\partial_2(\phi) = 0 \).
\item[(i3)] The index of \(v(F^\times) \) in \(v(L^\times) \) is odd. In that case, \(\partial_1(\phi) \in W(\tilde{L}) \) is the image of \(\partial_1(\phi_F) \in W(\tilde{F}) \) under the natural map \(W(\tilde{F}) \to W(\tilde{L}) \). Here \(\tilde{F} \) is the residue field of \(F \) with respect to \(w \). Choose any representative \(\psi_{\tilde{F}} \) of \(\partial_1(\phi_F) \); it gives a representative \(\psi_{\tilde{L}} \) of \(\partial_1(\phi) \), hence we have
\[
ed_{\tilde{F}}(\psi_{\tilde{F}}; 2) \geq ed_{\tilde{L}}(\psi_{\tilde{L}}; 2) \geq e - 1
\]
by hypothesis (b). This implies that \(\text{tr.deg}_k(\tilde{F}) \geq e - 1 \), hence \(\text{tr.deg}_k(\tilde{F}) \geq e \) by a standard result of valuation theory, cf. [Bo 64, Chapter 6, §10, no. 3].
\end{enumerate}
(ii) The general case. Let S be the set of extensions w of v to L'. For each $w \in S$, let $e(w/v)$ and $f(w/v)$ be the ramification index and the residue degree of w with respect to v.

Lemma 9. There exists $w \in S$ such that both $e(w/v)$ and $f(w/v)$ are odd.

Proof. By dévissage, it is enough to prove this in the following two cases.

(a) The extension L'/L is separable. In that case, we have the standard formula (cf. [Bo 64, Chapter 6, §8, no. 5])

$$\sum_{w \in S} e(w/v) f(w/v) = [L' : L].$$

Since $[L' : L]$ is odd, there is at least one $w \in S$ such that $e(w/v) f(w/v)$ is odd.

(b) We have $\text{char}(L) = p > 0$ and L'/L is purely inseparable. In that case, S is reduced to one element w, and one checks that $e(w/v)$ and $f(w/v)$ are powers of p, hence are odd.

End of proof of (ii). Select w as in Lemma 9. We are going to apply case (i) to (L', ϕ, w).

Note first that the w-residues of ϕ are the images of its v-residues by the base change $\bar{L} \to \bar{L}'$. Since $[\bar{L}' : \bar{L}]$ is odd, the map $W(\bar{L}) \to W(\bar{L}')$ is injective. This shows that $\partial_2(\phi) \neq 0$ in $W(\bar{L}')$, so that condition (a) is satisfied by (L', ϕ, w).

It remains to check condition (b). Let ψ_0 be the unique anisotropic representative of $\partial_1(\phi)$; by a classical theorem of Springer (cf. [L 73, p. 198]), it remains anisotropic in \bar{L}'. Hence the representatives ψ of $\partial_1(\phi)$ over \bar{L}' are the sums of ψ_0 and some hyperbolic forms; in particular they come from \bar{L}. Since an odd degree extension does not change $\text{ed}(; 2)$ we have $\text{ed}_{\bar{L}'}(\psi; 2) \geq e - 1$. We have thus checked conditions (a) and (b) over L', and we may apply part (i) of the proof.

This concludes the proof of Proposition 8 and hence of Proposition 6 and of Theorem 4. □

Remark. Let K/k be a field extension, with k algebraically closed. Let q and q' be quadratic forms over K which belong to the same Witt class. Is it true that $\text{ed}(q) = \text{ed}(q')$ and $\text{ed}(q; 2) = \text{ed}(q'; 2)$? It is so when $K = k(t_1, \ldots, t_e)$ and one of the forms q or q' is monomial. We do not know what happens in general.

6. Proof of Theorem 2

Let $\rho : G \to O(V, q)$ be as in Proposition 3, and let $\theta_O = \rho(\theta_G)$ be the image of θ_G in $H^1(K, O(V, q))$. If ρ_A denotes the composition $A \to G \xrightarrow{\rho} O(V, q)$, we have $\theta_O = \rho_A(\theta_A)$. By Theorem 4, it suffices to show that the rank of $\langle X_{\rho_A} \rangle$ is $r + 1$. We need the following.
Lemma 10. Let R be an irreducible root system, and R_{sh} the set of short roots. Let $Q(R)$ be the root lattice of R. If α and β are elements of R_{sh}, we have:

$$\alpha = \beta \mod 2Q(R) \iff \alpha = \pm \beta.$$

Proof. This can be checked by inspection of all possible root systems.

Let us compute the weights of ρ_A and their multiplicities. For a short root $\alpha \in R_{\text{sh}}^+$ we denote by V_α the corresponding weight subspace of V for T. By construction, $\dim V_\alpha = 1$ and we have an orthogonal decomposition

$$V = V_0 \oplus \left\{ \bigoplus _{\alpha} (V_\alpha \oplus V_{-\alpha}) \right\},$$

where the sum is taken over all positive short roots.

Any element $a \in A^\circ$ acts by multiplication by $\alpha(a)$ on $W_\alpha = V_\alpha \oplus V_{-\alpha}$, and acts trivially on V_0. The automorphism c of Section 2 preserves V_0 and permutes V_α and $V_{-\alpha}$. Since k is algebraically closed, there is a basis $\{u_\alpha, v_\alpha\}$ of W_α such that $c(u_\alpha) = u_\alpha$, and $c(v_\alpha) = -v_\alpha$. It follows that the weight subspaces for ρ_A belonging to $\bigoplus _{\alpha} (V_\alpha \oplus V_{-\alpha})$ correspond to characters $\alpha \in R_{\text{sh}}^+$ and $\alpha \gamma$, where $\gamma \in X(A) = \text{Hom}(A, \pm 1)$ is given by $A^\circ \mapsto 1$ and $c \mapsto -1$. Furthermore, all these weights of ρ_A have multiplicity 1, by Lemma 10. Depending on the action of c on V_0 the set X_{ρ_A} may contain additionally 0 and γ. In all cases the rank of $\langle X_{\rho_A} \rangle$ is $r + 1$, as required.

7. Spin groups

We keep the notation of the previous sections. In particular, the ground field k is algebraically closed of characteristic $\neq 2$. If $n > 2$, we denote by Spin_n the universal covering of the group SO_n (relative to the unit quadratic form $(1, \ldots, 1)$). For $n \leq 6$, this group is “special,” which implies that $\text{ed}(\text{Spin}_n) = 0$, cf. [R 00]. The situation is different for $n > 6$. In order to state it precisely, let us define an integer $e(n)$ by:

$$e(n) = [n/2] = \text{rank} \text{Spin}_n \quad \text{if } n > 6 \text{ and } n \neq 10.$$

Theorem 11. We have $\text{ed}(\text{Spin}_n; 2) \geq e(n)$ for every $n > 6$.

Proof. Let us write $e = e(n)$, and put $K = k(t_1, \ldots, t_e)$, where t_1, \ldots, t_e are independent indeterminates. We are going to construct a monomial quadratic form f_n of rank n over K with the following properties:

(i) the Stiefel–Whitney classes $w_1(f_n)$ and $w_2(f_n)$ are both zero. (For the definitions of the Stiefel–Whitney classes, see e.g. [GMS 03, §17].)

(ii) $\text{rank}(X_{f_n}) = e$, with the notation of the lines preceding Proposition 6.
Such a form f_n corresponds to an element $[f_n]$ of $H^1(K, O_n)$ which belongs to the image of $H^1(K, \text{Spin}_n) \to H^1(K, O_n)$ (because of (i)) and is such that $\text{ed}([f_n]; 2) = e$ (because of (ii), cf. Proposition 6). This shows that $H^1(K, \text{Spin}_n)$ contains an element ξ_n with $\text{ed}(\xi_n; 2) \geq e$; hence the theorem.

Here is the construction of f_n. There are four cases, depending on the value of n modulo 4:

(a) $n \equiv 0 \pmod{4}$, $n \geq 8$. We have $e = n/2$, which is even. We define f_n by:

$$f_n = \langle t_1, \ldots, t_e \rangle \otimes \langle 1, t_1 \cdots t_e \rangle.$$

Condition (ii) is obvious (but would not be true in the excluded case $n = 4$). As for condition (i), it follows from the general formulae:

$$w_1(f \otimes f') = 0 \quad \text{and} \quad w_2(f \otimes f') = w_1(f) \cdot w_1(f')$$

if rank(f) and rank(f') are even. Indeed this shows that $w_1(f_n) = 0$ and that $w_2(f_n) = (t_1 \cdots t_e) \cdot (t_1 \cdots t_e) = (-1) \cdot (t_1 \cdots t_e) = 0$ since -1 is a square in k.

(b) $n \equiv -1 \pmod{4}$, $n \geq 7$. Here $e = (n - 1)/2$, which is odd. We put:

$$f_n = \langle t_1, \ldots, t_e \rangle \otimes \langle 1, t_1 \cdots t_e \rangle \oplus \langle t_1 \cdots t_e \rangle.$$

Conditions (i) and (ii) are checked as in case (a).

(c) $n \equiv 1 \pmod{4}$, $n \geq 9$. Here $e = (n - 1)/2$, which is even. We put:

$$f_n = f_{n-1} \oplus \langle 1 \rangle = \langle t_1, \ldots, t_e \rangle \otimes \langle 1, t_1 \cdots t_e \rangle \oplus \langle 1 \rangle.$$

Conditions (i) and (ii) follow from case (a).

(d) $n \equiv 2 \pmod{4}$. This case splits into four subcases:

(d$_1$) $n = 10$. Here $e = 4$ and we put

$$f_{10} = f_8 \oplus \langle 1, 1 \rangle = \langle t_1, \ldots, t_4 \rangle \otimes \langle 1, t_1 \cdots t_4 \rangle \oplus \langle 1, 1 \rangle.$$

(d$_2$) $n = 14$. Here $e = 7$. We put

$$f_{14} = \langle t_7 \rangle \otimes \langle \langle t_1, t_2, t_3 \rangle \rangle_0 \oplus \langle t_4, t_5, t_6 \rangle_0 \rangle.$$

where $\langle\langle a, b, c \rangle\rangle_0$ means $\langle\langle a, b, c \rangle\rangle - \langle 1 \rangle$, i.e. $\langle a, b, c, ab, bc, ac, abc \rangle$. The simplest way to check condition (i) is to rewrite f_{14} in the Witt ring $W(K)$ as

$$f_{14} = \langle t_7 \rangle \cdot \langle \langle t_1, t_2, t_3 \rangle \rangle + \langle t_4, t_5, t_6 \rangle \rangle.$$

This shows that f_{14} belongs to the cube I^3 of the augmentation ideal I of $W(K)$, and that implies condition (i). Condition (ii) is easy to check.
(d₃) n = 18. Here e = 9. We put:

\[f_{18} = \langle t_1, t_2, t_1t_2 \rangle \otimes \langle t_7, t_8 \rangle \oplus \langle t_3, t_4, t_3t_4 \rangle \otimes \langle t_8, t_9 \rangle \oplus \langle t_5, t_6, t_5t_6 \rangle \otimes \langle t_7, t_9 \rangle. \]

In the Witt ring \(W(K) \), one has:

\[f_{18} = \langle \langle t_1, t_2 \rangle \rangle \cdot \langle t_7, t_8 \rangle + \langle \langle t_3, t_4 \rangle \rangle \cdot \langle t_8, t_9 \rangle + \langle \langle t_5, t_6 \rangle \rangle \cdot \langle t_7, t_9 \rangle, \]

and this shows that \(f_{18} \in I^3 \), hence condition (i). As for condition (ii), one checks that, if one makes the change of variables:

\[
T_1 = t_1t_7, \quad T_2 = t_2t_7, \quad T_3 = t_1t_2t_7, \quad T_4 = t_3t_8, \quad T_5 = t_4t_8, \\
T_6 = t_3t_4t_8, \quad T_7 = t_5t_9, \quad T_8 = t_6t_9, \quad T_9 = t_5t_6t_9,
\]

then \(f_{18} \) becomes \(e \)-reduced (as a monomial quadratic form in the \(T_i \)). This implies (ii).

(d₄) \(n \equiv 2 \pmod{4}, \ n > 18 \). We define \(f_n \) by induction on \(n \), as the sum of \(f_{n-8} \) and \(f_8 \) (with independent variables):

\[f_n = f_{n-8} \oplus \langle t_{e-3}, t_{e-2}, t_{e-1}, t_e \rangle \otimes \langle 1, t_{e-3}t_{e-2}t_{e-1}t_e \rangle. \]

Conditions (i) and (ii) are proved by induction on \(n \). This concludes the proof. \(\square \)

Remark. (1) The reader may wonder whether the quadratic form \(f_n \) used above could have been defined via an abelian finite subgroup of \(\text{Spin}_n(k) \) whose image in \(\text{SO}_n(k) \) is of type \((2, \ldots, 2)\). The answer is “yes”; this follows from the well-known construction of abelian 2-subgroups of \(\text{Spin}_n \) from binary linear codes (see e.g. [RY 00, pp. 1043–1044]). Indeed, this is how we first obtained case (d₃) above (\(n = 18 \)).

(2) When \(n \equiv -1, 0 \) or 1 (mod 8), the bound given by Theorem 11 can be slightly improved. This is due (in characteristic 0, at least) to Reichstein–Youssin [RY 00, Theorem 8.16]. More precisely:

Theorem 12. Assume \(n \equiv -1, 0 \) or 1 (mod 8), \(n \geq 7 \). Then:

\[\text{ed}(\text{Spin}_n; 2) \geq \lceil n/2 \rceil + 1. \]

Proof. We define a \((2, \ldots, 2)\)-subgroup \(A \) of \(\text{Spin}_n(k) \) as in Section 2, namely as \(A_0 \times \{1, \tilde{c}\} \), where \(A_0 \) is the 2-division subgroup of the maximal torus \(T \), and \(\tilde{c} \) is a lifting in \(\text{Spin}_n(k) \) of the element \(c \) of the adjoint group. The congruence condition on \(n \) implies that \(\tilde{c} \) is of order 2. We have rank \(A = r + 1 = \lceil n/2 \rceil + 1 \). Let us suppose first that \(n \equiv \pm 1 \) (mod 8). The spin representation is then orthogonal, and it gives a homomorphism

\[\rho : \text{Spin}_n \to O_N, \quad \text{with } N = 2^r = 2^{(n-1)/2}. \]
If $K = k(t_1, \ldots, t_r, u)$ we define $\theta_A \in H^1(K, A)$ as in Section 2. The image of θ_A by ρ corresponds to a rank N quadratic form q, which is easily shown to be isomorphic (up to a change of variables) to $\langle u \rangle \otimes \langle t_1, \ldots, t_r \rangle$. By Proposition 6, we have $\mathrm{ed}(q; 2) \geq r + 1$. This shows that the image θ of θ_A in $H^1(K, \text{Spin}_n)$ is such that $\mathrm{ed}(\theta; 2) \geq r + 1$, and the theorem follows. The case where $n \equiv 0$ (mod 8) is analogous: one takes for ρ the direct sum of the two half-spin representations (which are orthogonal, because $n \equiv 0$ (mod 8)).

8. Other examples

Theorem 13.

(i) $\mathrm{ed}(\text{HSpin}_n; 2) \geq n/2 + 1$ if $n > 0, n \equiv 0$ (mod 8).
(ii) $\mathrm{ed}(\text{PSO}_n; 2) \geq n - 2$ if n is even ≥ 4.
(iii) $\mathrm{ed}(2.\text{E}_7; 2) \geq 7$.
(iv) $\mathrm{ed}(\text{PGL}_n) \geq v_2(n)$ if $n > 0$.

(Undefined notation will be explained below.)

Proof (sketch). Let G be the group HSpin_n (respectively PSO_n, respectively $2.\text{E}_7$, respectively PGL_n) mentioned in the theorem. We apply the method of the previous sections to a suitable abelian subgroup A of $G(k)$, of rank $e = n/2 + 1$ (respectively $n - 2$, respectively 7, respectively $v_2(n)$) and to a suitable orthogonal representation $\rho : G \to \text{GL}(V)$.

We thus get a monomial quadratic form q over $K = k(t_1, \ldots, t_e)$, and a routine computation, based on Theorem 4, shows that $\mathrm{ed}(q; 2) = e$, hence the result.

Here are the definitions of A and ρ in each case (the “routine computation” is left to the reader):

Case i. The group $G = \text{HSpin}_n$ is the half-spin group, i.e. the quotient of Spin_n by a central subgroup of order 2 distinct from the kernel of $\text{Spin}_n \to \text{SO}_n$. This is well defined whenever $n \equiv 0$ (mod 4), with a slight ambiguity for $n = 8$, since in that case HSpin_8 is isomorphic to SO_8 (and hence $\mathrm{ed}(\text{HSpin}_8; 2) = 7$). The group G acts faithfully on the corresponding half-spin representation S. Since $n \equiv 0$ (mod 8), this is an orthogonal representation. Let T be a maximal torus of G. As in Section 2 we define A to be the subgroup of $G(k)$ generated by the elements of order 2 of T and by an element c of order 2 of $N(T)$ such that $ctc = t^{-1}$ for every $t \in T$ (such an element exists because n is divisible by 8).

The group A is an elementary abelian $(2, \ldots, 2)$-group of rank $e = n/2 + 1$. We choose for V the direct sum $S \oplus \text{Lie}(G)$.

Case ii. The group $G = \text{PSO}_n$ is the quotient SO_n / μ_2, i.e. an adjoint group of type $D_{n/2}$. The group A is the image in $G(k)$ of the diagonal matrices of square 1 in SO_n. It is a $(2, \ldots, 2)$-abelian group of rank $e = n - 2$. One takes for V the Lie algebra of G, with the quadratic form defined by $\text{Tr}(x \cdot y)$.

Case iv. The group $G = \text{E}7$ is a simply connected group of type E_7. Choose a maximal torus T of G, and let $c \in N(T)$ be such that $ctc^{-1} = t^{-1}$ for every $t \in T$. We have $c^2 = z$, where z is the nontrivial element of the center of G. Let A_0 be the kernel of $t \mapsto t^2$; it is an elementary group of type $(2, \ldots, 2)$ and of rank 7; it contains z. The subgroup A of G generated by A_0 and c is an abelian group of type $(4, 2, \ldots, 2)$ and of rank 7. The image of A in the adjoint group $G' = G/[1, z]$ is $A' = A/[1, z]$; it is elementary abelian of rank 7. If $K = k(t_1, \ldots, t_7)$, we have a canonical element $\theta_{A'}$ in $H^1(K, A')$; since -1 is a square in K, there exists an element $\theta_A \in H^1(K, A)$ whose image in $H^1(K, A')$ is $\theta_{A'}$. We choose for orthogonal representation of G the adjoint representation. The action of A on this representation factors through A', hence gives a monomial quadratic form q over $k(t_1, \ldots, t_7)$ and one checks that q is 7-reduced.

Case iv. Here $G = \text{PGL}_n$ and $e = 2m$, where m is the 2-adic valuation of n. If we write n as 2^mN, with N odd, there is a natural injection of $\text{PGL}_2 \times \cdots \times \text{PGL}_2$ (m factors) in G. Let A_1 be a $(2, 2)$-subgroup of PGL_2, and let $A = A_1 \times \cdots \times A_1$ (m factors). We have an embedding

$$A \to \text{PGL}_2 \times \cdots \times \text{PGL}_2 \to \text{PGL}_n = G,$$

and A is a $(2, \ldots, 2)$-group of rank e. We select for V the space M_n of $n \times n$ matrices, with the scalar product $\text{Tr}(x \cdot y)$. The group G acts by conjugation on M_n. (Here the monomial quadratic form q is the tensor product of a generic e-Pfister form by the unit form $\langle 1, \ldots, 1 \rangle$ of rank N^2; since N is odd, Theorem 4 shows that the essential dimension of q at 2 is indeed equal to e.)$

Remark. (1) We do not know how good are the lower bounds of Theorems 1, 11, 12 and 13. Some are rather weak: for instance, Theorem 1 applied to type B_n gives roughly half the true value of $\text{ed}(G; 2)$. What about those on Spin_n, HSpin_n, and E_8? These questions are related: an upper bound for HSpin_{16} would give one for E_8.

(2) Applying Proposition 6 to the generic quadratic form $q = \langle t_1, \ldots, t_n \rangle$ and the generic quadratic form $q' = \langle t_1, \ldots, t_{n-1}, t_1 \cdots t_{n-1} \rangle$ of discriminant 1 one recovers the well-known facts that $\text{ed}(\text{O}_n; 2) \geq n$ and $\text{ed}(\text{SO}_n; 2) \geq n - 1$ (if $n \geq 2$), cf. e.g. [R 00, Theorems 10.3 and 10.4].

(3) There are cases where the method “$A \to G \to \text{O}(V, q)$” fails to give any result. For instance, let G be a group of type E_6 (adjoint, or simply connected, it does not matter). By using the relations of this group with G_2 (cf. [GMS 03, Exercise 22.9]) it is not hard to see that $\text{ed}(G; 2)$ is equal to 3. One can show that there is no way to prove this by the $A \to G \to \text{O}(V, q)$ method: every orthogonal representation $G \to \text{O}(V, q)$ gives a map $H^1(K, G) \to H^1(K, \text{O}(V, q))$ which is trivial, hence gives no information on $\text{ed}(G)$.

Acknowledgments

Work on the present paper started in 2002, at the Centre Bernoulli, EPFL, Lausanne. We thank the Centre Bernoulli for its hospitality and its stimulating atmosphere.
References

[St 67] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967.