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I N T R O D U C T I O N  

Termination is an important property for term rewriting systems. To prove termination, 

N.Dershowitz [1] introduces quasi-simplification orderings that are monotonic extensions of the 

embedding relation. He proves that they are well quasi-ordered and a fortiori well-founded by 

using a theorem from Kruskal [5], which shows that file simple tree insertion order "rio (defined 

below) is a well quasi-ordering over a certain set of trees. (Well-founded means that every 

nonempty set contains at least one minimal element; well quasi-ordered means that every 

nonempty set contains at least one and at most a finite number of  noncomparable minimal 

elements.) Dershowitz's method is powerful, but cannot be used when the rewriting system 

.contains a rule whose right hand side is embedded in the left hand side. The purpose of this 

paper is to overcdme this constraint, when the rewriting system uses a finite ranked aiphabet, by 

generalizing Kruskal's theorem to obtain a family of quasi-orders TIO(S, co) that are strictly 

included in TIO but are still well quasi-orders. This generalization is parallel to the generalization 

described in the next paragraph. 

G. Higman [3] inoludes a well-known subsidiary result, Theorem 4.3, which has the 

following result as a special case: The set of all words Y.* over the finite alphabet E is well 

quasi-ordered by the simple word insertion order WIO. The relation t WIO t' means that word t' 

can be obtained from word t by inserting arbitrary words anywhere in t, including at the very 
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beginning and the very end. A. Ehrenfeucht, D. Haussler, and G. Rozenberg [2] have 

generalized this result, and obtain a well quasi-order by permitting only words from a specified 

set to be inserted, if that set satisfies a certain property, and if later insertions may be made inside 

earlier ones. Specifically, given a finite alphabet Y. and a set S of words over Y., they define two 

concepts, unavoidability of S and the word insertion order WIO(S), and they prove that WlO(S) 

is a well quasi-order if and only if S is unavoidable. 

S is defined to be unavoidable with avoidance bound k if every word t of length _> k contains 

some word S from S as a factor or subword, i.e., t contains S as a consecutive block of  letters. 

As illustrations, if Z = {a, b}, then it is easy to see that S = {aaa, ab, ba, bbbb} is unavoidable 

with bound 4 and S' = {aaa, ab, bbbb} is unavoidable with bound 6. The word insertion order 

WIO(S) is defined to be the transitive closure of the word insertion relation I s. t Ist' if and only 

if either (i) t = t'or (ii) t' can be obtained from t by inserting some word from S in t. Thus t 

WIO(S) t' if and only if t' can be obtained by starting with t and performing several insertion 

operations using words from S. Because later insertions may be made inside previous ones, the 

sequence ultimately found in t' between two positions that were adjacent in t may be a 

complicated combination of words from S. Also note that if several words from S are inserted in 

t to make t', then t' contains the last word inserted as a factor. This is the central connection on 

which the theorem of Ehrenfeucht et al. depends. 

Now we describe the simple tree insertion order TIO and a special case of Kruskal's 

theorem. In this paper, trees are always taken to be ordered rooted trees, so the children vertices 

of each vertex are linearly ordered. Let Z be a finite alphabet, and let T(Z) be the set of all trees 

with vertices labeled by elements from Z. A special case of the main theorem from Kruskal [5] 

states that T(2) is well quasi-ordered under TIO. Informally, the relation t TIO t'means that tree 

t' can be obtained from tree t by inserting arbitrary trees from T(2) anywhere in t. This means 

that an arbitrary tree can be inserted between a vertex and a child vertex. Also, an arbitrary tree 

can be inserted before the root, and another following any terminal vertex. In addition, a tree can 

be inserted following a nonterminal vertex, between any adjacent pair of its children vertices. 

In this paper, our goal is to generalize Kruskal's theorem on trees parallel to the way in 

which Ehrenfeucht et al. [2] generalize Higman's theorem on words. To make our theorem 

work, however, we need to make two changes. First, we need to assume that the finite alphabet 

Z is ranked. Second, we need to introduce a special new element co that is not in ~. (The 

meaning of ranked and the use of co are explained below.) Given a finite ranked alphabet Z and a 

set S of trees over ~, we define two concepts, unavoidability of S and the tree insertion order 

TIO(S, co), and we prove that TIO(S, co) is a well quasi-order if and only if S is unavoidable. 

(Later in the paper, TIO(S, to) is written <St0 for brevity.) 
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To explain informally what unavoidability and TIO(S, co) mean, we start with some 

elementary definitions, in which we emphasize the parallelism between words and trees. A word 

over  E has positions that are labeled by elements from E. A tree over Z has vertices that are 

labeled by elements from Z. Informally, we may refer to a position in a word or to a vertex in a 

tree by its label, when this is not ambiguous. The length of a word is the number of positions it 

has. The depth of a tree is the maximum number of  vertices in any path from the root to a leaf. 

is said to be a ranked alphabet if  each element of Z has an associated nonnegative integer called 

its afity. The special element co has arity 0. A tree is said to respect the afity values if for every 

vertex, the arity value of its label is equal to the number of  its children vertices. If  ~ is ranked, 

then T(~) means the set of  all trees over E that respect the arity values, and T(Z,o)) = T(~; u co) 

is defined similarly. 

The set S is defined to be unavoidable with avoidance bound k if every tree twith depth > k 

contains some tree S f rom S as a factor. A factor of t, see Figure 1, means any tree that can be 

obtained from t in the following way. 
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Figure 1 

First, for any vertex u in t, take the suffix tree t/u of  t, i.e., the portion of t that is suspended 

f rom u. (If u is the root of  t, then t]u --- t.) Then choose any set of  incomparable vertices vi in 

t/u,delete all vertices below any v i , and relabel every v i with [0. The result is a factor of  t. We 

say the factor is located at vertex u in t. Notice that there is a natural embedding of the vertices of 

the factor into the vertices of  tree that contains it. This is called the factor embedding. 

To insert a word S at position i of  another word t means to insert S just before i, i.e., to start 

S at position i, and to put the suffix word t/i just after S. To insert a tree S at vertex u of another 

tree t means to insert S just before u, i.e., to start S at vertex u, and to put the suffix tree t/u just 

after S -- but where after S? Unlike a word, tree S has many terminal vertices, and t/u could be 

inserted following any one of them. Furthermore, t/u could also be inserted following a 
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nonterminal vertex, in between any adjacent pair of its children vertices. 

To specify in what location the suffix tree will go, we can add a new terminal vertex to S at 

that location. Then putting t/u at that location is substitution of  t/u for the new vertex. To  

indicate the special meaning of the new vertex, we label it with the special symbol  co o f  arity 0 

that does not belong to Y.. To make the theorem work, however, we are forced to extend this 

idea and permit each of the trees in S to have one or more temainal vertices that are labeled by co. 

When S is inserted at vertex u in t, the suffix tree t/u may  be substituted for any one of  the co 

labeled vertices in S. Parallel to the definition of WIO(S) above, a tree insertion order TIO(S) 

related to TIO(S, 03) is defined to be the transitive closure of the tree insertion relation I S. (Later 

in the paper, TIO(S) is written <S.) t I s t' if  and only if either t = t'or t'can be obtained f rom t by 

inserting some tree from S in t. Thus t TIO(S) t' if and only if t' can be obtained by starting with 

t and performing several insertion operations using trees from S. Note that a later insertion may 

be made inside a previous one. Also note that if several trees from S are inserted in tree t to make 

tree t' then t'contains the last tree inserted as a factor. This is the central connection on which our 

theorem depends. 

Because of the excess 03 vertices, we are forced to deal in a general way with trees 

containing arbitrarily many m vertices, which is why we introduced T(E, 03) above. To make our 

theorem work, we also need to use TIO(S,  03), which is a broader relation than TIO(S).  

TIO(S, co) is the transitive closure of  IsUIo~. t I0~ t' if  and only if either (i) t = t' or (ii) t' can be 

obtained from t by substituting an arbitrary tree from T(Ig, co) for any 03 vertex. 

An illustration of an unavoidable set of  trees may be helpful. Let lg = {f, g, a, b} with arities 

2, 1, 0, 0. Then it can be proved in a few lines that the following set S o f  trees is unavoidable 

with avoidance bound 4. 
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Figure 2 

It is not difficult to prove that if TIO(S, 03) is a well quasi-order, then S is unavoidable. This 

is Proposition 7.2, which is proved in Section 7 in one paragraph, roughly as follows. Assume 

that TIO(S, 03) is a well quasi-order, and that S is not unavoidable. Then for every k, there is a 

tree deeper than k which contains no factor from S. Thus there is an infinite sequence of  such 
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trees. By the wen quasi-ordering assumption, this infinite sequence must contain a pair of  trees, 

t and t', such that t TIO(S, co) t'. Except for some details which must be taken care of, this means 

that a tree from S has been inserted into t', and hence that t' contains a factor from S, which is a 

contradiction. 

It is much more difficult to prove that if S is unavoidable, then TIO(S, co) is a well 

quasi-order. The proof, which occupies almost the whole paper, consists of  three parts. The 

f~rst part, in Section 3, is to prove Theorem 3.3, a compactness result: I f  S is unavoidable with 

avoidance bound k then there exists a finite subset S' of S that is also unavoidable with 

avoidance bound k. Since TIO(S' ,  co) is included in TIO(S, co), if the former is a well 

quasi-ordering, then the latter must be also. Thus it is legitimate to assume from the beginning 

that S is finite. 

The second part, in Section 4, is to prove two structure theorems, Theorems 4.14 and 4.22. 

They use both the unavoidability and the finiteness of  S. To state them, we introduce some 

definitions informally. Suppose E is a set of trees. A concatenation of  trees from E can be 

described in terms of  the diagram as a set of  trees e 1 ..... e n from E connected in a chain: ellS at 

the top, e 2 is substituted for an co vertex of e l, e 3 is substituted for an 03 vertex of e 2, and so on 

to any length. The set o f  all concatenations is called E*. A dendrite of trees from E can be 

described as a set of trees from E connected in a tree arrangement: one tree at the top, some trees 

substituted for co vertices of  the top tree, some trees substituted for co vertices of  trees at the 

second level, and so on. The set of  all dendrites is called E*. A nesting of trees from a set F into 

a set E means a tree obtained by inserting some trees from F into a tree from E at any vertices. 

E[F] means the set of  all such nestings. An internal nesting of trees from a set F into a set E 

means a tree obtained by inserting trees from F into a tree from E at any internal vertices (i.e., all 

vertices except the root). ElF; internal ] means the set of all internal nestings. Now make the 

following recursive definition: 

T O =S ,  

S n = Tn* for n>_0, 

Tn+ 1 = S[ S n ; internal ] for n>0. 

Intuitively, and ignoring the concatenation steps for the moment, T n is the set of trees we can get 

by inserting trees from S into trees from S ... into trees from S, where the insertion depth is 

limited to n levels. More precisely, concatenations of trees are inserted at each step. Finally, 

define R k to be all trees of  depth < k. 

Theorem 4.1: Suppose ~ is a finite ranked alphabet. Suppose S is a finite subset of  T(Y., co) not 

containing co that is unavoidable with avoidance bound k. Then T(Z) is contained in Rk*[Sk].. 
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The second structure theorem states that under the same hypothesis, T(Y.) is contained in a 

subset of  Rk*[Sk]. To describe the subset, some more definitions are needed. Trees in R k are 

called residual trees. Consider a tree t in Rk*[Sk]. Because t is in this set, it can be decomposed 

as a dendrite of trees in Rk[Sk], where each of the trees in Rk[Sk] is in turn decomposed into a 

nesting of  trees from S k into R k, and so on. Of course, many different decompositions may be 

possible. Relative to a particular decomposition, every vertex in t can be identified as belonging 

ultimately either to a residual tree or to a tree in S. Vertices belonging to residual trees are called 

residual vertices. Any path from the root of t to a leaf of t contains a certain number of residual 

vertices. The residual branch height of  this leaf, RBH for short, is the number of such residual 

vertices. The RBH of the decomposition is the maximum RBH over all leaves. The RBH of t is 

the minimum RBH for any decomposition. 

Theorem 4.2: Suppose E is a finite ranked alphabet. Suppose S is a finite subset of T(E, co) not 

containing ~0 that is unavoidable with avoidance bound k. Then T(E) is contained in the set of 

trees in Rk*[Sk] that have RBH_< k. 
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Figure 3 

The third part of the proof, in Sections 5 and 6, is to prove a well quasi-ordering result: 

Theorem 6.1: Suppose Z is a finite ranked alphabet. Suppose S is a finite subset of T(E, co) not 

containing co, and Q is a finite subset of T(E). Then any subset of Q*[S n] having bounded RBH 

is well quasi-ordered under TIO(S, co). 
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When this result is used, Q is R k. This part of the proof uses only the finiteness of S and not its 

unavoidability. Ignoring certain technical difficulties, the proof goes like this. First we show that 

S n is well quasi-ordered for every n. Then we show that Q[S n] is well quasi-ordered for every n. 

Last we show that for every n, any subset of  Q*[S n] having bounded RBH is well 

quasi-ordered. 

In Section 7, the three parts of the proof are quickly put together to yield our main theorem: 

Theorem 7.3: Suppose Z is a finite ranked alphabet. Suppose S is a finite subset of T(lg, co) not 

containing co. Then S is unavoidable if and only if T(Z) is is well quasi-ordered under TIO(S, 

co). 

To illustrate the purpose for which the theorem was developed, we then present a simple 

application, by proving termination of a particular term-rewriting system consisting of a single 

rule. Previous methods for proving termination cannot deal with systems like this one, because 

the left-hand side of the rule is embedded in the right-hand side. In Section 8 we discuss an 

extension of our main theorem to be published in the future, in which the alphabet Z is not finite 

but is an infinite well quasi-ordered set. 

1 PRELIMINARIES 

We use mostly standard language theoretic terminology and notation. We use N (resp. N+) 

to denote the set of non negative (resp. strictly positive) integers. For a finite set S, ISI denotes 

its cardinality. For sets S 1 and S 2, S 1- S 2 denotes the set theoretic difference between S I and 

S 2. Apartition of a set E is a set of subsets { E  i I 1 <  i < n E i C  E} such that 

Ul<i_< n E  i = E  a n d E  i n E j = O  f o r i e j .  

1.1 Relations and Orderings 

We define a binary relation R on a a set A as a subset of A 2. We say that a and b are 

R-related, written aRb, if  and only if (a,b) ~ R. We recall some properties of a binary relation 

R: 

R is reflexive if and only if for all a ~ A, aRa; 

R is irreflexive if and only if there is no a ~ A such that aRa; 

R is transitive if and only if for all a, b, c E A, aRb and bRc imply aRc; 

R is symmetric if and only if for all a, b ~ A, aRb implies bRa; 

R is antisymmetric if and only if for all a, b ~ A, aRb and bRa imply a-b; 
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We define a quasi-ordering on a set A as a reflexive transitive binary relation, a partial 

ordering as a reflexive, antisymmetric transitive binary relation, and a total ordering R as a partial 

ordering satisfying the additional condition: for all a,b~ A, a R b or b R a.,For any 

quasi-ordering -<, a<b will stand for a~b and a#b, and a.>.b for b_<a (< is the associated strict 

ordering). We also define the associated equivalence relation, =, by a=b if and only if a<b and 

a>-b. 

The cartesian product of two binary relations R 1 and R 2 on sets A 1 and A 2 respectively, 

written RlXR2, is a binary relation on AlXA 2 defined by (a 1, a 2) RI• 2 (bl, b2) if and only if 

a lRlb  1 and a2R2b 2. Since we define a relation as a subset, the inclusion, denoted c ,  of relations 

is only the inclusion of  sets, and a sequence of relations (Ri) is increasing if R icRi+  1 for every 

integer i. 

We also specify in this section some notation for infinite sequences used through the paper. 

Let  (0i) be an infinite sequence. An infinite subsequence (0'i) denotes (0.Ki)) where '~is some 

ascending map from N+ to N+ such that for every i, 0' i = 0./(i). Let E be a set of  sequences, 

(ti)~ N . A minimal sequence in E relative to a total ordering -< on the elements t i is a sequence 

(0 i) belonging to E such that: 

0 0 = inf { t O I for all sequences (ti) such that (ti) ~E} 

0i+ 1 = inf { ti+ 1 I for all sequences (ti) such that (t i) ~E and Vj  (l<j<i) tj = 0j } 

1.2 W o r d s  and  Trees  

Let Z be an alphabet. A word on Z is a mapping w:{1,2 ..... n}---~Z for some nEN. We 

denote by w i the element w(i) for i belonging to dom(w)={ 1,2 ..... n} so w=wl. . .w n. We use 

for the empty word (where n=0) and dora(w)= ~ .  The length of a word w, denoted by Iwl, is 

the number of elements of dora(w). Let U=Ul...u n and V=Vl...vp be two words. The word built 

by concatenation of u and v and denoted u.v or uv is defined by dom(uv)={ 1 ..... n+p}, 

uv(i)=u(i) for l<i_<_n and uv(i)=v(i-n) for n+l_<_i_<n+p. The set of words on Z is denoted by Z*. 

Let the word u/i be the suffix of u at i defined by dom(u/i)={ja N+[ i+j-lr  dom(u)} and 

u/i(j)=u(i+j- 1). 

Let us define now some binary relations on words in Z*. 

-Prefix ordering: -gprefix 
u -<prefix v if and only if dora(u) c dom(v) and u(i)=v(i) for all i E dora(u). 

-Factor ordering: -<factor 
u -<factor v if and only if u -<prefix v/i for some i. With this definition u <factor v if and only if 
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there exist two words w 1 and w 2 such that WlUW2=V. We say that u is a factor of  v. 

- H e a d  symbol ordering: HSO(<) 

For  any  quasi-ordering _< on Z, u HSO(_<)v if and only if  u(1)_<v(1). 

- W o r d  insertion ordering:WIO(_<) 

For any  quasi-ordering _< on Z*, uWIO(_<)v if and only if either (i) u=v  or (ii) uWIO(<)v/2 or  

(iii) u<v  and u/2WIO(_<)v/2. 

- W o r d  insertion ordering modulo a subset: WIO(S) 

For  any  subset S of  Z*, u I S v if and only if there exist u 1, u 2 in 2;* and s in S such that 

u = UlU 2 and v = UlSU 2. WIO(S) is the transitive closure of  I S. 

These relations are quasi-orderings on words. 

If  UNprefixV, then there is a unique word w such that u.w=v. This word is denoted u\v and 

spoken as "u under v". Thus u\v is the unique word such that u.u\v=v. Let S be a subset of  Z*. 

S is said to be unavoidable if there exists an integer k such that for every word u of  length greater 

than k there exists s in S with s -<factor u. 

W e  also use the classical notation on trees. 

Let  1; be an alphabet. A tree t on I; is defined by a subset, Vertex(t), o f  N+*,  the set o f  words 

on N+, and a map, named also t, from Vertex(t) into Z such that: 

i) Vertex(t) is closed under taking prefixes, i.e., V u e Vertex(t) V v <prefix u v~ Vertex(t) 

ii) V u e Vertex(t), u.i e Vertex(t) ~ V  j < i u.j e Vertex(t) 

The elements of Vertex(t) are the vertices of  the tree t. Let u be a vertex of  t. t(u) is the label of  

the vertex u. The vertex e is the root o f  the tree and the associated label is the head-symbol. The 

order o f  a vertex is the number of  vertices immediately below it. The maximum vertices under the 

prefix ordering are the leaves. We say that two vertices u and v are incomparable if and only if  

the words  u and v are incomparable under the prefix ordering if'prefix" We define height(u), also 

writ ten lul, as the length of  the finite sequence u~ N+* and depth(t) as the maximum o f  

{height(u) I u ~ Vertex(t) }. When Z is a ranked alphabet, the unique arity of  a symbol f in Z is 

denoted by ar(f). We denote by 2 i the subset of  I; whose elements have an arity equal to i. 

A tree t on a ranked alphabet I; is a tree which satisfies the additional property 

iii) V u e Vertex(t), ar(t(u)) = n ~ u.n e Vertex(t) and u.(n+l) r 

T(Z) denotes the set of  terms (or trees) over Z. When necessary, we add to the alphabet Z a set 

of  variables which have arity 0. These variables will be denoted by co, col . . . . .  co  n , 0 ~ ' . . . .  T(I;,o~) 

denotes the set of trees over s and {co}. 

Call a vertex of t internal if  vc-a. Let Internal(t) = Vertex(t)- {e }. Let u e Vertex(t). We denote by 

t/u the tree such that Ver tex( t /u)= { v f u v ~  Vertex(t)} and t /u(v)-- t (uv) .  W e  call it the 

subtree o f  t at u. Let u ~ Vertex(t). We  denote by t [u +- t'] the substitution of the tree t' in the 
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tree t at the vertex u as in [4] where Vertex (t[ u ~-  t'] ) = (Vertex(t) - Vertex(t/u)) u 

u.Vertex(t ') and t[u ~-- t'](v)= t(v) if  v ~ Vertex(t) - Vertex(t/u)), t'(u\v) otherwise. The notation 

t[ui ~ ti I 1 _<i < n ]  will be used instead of  t [Ul<--- t I ..... Un+-- tn] provided the u i are 

incomparable vertices. In addition to that, when a symbol 03 occurs only once in the tree t, we 

denote by t[03 ~-- t'] the substitution of  t' at the vertex u such that t(u) = o~. 

Let  us define now some orderings on trees in T(E,03). 

-Fac to r  ordering: --<factor 

s is a factor of t ,  or s <factor t, if t can be obtained from s in two stages: 

(1) Substitute trees from T(E, co) for terminal or-vertices of  s .  

(2) Substitute the preceding result for a terminal m-vertex of  a tree fromT(Z,03). 

In other  words s <factort i f  there e~:ist an integer n>-.0, trees t o . . . .  t n E T(E,03), vertices 

u0~ Vertex(t)  and Ul , . . . u  n E Vertex(s) with t 0 ( u 0 ) =  03, s(ui)=03 for l<i_<n, such that 

t=t0[u0+--s[ui ~-- ti I 1 < i < n] ]. Such a decomposition of  t is called a factorization of  t with 

respect to s. The vertex of factorization i's u 0. The depth of  factorization is lu01. If  S is a subset of 

T(Z,03) - {co}, a factorization of t with respect to S means a factorization of  t with respect to any 

s E S .  

-Ver tex  ordering: -<vertex 

S <vertex t i f  and only if  the number of  vertices of  s is less than the number of  vertices of t. 

- H e a d  symbol ordering: HSO(~) 

For  any quasi-ordering < on 2, s HSO(<) t if and only if  s(e)<t(e). 

-Tree  insertion ordering: TIO(<) 

For  any quasi-ordering 5 on T(Z), define the relation TIO(<) on T(E) recursively by s TIO(~) t 

if and only if either 

s = t, or  

there exists i~ Vertex(t) such that s TIO(<) t/i, or  

s<t and s / ls /2 . . . s /m WIO(TIO(<)) t/It/2.. ,  t/n where m (resp.n) is the order of  the root in s 

(resp. t). 

TIO(HSO(<))  is the tree ordering used in Kruskal [5]. 

It can be easily proved that these relations are quasi-orderings on trees. 

1.3 W e l l - F o u n d e d n e s s  a n d  Wel l  Q u a s i - O r d e r i n g  

D e f i n i t i o n  1.1 

Given  a set A and a quasi-ordering < on A, < and < are both called well-founded (or 
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ncetherian) if and only if each strictly descending sequence is finite. 

Definition 1.2 
Given a set A and a quasi-ordering _< on A, < is a well quasi-ordering on A if and only if  < is 

well founded and each set of pai_rwise incomparable elements is finite. 

We recall some important properties of these quasi-orderings. 

Proposition 1.3 

Let <1 and -<2 be two quasi-orderings on a set A. If_<l is included in <2, then -<2 ncetherian 

implies <1 ncetheriarl, and <1 a well quasi-ordering implies -<2 a well quasi-ordering. 

Note  that the two implicittions operate in reverse directions. This is why we use well  

quasi-ordering instead of ncetherian in most what follows. 

Proposition 1.4 

Let <1 (resp. -<2 ) be a well quasi-ordering on a set A 1 (resp.A2). The cartesian product 

<lX_<2 is a well quasi-ordering on AlXA 2. 

Proposition 1.5 

For any quasi-ordering < on a set A, the following conditions are equivalent (Higman[3]): 

(i) _< is a well quasi-ordering on A 

(ii) there is no infinite nowhere ascending sequence (i.e.for each infinite sequence (xi) of  

elements in A, there exist i < j such that x i < xj). 

(iii) each infinite sequence of  elements in A contains an infinite ascending subsequence. 

The insertion ordering on trees and words defined above are well quasi-ordering when the 

quasi-ordering used to build them satisfies this property. 

T h e o r e m  1.6 Higman [3] 

Let  < be a well quasi-ordering on 2;. Thus, WIO(<) is a well quasi-ordering on 2;*. 

T h e o r e m  1.7 Kruskal [5] 

Let  < be a well quasi-ordering on Z. Thus, TIO(HSO(<)) is a well quasi-ordering on T(Z). 
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Theorem 1.8 Kamin-L6vy[7]  

Let  < be a well quasi-ordering on T(Y.). Thus, TIO(<) is a well quasi-ordering on T(E). 

Theorem 1.9 Erhenfeucht-Haussler-Rozenberg[2] 

Le t  S be a subset o f  Z*. WIO(S)  is a well quasi-ordering on Z ' i f  and only i f  S is 

unavoidable. 

We  wish to generalize this result to trees as an extension of  Kruskal's theorem. In order to do 

that, we  define new operations on trees and give some properties of  these operations used later 

on. In section 5 we define -<S (same as TIO(S)) and <So0 (same as TIO(S, co) ). These are both 

analogous to WIO(S).  

2 I N S E R T I O N S  IN A T R E E  

Definition 2.1 Insertion of a t ree  s E T (Y,,co) in a t ree  t a t  the ver tex  u. 

(i) I f  u i s  a v e r t e x o f  t a n d  v i s  an co-vertex o f  s, then t [(u,v)] s is defined to be 

t[u<---s[v~--t/u]]. 

(ii) t [u] s = {t [(u,v)] s I v ~ Vertex (s) and s(v) = co}. 

(iii) We  use the abbreviations t * s for t[e] s where e is the root of  the tree t and t[]s when it 

is not necessary to specify the vertex of  insertion. 

Note that the insertion of  a tree s in a tree t at the vertex u defines a set o f  trees rather 

than a tree, and that a tree in T (Z) cannot be inserted because it has no m-vertices. Note also that 

s is above t in the diagram of  t * s. 

Example 2.2 

Let  Z be {y,  g ,  f } with arities 0, 1, 2 respectively. 

Insertion o f  s in t at vertex 2. 
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t =  

f 

Y Y  Y 

t [21 s = { 

f 

s =  

co co 

f 

/X 
g f 

I A '  
y f co 

A 
Y Y 

t [(2,2)] s = 

f 

g f 

I / k ,  
y co f 

A 
Y Y 

f 

/X 
g f 

I& 
y co f 

/ \  
Y Y 

Figure 2.1 

Proposition 2.3 

Let  t 1 , t  2 , t  3 be trees in T ( 2 , o 3 ) .  The set (t 1 r t 2) r t 3 

t 1 r (t 2 * t 3) but the converse is false (see Figures 2.2 and 2.3). 

is strictly included in 

Proof .  Let  t be an element of  (t 1 * t 2) * t 3. There exist v 2 in Vertex(t2) and v 3 in Vertex(@ 

such that t = (t 1 [ ( e, v2) ] t2) [ ( e, v3)] t 3. Thus t = t 1 [ ( e, v3v 2 )] ( t 2 [ ( e, v3)] t 3 ) belongs 

t o t  1 * (t 2 .  t 3 ) .  Another  tree t ' =  t 1 [ ( e ,  v2)] (t 2 [ ( e , v 3 ) ] t  3 ) always belongs to 

t 1 * (t 2 * t 3 ) but belongs to (t 1 * t 2 ) * t 3 if and only if v 3 is a prefix of  v 2. 

Without  changing the notation we extend the operation * to sets of trees and define two iterated 

versions of  it, E[ k] and E k. 

Definition 2.4 

Let  E and F be subsets of  T(E,m) and t an dement  of  T(E,co). 

t # E = U ~ E t  # ' c  and E # F = U t e E  t * F  

E[ 0] = {03} and E[ k] = E[ k-l] # E for an integer k > 0 

El*]=  u k e  N E[k] 
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E0 = {co} and E k = E • E k-I for an integer k>0 

E* = t...) k ~ N Ek 

As a consequence of the definition, we remark E 1 = E[ 1] = E. It is important to notice the 

difference between E[ k] and E k. As a consequence of Proposition 2.3, E k _~ Elk]. A typical 

element of  E[21 is shown on Figure 2.2, while Figures 2.2 and 2.3 both show elements in E 2. 

tl-  

t 3 

\ 
( t3*  t 2 ) *  t 1 c t 3 , ( t  2 I, t l)  

Figure 2.2 

t 3 *(  t 2 * t 1) 

t 2 

Figure 2.3 

Elements in E[*] are called concatenations of elements in E. Elements in E* are called dendrites. 

L e m m a  2.~ 

E[*] , E = E[*]. 

Proof .  This property is a direct consequence of the definition above. 

We generalize the previous definition to the insertion of several trees. The method of combining 

trees given here differs from the method used in a factorization in several ways. Here, trees are 

inserted anywhere; there they are inserted only at m-vertices. (At an m-vertex, insertion is 

equivalent to substitution.) As a result, here the insertion vertices can be comparable; there they 
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cannot.  We give a recursive definition. When the set U of  vertices o f  insertion is not a set o f  

pairwise  incomparable vertices, we split U into two parts: the maximal  vertices under the prefix 

ordering and the remainder. 

D e f i n i t i o n  2.6 I n s e r t i o n  of  n t rees  Sl, . . . ,Sn~ T ( Z , o ) )  in a t ree  t a t  the ve r t i ces  

u l , . . . , u  n ~ V e r t e x ( t ) .  

(i) Le t  {u i a V e r t e x ( t )  ] 1 <  i<n} be a set o f  i n c o m p a r a b l e  ve r t i ces  and 

{s i ~ T(Z,  to) [ l_<i<n} be n trees to be inserted. For any integer i (l~_<n), let u i aVer t ex ( t ) ,  

v i ~ Ver t ex ( s i )  and si(vi) = to. We write t = t [ . . . (u  i, v i ) . . . ] ( . . . s i . . .  ) if  and only if t' -- 

t [ui~--- si[vi~-- t/u i] ] l_<i<n]. 

(ii) t [ . . .ui . . .]( . . .si . . .)  denotes the following set: 

{t [ . . .  (u i, v i ) . . . ] ( . . . s i . . . )  I for every i, vi a Vertex (si) and Si(Vi)  = CO} . 

W e  use the abbreviation t [ ]( . . .si . . .)  when we do not want to specify the vertices of insertion. 

(iii) Let  U c Vertex(t) be the set of insertion vertices, P a map  from U to T(I;,to) and 

Max  (U) = { u [ u e U , u max imum for the prefix ordering ]. The  insertion is recursively 

def ined by 

t [U] P (U) = {t} if U is void, and 

t [U] p (U) = CI ~ e t[Max (U)I P (Max (U)) 'r [U- Max (U)] P (U- Max  (U)) if  not. 

We  also use the abbreviation t [ ]( . . .s i . . . )  when we do not need to specify the vertices of  

insertion. 

W e  draw a figure to show how these insertions are performed. 

c a s e  (i) 

~ - t /u  t /u '  

t / u " ~ _ _ ~  ~ _ ~ ' ~ ' - t / u  

Figure2.4  
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ease  (ii) 

ii S" 

u' t /u" - t /u  . - - ~ ~  

t / u - - ~ / ~  

Figure 2.5 

We state some tree insertion identities. Let t 1, t 2, t 3 be three trees in T(Z,co). We compute 

(tl[(Ul,g2)] t2 ) [( v l ,  g3 )] t3 as a function of the relative positions of the insertion vertices. 

Proposition 2.7 

Let t 1, t2, t3 be three trees in T(Z,co). Let u 1 be a vertex of t 1, g2 (resp. ~t 3) a terminal vertex 

of  t 2 (resp. t3) such that t2(lx2)=o~ (resp. t3(Ix3)=co). 

(1) If  u 1 andv 1 are incomparable in the prefix ordering, then vlis in t 1, and 

(tl[(Ul, Ix2)]t2) [(vl, P-3)] t3 --" tl[(VI, Ix3 ) ( Ul, g2 )] ( t3, t2 ) 

(2) I f v  1 is a prefix o fu l ,  then vlis in tl, and 

(tl[(Ul, g2)]t2) [(vl, tx3)] t3 -- tl[(Ul, ~t2) ( vl,  g3 )] ('t2, t3 ) 

(3) If  u 1 is a prefix of v 1 and Ulg 2 is a prefix of v 1 (Figure a), then 

v 1 = u1~L2w' and UlW' is in t 1, so 

(tl[(Ul, ~t2)]t2) [(vl, g3)] t3 --- tl[(Ul, ~t2 ) ( UlW', I't3 )] ( t2, t3 ) 
(~) If  ul is a prefix of  vl and v 1 a prefix o fu lg2  (Figure b. Insertion inside t2), then 

v t = u t w  and Ulg2=VlW' so Ul~L2=UlWW' sO ].t 2 = ww', and 

(tl[(Ul, I-t2)]t2) [(vl, g3)] t3 -'- tl[(Ul' w~t3w' )] ( t2 [( w, ~t 3 )] t 3 ) 
(5) If u 1 is a prefix of  vl, and v I and ulP-2 incomparable (Figure c. Insertion inside t2) 

v 1 = UlW 

(tl[(Ul, ~2)]t2) [(vl, }s t3 = tl[(Ul, g2 )] ( t2 [( w, g3 )] t3 ) 
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P roo f .The  only necessary  case to p rove  is the first one. T h e  others fo l low f rom the defini t ion.  

Let  x = tl[Ul<---- t2[I.t 2 4--- t l /Ul]  ] . Then  the subtree  o f  x a t  ve r t ex  v 1, "~/v 1, is equa l  to the 

subtree of  t 1 at v 1, t 1 / v  I. Then the fo l lowing equalities are satisfied. 

Let  0 be equal  to (t l[(u 1, g2)Jt2) [(v 1,/13)] t 3. 

0 = z[ v 1 ~--- t 3 [~t 3 +-- 'c/Vl] ] 

= '~ [ Vl ~--- t3 [ ~t3 4--- tl/V 1 ]] 

= t l[  Ul~-- t2 [ g2 ~'- tl/Ul ]][ vl  +-- t3 [ Ix3 *'- t l / V l  1] 

= t l[  v l  ~-- t3 [ g3 ~-- t l / V l  ]] [ Ul ~-" t2 [ g2 ~ -  tl/Ul ]] 

= (t 1 [(Vl ,IX3 ) ] t3 ) [ (u1 ,~2 ) ]  t2 

= tl [(Vl ,~3 ) ( Ul, l-t2 )] ( t3 ,  t2 ) by definit ion 

.~ - - - - - t  2 

u 1 

k. U l W l i  3 
V 4 - - - - - ' t  3 ~ 3  w , 

Figure a 

t . ,  

3 

vl--- ~ 
~2 

IIIIG 

Figure b 

Figure c 

Figure 2.6 

Propos i t i on  2.8 

Let  t and s be  trees in T(Z,t0). Le t  t' belong to t[ ]s. Then  s <factor t'. 
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P roo f .  I f  t' belongs to t[ ]s there are u in Vertex (t) and v in Vertex (s) with s(v) = co such 

that t' = t [ u <--- s [ v <--- t/u ] ] .  Let t 1 = t[u <--- 03] and t 2 = t /u .  Then t' = t 1 [ u <-- s[v<---t2]] 

and thus s -<factor t'. 

Propos i t ion  2.9 

Let  t, f ,  s and 0 be trees in T(E,CO). Let s <factor t and 0 ~ t' �9 t .  Then s -<factor 0. 

P roo f .  As 0 ~ t ' r  by  Proposition 2.8, t <factor 0. Now s -<factor t and transitivity complete 

the proof. 

As  a consequence o f  these properties we get t ~ t n �9 (tn. 1 �9 . . . ( t  2 r t l[  ]s )) . . . )  implies 

s <factor t. The converse holds also: 

Propos i t i on  2 .10 

Let t and s be two trees in T(Z, co ). Then s <factor t if and only if there exist an integer n and 

n t r e e s 0 1  ..... O n inT(E,  co) such that tE  O n r  1 �9 . . .(02 �9 ( 0 1 [ ] s ) ) . . . ) .  

P roof .  Let  t and s be such that s <factor t. There are, by definition, t 0, t 1 ..... t n in T( 2, o3), 

u a terminal co -vertex o f  t o and u i (1< i< n ) n terminal co -vertices o f  s such that the 

fol lowing equalities hold. 

t = t 0 [ u ~ s [ u i < - - - q l l < i < n ] ]  

= (t n [ (e,Un)] (tn.l[ (e,Un.1)] (.. .(t 2 [( e,u2)](tl[(e,Ul)]S))..,)))[(E,u)]to 

= t n [ (e,UUn)] (tn_l[ (e,UUn.1)] (. . .(t  2 [( e, uu2) ] ('~[(U,Ul)]S))...)) where 'c = to [u <---tl] . 

Thus t e 0nr 1 �9 ... (02 �9 01[ ] s ).. .) is a characterization of  the relation s <factor t .  

3 U N A V O I D A B L E  SETS 

Informally,  a subset S of  T( Z, 03 ) is unavoidable if  every tree which is large enough 

contains a factor belonging to S. Let us define this formally in terms of  the concept above. 

Def in i t ion  3.1 Factor - unavoidable 

A subset S o f  T(E, co) is said to be factor - unavoidable if it does not contain the tree o3 and if 

fllere exists an integer k such that for every tree t in T(E, co) with depth (t) > k there exists s in S 
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such that s <factor t .  We call  k the avoidance bound. 

R e m a r k .  By definition an unavoidable set does not contain the tree 03. By  Proposi t ion 2.10, 

another way to describe the property that a subset S is factor  - unavoidable  with avo idance  

bound k is the following: 

V t ~ T(Y,, 03 ), depth (t) > k 

3 s  ~ S, 3 t  1 . . . . .  t k ~ T ( Z ,  03) , t  ~ t  k *  . . . ( t  2 * ( t i [ ] s ) .  

E x a m p l e  3.2 

Let Y. --- {y,  g ,  h } with arities 0, 1, 2 respectively. 

Le t  s 1 = f(f(m,co),co), s 2 = f(03, f(co,co)), s 3 = g(g(o~)) and s 4 = g(f(~0,03 )), as in the 

introduction. 

Let  S = {s 1, s 2, s 3, s4}.  It is easy to prove it unavoidable with avoidance bound 2. 

Let  t = f(g(f(f(co ,03 ), g(03))), g(f(g( co ), co ))), t 1 = f(f(03,03), g (f  (g(03),03)) ) and t 2 = g(m). 

T h e n t  E t 2 , t l [ ] S  4 (Figure 3.1). 

But S 1 = {s l, s 2, s 4 } is not  unavoidabie. For  any integer 1 greater than 2, the tree gl(0~), def ined  

by gl(m) = g(g1-1(03)), has no factor in S 1. 

f f 

f g g 

A I 
t = f t =  1 (o o) 

A 
I 

co 

2 

g o~ 

I 
f 

/k 
03 

Figure 3.1 

Now, we show that, when 2 is a finite ranked alphabet, every unavoidable  set includes  a 

finite set which is unavoidable with the same bound. 
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Theorem 3.3 (Compactness) 

Let  lg be a finite ranked alphabet. When S c T(lg, co) is factor - unavoidable in T(IE, co) 

with avoidance bound k, there exists a finite set F c S n (T(N, co ) - T(Y. ) ) that is factor - 

unavoidable in T(E, o3) with the same bound.  

P r o o f .  Le t  F = S n {t I depth(t) < k}. Clearly F is finite. To prove F unavoidable, let t be 

a tree in T(I;,c0) with depth(t) _> k + 1. Let  us substitute co in t at each vertex u whose length is 

k + l  and for which  ar(t(u))e0. The new tree is denoted by t0=t[u~---col he igh t (u)=k+l ,  

a r ( t (u ) )~0] .  Because  depth (to) = k+ l  there is a tree s in S such that s_<factort 0. Thus 

depth(s)<__k+l. Since t0<factort, S<factort. This shows F is factor-unavoidable. It is easy to prove 

that the avoidance bound remains unchanged. 

Lemma 3.4 

Let  Z be a finite ranked alphabet. When S c T(Z, co) is factor - unavoidable in T(Z, co) with 

avoidance bound k, for every term t such that depth(t)>_k+l there exist a tree s in S, a vertex u of  

t and n trees t 1 . . . . .  t n such that t = tl[U+--s[uie--ti I 2 < i _<l][Ul<-- tl/u] ] where u i (1_<i<1) are 

terminal vertices o f  s and height(u)5~k. 

Proof ,  It  is an immediate consequence o f  the previous theorem, taking in account the fact that s 

is different from co. 

4 S T R U C T U R E  Theorem 

N o w  we are going to show how it is possible to build every tree from trees whose depth is 

less than the avoidance bound by insertion of  unavoidable trees. From an unavoidable set S we 

build by induction sets o f  trees T n and S n for n>0. We  use two operations, insertion at any 

internal vertex, and concatenation, which is insertion at the root. 

T O is S. For  every integer n, each element of  S n is the concatenation of  a sequence of trees 

belonging to T n. Each element of  T n is built by insertion, at internal vertices, o f  trees from Sn_ 1 

in an element of  S (Figure 4.1). 
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TO= S T 1 T T 3 . . . . . .  
2 

'~oe~ S 1 ~2 $3 . . . . . .  concatenation insertion 

Figure 4.1 

Definition 4.1 

L e t  E be an alphabet, 03 a variable not belonging to ~ and S a subset  of  T(N, 03) - T(N). Let  

us define the following sets. 

T 0 = S  

For  n >0 ,  Sn = Tn[*] 

F o r n 2 1 , T n =  Use s UUcintemal(s) Up:U...,Sn_ 1 s [ U ] p ( U )  

Let  01, 02, 0 3 belong to Sn. 1 and s to S. Figure 4.2 displays an element o f t  n. 

01 

Figure 4.2 

0 
2 

Lemma 4.2 

For  every integer n, the tree co belongs to S n and T n c S n. 

P r o o f .  For every set E, E[*] ~ E[0] = {o)} and E[*] ~ E[ 1] = E by definition. 

C o m m e n t .  o~ does not belong to T n for  any n. 
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Lemma 4.3 

For every integer n, S c T n. 

P r o o f . F o r  any tree s, when U is void, s [ U] p(U)  = s. 

Lemma 4.4 

For every integer n, T n c Tn+ 1 and S n c Sn+ 1. 

P roo f .  I f  T n c Tn+ 1 then S n c Sn+ 1 by definition, and if S n c Sn+ 1 then Tn+ 1 C Tn+ 2. As 

T O = S c S[*] = T 1, the Proposition is true by induction. 

C o m m e n t .  In general, it is not true that Sn_ 1 c T n. Furthermore we show, on the example 

below, that, in general, S n ,  S n is not included in S n. Let S= { f(o~,o3),g(g(co))}.Let tl=g(g(o~)), 

t 2 =g(g(co)) two trees different f rom co in S n, t3=f(o),o3) a tree in T n. Then t3114--tl] e S n, 

t3[l~--tl ,2~t2]=f(g(g(o~)),g(g(to))) ~ Sn but f(g(g(c0)),g(g(m)))e Sn* S n. 

Let  t I, t 2, t 3 belong to T n. We  represent an element which belongs to S n (Figure 4.3, left ) and 

one element which belongs to S n * S n and not to S n (Figure 4.3, right). 

t 2 t 

Figure 4.3 

Lemma 4.5 

Let  n, n' be two integers such that n'<n. S n * S n, c Sn. 

P roo f .  W e  prove this result by induction on n. The basic case is n=l  and n'=0. Let t e $1 and 

t ' e  S O . As t' belongs to S 0, t' = (((x m * "~m-1) * "" ) "c2 ) * "~1 with for every i ( l<i<m) 

"tie S = T o c T  1. Let  e be an element o f  t * t'. There exists an index i ( l< i<m) such that 

Oe ((Zi[u4-t, v4--(('Cm * " ' ) * Z i + l  )] ~ Zi-1) * ' " )  * '~1 with u, v terminal o)-vertices of ~i. In 
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order to get the result, it suffices to prove that 'q[u<----t, v+--(('c m * -..)*'ci+ 1 )] belongs m S 1. By  

defini t ion '~ i [v{ - - ( ( '~m�9  )] belongs to T 1. By def ini t ion,  once  again,  

'q[u+---t, v<---(('~m* "")*'~i+l )] is a subset of t * 'q[v~--(('tm �9 "" ) �9  )] which is incIuded in S 1 

by Lemma 2.5. We suppose now the property true for every p and p' with p '<p and p<n. Let  

t~ S n and t'~ S n, . As t' belongs to Sn,, t' = ((('c m * '~m-1) �9 "" ) 't:2 ) �9 't:l with for every i 

(l<i<.g_m) ' q e  Tn.C Tn_ 1. Let 0 be an element of t * t'. Thus 0e (('~i[u~-t,vt---(('~ m �9 .-- ) *'~i+l 

)] , Xi_l) , ...) �9 "c 1. Note that (('c m � 9 1 4 9  ) belongs to Sn, C Sn. 1. x i [ u ~ t ,  v<---(('~ m 

�9 ...)*'ci+ 1 )] belongs to S n because, either v is a vertex of  the element of  S from which 'q is 

built and, by definition, '~i[v~---(('Cm*...)�9 )] belongs to T n, or  v is a vertex v z of  an element 

1: of Sn,.lWhich is a factor of "q and by induction '~[v,~+---(('~ m �9 . . . ) �9  '~i-1)] belongs to Sn. 1 and 

thus 'c i [v+--( ( 'c  m * ... ) *  "ci+ 1 )] belongs to T n. By def in i t ion ,  once  aga in ,  

'q[u~---t, vt---(('c m �9 �9 'q+l )] is a subset of  t �9 m �9 �9  1)] which is included in S n 

by Lemma 2.5. As a particular case we get S n * S c S n for every integer n. 

D e f i n i t i o n  4.6 

We call the nesting level of a tree t the smallest integer n such that t belongs to S n, 

In the Lemma below we prove that inserting a tree s ~ S into a tree t ~ S n sufficiently near 

the root does not increase the nesting level. The following example gives an intuitive idea of  this 

property. 

E x a m p l e  4.7 

Let s = {f, g, y} with arities 1,1,0 respectively and o3 be a variable. 

Let S = {s= g(f(m))} and t=g(g(g(f(g(f(f(f(m)))))))). 

t[(11,11)]s = g(g(g(f(g(f(g(f(f(f(to)))))))))). 

As we can see in Figure 4 .5 ,  t and t[(11,11)]s both belong to S 2 (the brackets show membership 

in T0,T 1 and T2, working from inside out). The nesting level remains unchanged. 

I I I ,  ,, , I  
t = g (g (g (f (g (f (f (f ( o3 ) ) ) ) ) ) ) )  
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I ,, , ] 
[ .  ,, . , I 

t [(11,11)1 s = g (g (g (f (g (f (g (f (f (f ( 

I I . . . . .  
co ) ) ) ) ) ) ) ) ) )  

Figure 4.5 

P r o p o s i t i o n  4 .8  

Let Ig be an alphabet and co" a variable of  arity 0 which does not belong to Z. Let S be a 

subset o f  T(E, CO) - T(I~ ). Let  t be in S n and u in Vertex(t) such that lul < n. For each s in S, t[u]s 

is included in S n. 

P roo f . (by  induction on n ) 

1) Case n = 0. The  insertion can be performed only at the root. Thus u = e and t[u]s --- t * s is 

included in S O by  Lemrna 2.5. 

2) Let  us suppose the property true for every n'<n. I f  u = e, t [u]s = t , s is included in S n by 

Lemma 4.5. If  ur there exist k trees tj in Tn, an integer j (l<j<__k) and a vertex uj of  tj such that 

t e (. . .(t  k r tk_l)r . . . ) r  t 1 andt[u]s C (. . .( . . .( tkr tk_l)r ...(tj[uj]s)) �9 . . . ) � 9  1. By definition, 

if  tj[uj]s is included in Tn, then t[u]s is included in Sn.Then it is sufficient to prove that, if t 

e Tn, s ~ S, u e Vertex(t) with lul < n and v ~ Vertex(s) with s(v) = to, t [(u, v)] s belongs to 

T n. By definition, there exist a tree "c belonging to S, m trees 0 i ( l ~ r n )  belonging to Sn. 1 and 

fo r  eve ry  i ( l _ i < m )  a pair (ui, vi) f r o m  Vertex('c) x V e r t e x ( 0 i )  such that 

t = "~ [ . . . (ui ,  v i ) . . . ] ( . . .0 i . . . ) .  In order to show that t[(u,v)]s belongs to T n we consider two 

snbcases i) and ii). 

i) There exists an integer i (l_<i_<m) such that ui <prefix u (i.e. u = uiw ) and we  Intemal(0i). 

Intuitively, the insertion is performed inside 0 i. Consider the relationship between u and uiv i. 

U>prefixUiV i is impossible because u is in 0 i. If  u=u i, 0 i �9 s c Sn_ 1 by Lemma 4.5, so t[u]s is 

included in T n. 

I f  u and uiv i are incomparable, then by Proposition 2.7, case 5, 

t[(u,v)]s --- '~[...(Ui_l,Vi_l),(Ui,Vi),(Ui+l,Vi+l)...](...0iol,0i[(W,V)]S,0i+l... ) 

I f  u <prefix uivi,  uwi = uiwwt = uivi and thus ww i = v i. By  Proposition 2.7, case 4, 

t[(u,v)]s = '~[... (ui. l,Vi. 1),(ui,wvwi),(ui+l,Vi+l)... ](. . .0i_l,0i[(w,v)] s ,0i+l. . .  ) 

By  definition o f  T n , u i r e thus n __. lul -- luil+lwl > l+lwl and Iwl < n-1. By induction we get 

0i[(w,v)]  s e  Sn_ 1 a n d t [ u ]  s c T n. 
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ii) u ~ In te rna l (z )  but there is no integer i such that u i <prefix u (i.e. u = uiw ) and 

w e  Internal(0i) .  Intuitively the insertion is performed inside "r but not inside a 0 i. By  

Propos i t ion  2.7, cases 1 and 2, there exists u'E N + *  such that lu'l < lul and 

t [(u,v)] s = ~ [. . .(ui,vi). . .(u ' ,v)] ( . . .0i. . .s).  As s belongs to Sn_ 1, this tree belongs to T n by 

definition. 

In conclusion, in both cases t [u] s is included in T n provided t is in T n and lul < n. 

More generally, we might hope to get the same result when an element of  S n, is inserted in an 

element of  S n at a vertex such that lul < n - n', but the result is not true. However, as described 

in Corollary 4.10, the resulting tree can be split into an element o f  S n and an element of  S n, 

(Figure 4.4). If  we add the condition that v is internal to the lowest portion of s' (condition (iv) 

in the following lemma) then the result is true. 

L e m m a  4.9 

Suppose s e Sn, s' = S'l[U'l+- s'2[u'2<--- s'3[ ...]]] ~ Sn,, u ~ Vertex(s), v e Vertex(s ') ,  

v(s') = co, and that 

(i) n' < n and lul _<n - n', 

(ii) Vi (l_<i<l) s' i ~ Tn,, 

(iii) Vi (l<i<l-1) u' i is a terminal m-vertex of  s' i, 

(iv) v = u' 1 u'2.. .  U'l.lV' and v'~e. 

Then s[(u, v)]s' ~ S n, 

P r o o f ,  We prove the result by induction on n.When n=l ,  n'=0 and lul=l or  0. When u=e 

s[(u,v)]s'  e S n as seen in Lemma 4.9. When lul--1, the insertion cannot be performed at an 

internal vertex of  an element of S O inserted itself in an element of  S. Thus, by definition, the 

resulting tree belongs to S 1. In the general case, let n be an integer satisfying the induction 

hypotheses: 

For  every re<n, n'<m, s ~ S m, lul<m - n' and s ' =  S'l[U'l~--- s'2[u'2~--- s '3[ . . . ] ]]  ~ S n, 

s[(u,v)]s '  ~ S m. 

Let  s ~ S n. Then s = s l [u le -  s2[u2~- s3[ ...]]] with every s i belonging to T n and, by definition 

o f t  n, s i = t3 i [ ...(uji,vji)...](...0ji...) with (r i ~ S and 0j i E Sn_ 1. There are three cases: 

i) There exists i such that u e Internal(cri). As S n, is included in Sn_ 1, si[(u, v)]s' E T n and 

s[(u, v)]s' ~ S n by definition. 

ii) There exists i such that u is a vertex u i. Then by the hypothesis on v, s[(u, v)]s' can be 

written out using insertions from T n, then insertions from Tn,, then insertions from T n. As T n, is 
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included in T n, the resulting tree satisfies the definition of  S n. 

iii) There exist i andj  such that u is an internal vertex u 0 of 0j i with I u 0 I<lul. As l<lul<n-n', 

and thus n '<n- land lu01<n-n'-l, the induction hypothesis implies that the tree built by insertion 

of  s' in 0j 1 belongs to Sn. 1 and in conclusion s[(u, v)]s' e S n. 

C o r o l l a r y  4.10 

Let s ~ S n, s' = S'l[U'l 4-- s'2[u'2+-- s'3[ ...]]] ~ Sn,, u ~ Vertex(s) and v ~ Vertex(s') with 

(i) n' < n and lul <n - n' 

(ii) Vi (1<i<1) s' i ~ T n, 

(iii) Vi (1<i<_1-1) u' i is a terminal vertex o f  s' i 

(iv) v = u' 1 u '2 . . .  U'k.l-r with k<l and v'~e. 

If  v and u' 1 u'2.. ,  u' k are incomparable vertices then s[(u, v)](s '- s ' / u '  1 u' 2.. .  U'k)a S n and 

S' /U' lU'2 . . .  U'k~ Sn,. 

S 1 

1 

s, k 

U'. . .  U' 
1 2 k 

A 

Figure 4.4 

We inlxoduce now a subset Q o f  T(Y,,r0) and we insert inside trees belonging to Q nested 

trees f rom S. 

Definition 4.11 
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Let Q be a subset of T(Z,o)) and S a subset of T(X;,r - T(Z). 

Q[Sn] = ut~ Q UUcVertex(t) Up:U~snt[U]p(U)- 

Remarks and notation. 

1) S n is included in Q[Sn] when co belongs to Q. 

2) For every integer n, Q is included in Q[Sn]. 

3) From now on, we deal with concatenations of sets like Q[Sn]. To simplify notations we write 

Ql[Sn] or Q*[Sn] instead of (Q[Sn]) 1 or (Q[Sn])*. 

Lemma 4.12 

Let Q be a subset of T(Z). Q*[Sn] is stable under the operation r Q*[Sn] r Q*[Sn] = 

Q*[Sn]. 

Proof. Notice that Q is a subset of T(Z). This restriction is necessary to avoid the 

concatenation of trees from Q. Let t and 0 be trees in Q* [Sn]. There exist integers 1 and k such 

that t ~ QI [Sn] and 0 ~ Qk [Sn]. We show by induction on l+k that there exists an integer m 

such that tr 0 c  Qm[s n] . If l+k = 2 (i.e. 1 = k = 1 ) then, by definition, t �9 0 c  Q 2 [Sn]" Let 

us suppose the property true for every pair (1, k) such that l+k < n. If  1=1 then, by definition, 

t r  Otherwise there are t 1 a Q[S n] and t2a QI'I[Sn] such that t E t 1 �9 t2. There 

exists an integer p such that t 2 r 0 c Q p  IS n] (induction hypothesis). From (t 1 �9 t 2 ) �9 0 

included in t 1 r ( t 2 r 0) (Proposition 2.3), we can deduce t r 0 c t  I �9 (t 2 �9 0 ) c  Qp+l 

[Sn] and this prove the property of stability. 

Let S be an unavoidable subset of T(Z,0~)-T(~) and k its avoidance bound. We are 

able to prove now that T(E) is included in Rk*[Sk] where R k is the subset of trees from T(~) 

whose depth is less than or equal to the avoidance bound k. 

Definition 4.13 

Rn= {t ~T(Z) I depth(t)_<n}. 

Theorem 4.14 (S t ruc ture  Theorem) 

Let S be an unavoidable subset of T(Z,co) - T(2) with avoidance bound k. Then T(Y.) 

Rk*[Sk]. 

C 
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Proof .  For  every integer n, R n c R n[Sn] c Rn*[Sn], so T(Ig) c tAnE NRn C tA ne NRn * [Sn,]. 

Let  0 a minimal tree (with respect to the number  of nodes) in T(2)  - Rk*[Sk] .  As 

R k c Rk*[Sk], depth(0) 2 k+l.  Furthermore, as S is unavoidable with avoidance bound k, 

there exists an s in S with s -<factor 0. Hence, we deduce from Lemma 3.4 the existence of an 

integer n, n+l trees t o .... ,t n belonging to T(2,o3) and a vertex u in t o with lul _< k such that 0 

belongs to t o [u<--t 1 �9 ( ... (t n r s ))]. Clearly t0[u~--tn], t 1 ... . .  tn_ 1 each has fewer nodes 

than 0. Since 0 is minimal, these trees belong to Rk*[Sk]. By Proposition 4.8, as lul <_. k, 

t O [u~--(t n �9 s ) ]  c Rk*[S k] and then, by Lemma 4.12, 0 a  Rk*[S k] and we g e t a  

contradiction. 

Let S be an unavoidable set with avoidance bound k. The theorem above states that any 

tree of  T(X;) either belongs to R k whose elements are called remainders, or can be split into trees 

each of which is built by insertion of nested trees from S into a remainder. From this result we 

prove furthermore that there exists, for any tree, a decomposition satisfying an additional 

property: the number of remainder vertices we go through from the root to any leaf is less than 

the avoidance bound. 

Definition 4.15 Residual Branch Height 

Informally, RBH(t) is the maximum, over all leaves, of the number of vertices belonging to 

remainders on each path from the root to the leaf. Formally, let Q and S be two subsets of  T(I~) 

and T(Ig, co) respectively and k an integer. Let ta Q*[Sk] and t = to[...(ui,vi)...](...si[wji ~---0j i I 

j e l i ] . . . )  with t o ~ Q, s i ~ S k, 0j t ~ Q*[S k] be a decomposition of t. Define the residual branch 

height of  this decomposition of t, D(t), with respect to Q and S recursively by 

RBH (D(t)) = max (height(t0)+l, max i (luil+maxj RBH (0ji))) if  t ~ co. 

and RBH(t), the residual branch height of the tree t, by the minimal residual branch height of all 

such decomposition of t if t~co and RBH(o~) = 0. 

Definition 4.16 
Let Q and S be two subsets of T(Y.) and T(Y,, co) respectively and k, m be integers. Define 

QIImll[Sk]= {t ~ Q* [Sk] I RBH(t)_<m}. 

We shall need property P. 

Definition 4.17 P r o p e r t y  P 

Let t s Rk*[Sk]. t satisfies property P if and only if there exists a decomposition D(t) of 
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t = to[. . .(ui,vi). . .]( . . .si[wj i <---0j i [j �9 Li]. . . )  such that 

height(t0) < k 

V i , j ,  0j i E Rk* [Ski 

V i, s i �9 S k (s i is called a decomposition pattern) 

V i, u i minimal under prefix ordering over the vertices of insertion, implies s i �9 Sk.luil (a 
decomposition pattern at a minimal vertex is called a minimal pattern) 

RBH(t) = RBH(D(0) < k+l  

Lemma 4.18 

Let t e Rk*[Sk] satisfy property (P). Choose a decomposition of  t o f  the kind guaranted by 

Property P. If  si is a minimal pattern, then for every j RBH(0j i) < k+l-luil. 

Proof .  It follows f rom the definition o f  RBH(t). 

Lemma 4.19 

Let  t �9 Rk*[S k] satisfy Property P. Choose a decomposition of  t o f  the kind guaranted by 

Property P. Let w be a vertex of t such that no u i is a prefix of  w. Then RBH(t/w) < RBH(t)  - 

Iwl. 

Proof .  The decomposition of  t/w,D(t/w), induced by that of  t satisfiesthe following inequalities: 

RBH(D (t/w)) < max (height(t0/w) + 1, maxui~or~fjxw (luil - Iwl + m a x  j ( RBH (oji)))) 

< max (height(t0) - Iwl + 1, maxui (luil - Iwl + max j ( R B H  (0ji)))) 

< RBH (t) - Iwl 

Thus RBH(t/w) -< RBH(D (t/w)) < RBH (t) - Iwl. 

Lemma 4.20 

Let t �9 Rk*[Sk] satisfying Property P. Choose a decomposition of t o f  the kind guaranted by  

P r o p e r t y  P. Let  w be a ver tex  of t such that no u i is a pref ix  of  it. Le t  

0 = 00[. . . (vi ,gi) . . . ]( . . . ( l i [ . . . ] . . . )  be a tree satisfying Property P. Suppose that 

i) at every minimal vertex vi, ~i �9 Sk - Ivil - Iwl, 

ii) RBH (0) < k + 1 - Iwl, 

iii) height (00) < k - Iwl. 

Then t[w ~ 0] satisfies (P). 

Proof .  We deduce from the given decomposition of 0 and the previous one of t a decomposition 
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o f  t[w ~-- 0] that is t o [w ~-- 00] [ . . . (u i, vi) . . . (wvj,gj) . . . ]( . . .s i[ . . . ]  . . .Gj[.. .] ...). 

height( t o [w ~ 00]) = max (height (to), Iwl + height (00)) 

max ( height (to), k) 

< k  

V i, s i e S k. V i, cr i E S k 

V u i minimal, s i ~ Sk.lull 

V v i minimal, cr i e Sk.lvil.lw I = Sk.lwvi t 

R B H  ( t[w <--- 0] ) < max ( RBH (t), Iwl + RBt t  (0)) 

< max ( RBH (t), Iwl + k + 1 - Iwl ) 

< k + l  

Proposition 4.21 
Let  S be an unavoidable subset of  T(Y.,0~)-T(lg) with avoidance bound k. Every  tree 

teRk*[S k] satisfies property (P). 

Proof .  Let  t be a tree in Rk*[Sk] not satisfying (P), minimal with respect to <vertex" Clearly the 

elements  of R k satisfy (P), thus height (t) > k. As S is unavoidable with bound k, by Lemma 

3.4, there  exist s e S, 0 0, 01. . .  O n in T(Z,r and u in Vertex(0 0) such that lul < k and 

t=00[u~--s [ w i ~-- 0 i I l<i<n]]. Let us choose, among these decompositions, one in which u is 

minimal  under the prefix ordering. For  every i (l<i<n), t i = 00[u~--0 i ] satisfies (P) because 

ti<vertex t, and the associated decomposition is t i = ~ [...(uj, vj). . .]( . . .sj[wlJ ~---xlJ I I el_J] . . . )  

where vj is a vertex of  sj. There are two cases. 

Case  1. There exist a tree t i and an index j such that ujvj <prefix u. In fact, we consider such 

a uj minimal for  the prefix ordering. In the following, let ususe  (v, IX) for the pair (uj, vj), r for 

sj e Sk_lv I, 01' for  xlJ, L for  LJ and w' I for wJ 1 (Figure 4.6). 

With this notation, as t i satisfies (P), we get 

t i = "c [(V, ~).. .]((J[w' 1 4--01'11 e L ] . . . )  

6 Sk.lv I 
V 1, 01'e Rk*[Sk], RBH( 01' ) < k + 1 - Ivl (this is a consequence of  Lemma 4.19). 

Let  K = { u'j e Vertex(t) I j an integer, u' -<prefix v and u'j and v incomparable}.  For every 

w e  K, the decomposi t ion of  the subtree of  t at w, t/w, induced by the decomposit ion of  t i 

satisfies (P). Furthermore, if v i is a minimal vertex of  this decomposition, the associated minimal 

pattern belongs t o  Sk_lvil.lw I and RBH(t/w) <k + 1 - Iwl (Lemma 4.20). 

Le t  t' = t[ve-t/v~t][W~---col w e K] where co is constant (Figure 4.7). To build t' f rom t, we 

remove the decomposition pattern r and substitute for it the subtree t/vIX, and then substitute the 
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constant co at all the minimal vertices of t that are not prefixes or suffixes of  v. 

O. 
1 

V 

8 e 2 

u 

e i  

Figure 4.6 

t /v  

t)  

Figure 4.7 

As t'<vertex t, t' satisfies property (P) and has the decomposition below: 

t ' =  'C'[...(ui', vi')...](,.,Si'[ wj i <--Oj i [j e L i ] , . , )  

We prove that (P) is preserved when t is rebuilt from t'. 

Notice that there is no ui'v i' that is a prefix of v because of the shape of the tree above the vertex 

v and because, in the decomposition of  t, the vertex u where there exists an element of  S has 



366 L, Puel 

been chosen minimal for the prefix ordering. Thus we have to consider the two cases below. 

-There is no ui'<prefi x v. The decomposition of  t'/v deduced from the decomposition of t' 

satisfies (P), RBH(t'/v) <k + 1 - Ivl (Lemma 4.19) and height(t'/v)<height(t')-Ivl. Furthermore 

cr[tx4--tTv][w'le--0'llle L] satisfies (P) because R B H ( e [ g e - t ' / v ] [ w ' l ~ 0 ' l l l E  L])=max 

(RBH(t'/v),maxle L( RBH(0'I))~k+I-lvl and the other properties are trivially satisfied. Now, 

Lemma 4.20 allows us to conclude that t=t'[ve-- c[I.te--t'/I.t][Wl~---0'llle L]][we--t/wl w e K] 

satisfies (P) and thus that RBH(t)<_k+I. 

-In the other ease, some u' i, u' o for example, satisfies u'0<prefi x v .  Thus v=u'0v'. Since 

u'0v' 0 is not a prefix of v, as mentioned above, v'.g~prefixV' 0 because of the shape of t' above the 

vertex v (v '0=v'v").  The insertion of (~ is performed inside an element s'0e Sk.lu,01. This 
insertion of  an element of Sk_lv I in an element of Sk_fu,01 at a vertex of depth Ivl-lu'01 generates an 

element e '  of Sk_lu,01 and an eIement or" of Sk-bcL as seen in corollary 4.10 (Figure 4.8). Let v'g" 

be the vertex of or' from which e" is hanging. The set {01 11 e L} of trees hanging from terminal 

vertices of  ~ is split in two subsets, {01 1 e L'] hanging from or' and {0111 e L") hanging 

from e". 

I 

s o 

u o 

~ /  ' s~  G 

Figure 4.8 

With the notation above, t can be seen as the following tree: 

t=t'[u'0e--cr'[V'Wl~-01lla L'] [v'p.e--t'/v][ v'~t"<--- (r"[Wl~---01[le L"]]] [w~---t/wlwe K]. 

Now using the decomposition of t' we get the following decomposition for t and we prove that it 

satisfies (P). 
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t= (  "~'[ ( u ' 0 , v ' b v  " ) . . ,  ( u ' i , v ' i ) . . ,  ] 

( (~'[V'Wl~--0111e L'] [Wl0~--01011e L0] [ v'~t"<--- . . . . .  i i [Wl~--0111eL ]]) . . .s i[w 1 e--01 IleLi]... )) 

[we-t/wlw~ K] with ir 

The head residual tree "c" of the decomposition of t induced by the decomposition above is equal 

to '~'[ we--x/wlwe K]. Then the following properties hold. 

- height(z")_<max(height('O, height(re')) _< k. 

- For ir the properties of decomposition patterns s' i are preserved and c'E Sk_lu,01. 

- For every leL',  01~ Rk*[Sk] 

For every le L0, 01 0~ Rk,[Sk] 

a"[Wle--0llleL ''] ~ Rk*[Sk] because cr" and its suspended trees belong to Rk*[Sk]. 

- RBH(t) < max(RBH(t'), lu'01+maxl~L. L.,(REH(01)), maxweK(RBH(t/w)+lwl)) 

< max (RBH(t'), lu'01+k-lvl+l, Iwl+k+l-lwl) 

<_.k+l 

In that case also, we conclude that t satisfies (P). 

Case 2. There is no t i such that there exists an index j with ujVj<prefixU. 

We consider then, tl=00[u~---01] that satisfies (P). Thus, there exists a decomposition 

t 1 = 't[...(uj,vj)...](...sj[wlJ<--01Jlle Lj]...). There are two subcases. 

u w  1 

u2 ~ 0 1  [811{ 1 ' 

case 2.1 case 2.2 

Figure 4.9 
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Subease 2.1 There is no j such that Uj<prefixU, and thus the decomposition of 01=tl/U 

deduced from the decomposition of t 1 satisfies (P). Furthermore, if v i is a minimal vertex of the 

decomposition, the corresponding minimal pattern belongs to Sk.ivil.lu I and RBH(01)<_k+I-lul by 

Lemma 4.19. 

Subcase 2.2 There is i such that Ui<prefixU (u=uiu'). The insertion of s is performed inside 

the pattern s i. We deduce from Lemma 4.9 that Si[(U',Wl)]S belongs to Sk_luil because s~ S, 

si~ Sk.lu~l andlu'l=lul-luil<-k-lui[. 

F o r  t h e s e  two  s u b c a s e s  we c a n  use  the s am e  n o t a t i o n :  

t l [(U,Wl)]S = "c[ve-- ~[w" '  1 e- 0"'lll~ L"']] where v is either u or u i, t5 is either s or 

s i [ (u ' ,w0]s  and {0"'1} is either {01 } or {0illl~ Li}. In each of these cases, ~ e .Sk.lv I, 

0"'1~ Rk*[Sk] and RBH(0"' l) < k+l-lvl. Thus, by Lemma 4.20, tl[(U,Wl)]s satisfies Property 

P. Let  K={u'ja Vertex(tl)lU'<preflx v and u'j and v incomparable}. For every w in K, the 

decomposition of tl/w deduced from the decomposition of t 1 satisfies (P). Furthermore, if v i is a 

minimal vertex of this decomposition, the corresponding minimal pattern belongs to Sk.lvit.lw I and 

RBH(tl/W)<k+l-lwl by Lemma 4.18. Let t 2 = t l [w-02]  [w~--o~lw~ K]. As t2<vertext, t 2 satisfies 

(P) and there exists a decomposition t 2 = x'[...(u'j,v'j)....](...s'j[wjie-0jilj~ Li]...). Because of 

the minimal choice of s, there is no (u'i,v'i) such that u'iv'i<prefixV.Thus the insertion of 

~[w"' 1 ~-- 0"'llla L'"] in t 2 is performed either at a vertex for which no u' i is a prefix, or inside 

a pattern s' i and we can prove, like above, by Lemma 4.20, that the new tree satisfies (P). 

Using Lemma 4.20, when we substitute in this new tree, at vertices we K, the trees t/w, we get a 

tree that satisfies (P). Thus, the tree "c[u~--s[wle--01, w2~---02]] satisfies (P). A similar proof 

shows-that t= "c[u~--s[wi~--0i I l_<i<n]] satisfies (P), In conclusion, for every tree t ~ Rk*[Sk], 

RBH(t) _< k+l. 

Theorem 4.22 

If S is factor-unavoidable with bound k, then T ( Z ) c  Rkllk+lll[Sk]. 

Proof.  This result is a consequence of Theorem 4.14 and Proposition 4.21. 

5 QUASI-ORDERINGS ON T(E,co) AND THEIR PROPERTIES. 

We define a quasi-ordering related to the insertion of trees belonging to a given subset of 

T(Ig, c0). If S is a subset ofT(Z,c0) -T(Z), we define the tree insertion ordering TIC(S), denoted 

<S, over T(Z,co) by t <S t' if and only if t' is built from t by insertion of trees from S. Some 
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leaves of  t' may therefore be labelled by co. In order to compare trees belonging to T(T-,) we 

define another relation <So~. 

Definition 5.1 (Relation I S and quasi-ordering <s  on T(Z,03)) . 

Le t  S be a subset o f  T(Z,03) -T(Z) and t and t' trees in T(Z,co). t I s t' if  and only if  t=t' or  

there exists s in S such that t' E t[ ]s. <S is the transitive closure of  I S, i.e. t <S t' if and only 

if there exists a finite sequence t o ..... t n such that t o = t, t n = t' and for every i (0 < i < n - l )  t i I S 

ti+l. 

Definition 5.2 (Relation Ico and quasi-ordering -<co on T(Z,o3)) . 

Let  "q and 0 i be trees in T(Y,,o~) and f an element of the alphabet Y,. Define Ito by 

a) 03 Icot  for every tree t in T(Z,o~). 

b) "q Im 0 i implies f . . .  'q ... Ico f. . .  0 i . . .  

<to is the transitive closure of Ion. 

Definition 5.3 (Quasi-ordering <Sco on T(Z,co)).  

Let  S be a subset of  T(2,03) -T(~.) and t and t' trees in T(Z,m). t-<sto t' if and only if there 

exists  t" in T(Z,03) such that t <S t"-<co t'. 

I t  is proved below that -<Sco is a quasi-ordering. 

Example  5.4 

Let  Z = {f, g, y ) with arities 2, 1, 0 respectively. 

Le t  s 1 = f(f(o~,o~),o~), s 2 = f(03,f(~,03)), s 3 = g(g(03)), s 4 = g(f(03,0~)). 

Le t  S = {sl, s2, s3, s4}. Let  t = f(y,y), t ' =  f(g(g(y)),y) and t" = f(f(Y,f(Y,g(g(Y)))),Y). 

Obvious ly  t'E t [ ] s 3 and thus t I s t'. 

Then  t -<S t" because t I s f(f(o~,f(y,~o)),y) I s f(f(03,f(y,g(g(oa)))),y). 

Le t  t"' = f(f(Y,f(Y,g(g(y)))),y), t -<sto t'" (Figure 5.1) because 

t I S f(f(o~,f(y,co)),y) I s f(f(o~,f(y,g(g(o~)))),y) I~ f(f(y,f(y,f(y,g(g(o~)))) ,y)  Io~ t"'. 
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L e m m a  5.5 C o m m u t a t i o n  o f  Io~ a n d  I S 

L e t  S be a subse t  of  T(Z,co) -T (Z)  and t, t' and  t" t rees in 

ex i s t s  '~ in  T(~,O3) such that  t I S x Ito t " .  

T(Z,  O3). I f  t Ioj t ' Is t"  then there 

P r o o f .  I f  t Im t' I s t" there  are u in  Vertex( t )  wi th  t(u) = co, v in  Ver tex( t ' ) ,  0 in T@,O3), s in 

S and  w in Ve r t ex  (s) wi th  s(w)=o3 such that  t' = t [u , - -0]  and t" = t'[v~---s[w+--t'/v]]. 

- I f  u a n d  v are i n c o m p a r a b l e  then t[u*--0]/v = t/v and  thus 

t" = t[u*--0] [ v ~ s [ w ~ t [ u ~ 0 l / v l ]  

= t [v~- - - s [w*- - t /v l ] [u~0]  . 

- I f  v -<prefix u (i .e.  u = vv '  ) then t [ue--0] /v  = t /v [v 'e - -0]  

t" =t[u,--0] [v~s [w~t [u~0] /v ] ]  

= t [ v ~  s [w~- - - t / v [v '~0 ] ]  ] 

= t [ v ~  s[we--t/v]] [vwv'*--0].  

In these  both cases ,  i f  '~ = t[ve--s[w~--t/v]] then t I S "~ I0~ t " .  

- I f  u -<prefix v (i .e.  v = uu'  ) then t[u<---0]/v = 0 /u '  

t "  = t[u~---0] [ v ~ s [ w ~ t [ u ~ - - - 0 ] / v ] ]  

= t[u~O] [v~s[w~O/u']]  

= t [ u ~ O [ u ' ~ - - - s [ w ~ O / u ' ] ] l  and thus t I s t Icot" . 
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L e m m a  5.6 C o m m u t a t i o n .  of <S and _<co 

Let  t, t' and t" trees in T(Y.,C0). If t _<co t' _<S t" 

t -<S 17 -<co t "  . 

then there exists "c in T(E,~o) such that 

Proof .  It is a direct consequence of the definitions and Lemma 5.5. 

L e m m a  5.7 

The  relation <Sco is a quasi-ordering on T(Z, c0). 

Proof .  Clearly this relation is reflexive, so we only need to prove the property of  transitivity. 

Let  t 1, t 2 and t 3 be trees such that t 1 <So0 t2 <Sco t3. By definition, there are t' and t" such that 

tl <S t' <co t2 <S t" <o t3. There exists a tree "c such that t' <S 'g -<co t" (Lernma 5.6). Then by 

transitivity of <S and <co, tl <S 'c <c0 t3 and thus t 1 <So~ t3 �9 

L e m m a  5.8 

Le t  t, t' and t" be in T(E,o3), v in Vertex(t") such that t I s t' (resp. t <S t', t <Scot' ). 

Then t"[v<---t] I s t " [v~t ' ]  (resp. <S, <Sco ). 

P r o o f .  As t I s t' there exists s in S, p. in vertex(t) and v in vertex(s) such that t'=t[(pt, v)]s, 

Inserting t' in t" at vertex v, we get the following tree: 

t"[v<---t'] = t " [ v ~  t[(~t, v)]s]  = ( t " [ v ~  t])[(vp., v)]s and thus t"[v~---t] I s t " [ v ~ t ' ] .  By  

iteration o f  this proof, we get the analogous property for <-S and -<So0. 

Because of  Lemma 5.8 these three relations are said to be stable under grafting. 

L e m m a  5.9 

L e t  t 1 ..... t 1, t' 1 ..... t' 1 and t" be in T(~;,c0). Let  u 1 ..... u I be 1 elements in Vertex(t") 

pairwise incomparable under prefix ordering. If for every integer i (l_<_i<l) t ilSt' i (resp. t i<S t' i, 

ti <Sco t'i) then t"[ui~---til 1<i<1 ] I s (resp. <S, <So ) t"[ui~"t'i I 1_<_i<_1 ]. 

P roof .  This proof is analogous to the preceding proof. 

L e m m a  5.10 

L e t  t, t' and t" be in T(E,c0), s in S, u and w in Vertex(t), u' in Vertex(f)  and v in 

Vertex(s) .  If t' = t[(w,v)]s so t I s t', then t[u4--t"] I s t'[u'4--t"] if one of  the following case 

holds: 
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i) w <prefix u (i.e. u = ww'  ) and n' = wvw'  

ii) w is not a prefix of  u and u' = u. 

P roof .  Intuitively, t[u<---t"] I S t'[u'~--t"] if the insertion vertices in t and t' are the same after 

erasing s in t', where  s is the tree inserted in t to get t'. The proof  is only a computation of  

different substitutions in a tree. 

Let S be a finite subset of  T(E,03) -T(E) and Q a finite subset o f  T(~,co). In section 6 we 

prove that <S is a well quasi-ordering on S n, then on Q[S n] as defined in section 4. In order to 

show by induction on n that S n is well quasi-ordered by <S, the trees have to be split into 

subtrees belonging to T n as in the definition of  S n. Then these subtrees have to be considered 

separately and the initial trees rebuilt. But at this point there is a technical problem. Roughly 

speaking, the relation ~S is not stable under the o p e r a t i o n ,  (Lemma 5.10), so we have to keep 

track o f  the vertices where the trees were split. For  this purpose these vertices are relabelled by 

new special constants in such a way that each new constant occurs at most  once in a tree, and we 

extend the quasi-orderings defined above to the trees built on the new alphabet to get the 

fol lowing property: I f  t and t' are two trees with only one occurence each of  a new constant, ~0' 

for  example, and t<st' then t[03' ~-- t"] <S t'[o3' ~-- t"]. 

We add new constants co', 031 ..... o k to the alphabet Ew{o3} and we extend the relations I S, 

<S, and <So0 to T( 2u{03, co',o3 1 .. . . .  o3k } ) in the following way. 

Definition 5.11 (Relation I S and quasi-ordering <S on T(Y.,03,03',O3 1 . . . . .  o3k))" 

Let  S be a subset of T(~,c0) -T(s and t and t'trees in T(E,co,03', co 1 .. . . .  COk). t I s t' if and 

only if  t = t' or there exists s in S such that t' ~ t[ Is. <S is the transitive closure o f  I S . 

Definition 5.12 (Relation I and quasi-ordering _<o3 on T(E,O3,O3',031 .... ,o3k) ). 

Let  x i and 0 i be trees in T(Z, co,03', 031 ..... o3k) and f an element of  the alphabet Z. Define Ico 

by 

a) co Ico t for every tree t in T(Y.,O3). 

b) x i Ic0 0 i implies f . . . 'q  ... Ico f . . .0i  ... 

-<co is the reflexive transitive closure of  Ic0. 

De f in i t i on  5.13 (Rela t ion <Sco on T(E,03,o~', 03 1 . . . . .  03k) )" 

Let  t and t' be trees in T(E,03,co', co 1 ..... Cok) and S a subset o f  T(~,r We define the relation 

-<So~ by t <Sco t' if  and only if there is t" in T(Z,O3,03' o3 1 .... ,03k) such that t <S t" <co t'. 
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Remarks .  

1) The relations Ia~ and I s commute in T(~,co,co', col ..... cok)" The proof  is the same as for 

L e m m a  5.5. It suffices to notice that, when U<prefix v, 0 belongs to T(Z,CO) and thus 

0[u'~-s[w<--0/u']] belongs to T(Z, CO). 

2 )We use the same notation for the relations on T(~,CO,0Y, co 1 .. . . .  co k) andT(Z,co) because 

these relations are the same on T(X,CO). 

3) The operation of insertion does not introduce new vertices labelled by one of the new 

constant co',col,.., or COk because S does not co~ltain any of  co',col,.., or cok. So let t and t' be 

trees in T(E,CO,co', col ..... cok) with only one vertex labelled by co'. Then t I s (resp. <S, <Sto ) t' 

implies t [ co' <--t"] I S (resp. -<S, <--Sr )t'[ m' e-t"] because the vertices o f  insertion are exactly 

the same in both cases. More generally, we get the following Lemrna: 

L e m m a  5.14 

Let  t ,  t', x and x' be trees in T(E,r co 1 ..... r such that in t and t' there is only one 

vertex labelled by co'. 

t <S t' and x <S "c' implies t [ co' *--x] <S t' [ co' ~---x'] 

t ~Sto t' and "c <Sco x' implies t [ 03' ~ x ]  <So~ t' [ co' *-'c'] 

Proof .Firs t  we prove this property for I S and Ico. Let u and u' be the vertices where co' occurs 

in t and t' respect ively .  These  ver t ices  satisfy hypothesis  o f  L e m m a  5.10, so 

t[co'~---'C]Ist'[co'~x]. By a same argument over co'-vertices we prove t[co'~X]Ist[co'~---x'] 

t[co'~-x]Imt'[co'~--'~] t[co'~---x]Io~t[co'~---x']. Then we get the result by induction on the length of  

the insertion sequence. 

L e m m a  5.15 

Let  t and t' be trees in T(Z,co,co', COl,"',COk) with only one node labelled by co'. Then 

t I s (resp. <S, <So~ )t' implies t [co'+--col I s (resp. <S, <So~ ) t'[co'~---co]. 

Proof .  It is a consequence of  the definition of the relations. 

6 W E L L  Q U A S I - O R D E R I N G S  

Suppose that s is a finite subset of T(Y,,CO)-T(Z) and Q a finite subset of T(Y,,CO). We prove 

that <S is a well quasi-ordering on S n and on Q[S n] for every integer n. Unfortunately, however, 
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even QIIlll[Sn] is usually not well quasi-ordered under <S. If Q contains trees belonging to T(Y,), 

then QIIIlI[Sn] includes infinite subsets which are each pairwise incomparable under the relation 

<s. For example, let Q= {a} and S = {f(f(co, co), co)}. The set {til i~ N } C  QIIIII[S n] where 

t o = f(f(a,co), co) and for every positive integer i, ti+ 1 = ti[(c,12)] t o is an infinite set of 

pairwise incomparable trees (Figure 6.1). That is the reason for which we introduced the relation 

-<Sco above and the notion of closure of a set by another one below. 
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f co 

a co 
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A A 
f co f CO 
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Figure 6.1 

D e f i n i t i o n  6 .1  

Let E and G be subsets of T(I~,CO). Let E(G) be the subset of T(Y,,CO) whose elements are 

those of E in which trees from G have been substituted for occurrences of co. 

E(G) ={t~ T(2,co)l 3t'e E, ui (l<i<l) co-vertex of t', "c i (l<i<l)~ G such that t =t'[ui<---xill_<i<l] } 

R e m a r k s .  

1. E c E(G) because I can be equal to 0. 

2. With this notation, Q[Sn](Q) c Q*[Sn] is the subset of trees built with elements of Q 

and only one element of Q[Sn] - Q. 
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Notation 

Let ~"2={COl,.. ',COk} be a set o f k  new constant symbols which do not occur in Y,u{CO} and 

which can be used as co in insertion operation. We denote by t[~col,...,cok] or t [ ~ ]  the set of 

trees of  the form t[ui~co i II_<i<k] where t belongs to T( I;, co) and u i are k terminal vertices 

labelled by 03 in t. By extension E[~f~]=E[~---co 1 ..... cok] = Ut~E t[ +-'031 ..... COk] where E is a 

subset of T( 2, co). Each term in E[~---f~] contains each coi at most once. Notice that the only case 

where all k symbols COl,...,cok do not occur in a tree t'EE[~---co 1 .... ,co k] is when the tree t from 

which t' has been built contains less than k occurences of co. 

Lemma 6,2 

If, for every integer k, Tn[~O) 1 ..... cok] is well quasi-ordered by <S, then for every integer 

k, S n [<--cot ..... COk] is also well quasi-ordered by <S. 

Proof. The proof is analogous to Higman's proof that words are well quasi-ordered. Let (t i ) be 

a minimal counterexample in S n [<--co 1 ..... cole] (i.e. (ti) is a sequence minimal with respect to 

-<vertex that does not contain an infinite increasing subsequenee). We may suppose that every tree 

t i contains all the constants 031 ..... co k, since otherwise there exists an infinite subsequence such 

that all its elements contain the same subset fZ of constants, and then it is sufficient to consider 

this subset fL For each tree t i there exist a tree %i in Tn[<--- col . . . . .  cok, CO'] and a tree 0i in  

Sn[~-"031 ..... cok] such that ti=%i[co'~---0i]. As Tn[~--- co 1 ..... cok, co'] is well quasi-ordered by <S, 

all but a finite number of  the 0 i are different from the trivial tree co (if not, we can get a 

counterexample in Tn[~-- 031 ..... cok, co']). Thus we can extract from (ti) a subsequence (t~i)) 

such that 070 ) ~ co for every i and ('cT(i)) is an ascending sequence in T n [ ~  co l, .... o k ,  co']. 

The corresponding set of 070 ) is well quasi-ordered by <S because if not, we can find a 

counterexample 0" and extract from it a subsequence (080)) which is also a subsequence of 

(0.r Then  the sequence  ( 0 8 ( i ) )  is a counterexample  and the sequence 

t 1 ..... t8(1).1,06(1),08(2) .... is also a counterexample, because if there exists an integer j<8(1) and 

an integer i such that tj<s08(i), then 08(i) contains all the constants col,...,c0k, 080 ) a s ts(i) 

because in that case ts(i) is built from 060 ) by insertion of elements belonging only to S n and thus 

tj<sts(i). Furthermore this counterexample is smaller than (ti). So, the set of 070 ) being well 

quasi-ordered by <S there are two elements 07(i) and 070 ) such that 070 ) <S 070). As the 

sequence ('~7(i)) is an ascending sequence in Tn[~co'], xT(i ) [c0'+--07(i)] -<S "cT(j)[co'~07(j)] by 

Lemma 5.15 and we get an ascending subsequence in S n [0-'031 ..... 03k]. 
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L e m m a  6 .3  

If, for every integer k, Tn[~co 1 . . . . .  cok](G) is well quasi-ordered by <Sco, then, for every 

integer k, Sn[~co 1 ..... cok](G) is also well quasi-ordered by <So~. 

Proof.  We get this result by the same argument as in the previous Lemma.  The only 

modification is the following one: 0~(i) <So ts(i) because in that case tf(i) is built from 0ff(i ) , not 

only by insertion of elements from S n, but also by insertion of elements belonging to S n in which 

elements from G have been substituted for co. 

L e m m a  6.4 

Let S be a finite subset of T(Z,CO). For every integer n and for every integer k, 

Tn[~-'col ..... COk] and S n [~--'col ..... cok] are well quasi-ordered by <S" 

P r o o f .  

- case n=0: For every integer k,T0[<--c01 . . . . .  (Ok] = S[<--COl . . . . .  COk] is finite and hence well 

quasi-ordered by -<S. Thus, as a consequence of Lemma 6.2, S0[~--co 1 . . . . .  cok] is well 

quasi-ordered by -<S. 

- induction case: Let us suppose that for every integer n'<n and for every integer k 

Tn'[~'-COl,'",COk] is well quasi-ordered by <S. Then ( Lemma 6.2) for each n' < n and each k, 

Sn,[<---co 1 . . . . .  C0k] is well quasi-ordered by <S. Let  (t i) be an infinite sequence in 

Tn[<'-col .. . . .  COk]. As in the previous Lemma, we suppose that every tree t i contains all the 

constants col .... ,cok �9 As S is a finite set there exist a partition { ~ j  I 0 < j  < q}of f~, a tree 

sl~ S[<---~0] and q vertices u i E Vertex(sl) and p vertices w i e Vertex(sl)  such that we can 

extract from (ti) an infinite subsequence (~i)) with the following property: 

For every integer i there are 

q trees 0j,~(i) in Sn, l[<----~j] (1 -<j -< q) 

p trees 0q+l,,r in Sn. 1 (1 < 1 < p) 

with for each of these trees 0j,~(i) a vertex vj,~i ) (1 <j  < q+p) such that 

ty(i) = S 1 [ . . .  (Uj,Vj,y(i)). . .  (Wl,Vl,7(i)) . . .  ] ( . . .  0 j ,y( i ) . . .  01,y(i) . . .  ) �9 

Let 0'j,y(i) = 0j,~/(i)[vj ,~(i)~--co'] for every j (1< j _q). 

Let Z'l ~/(i) = 01,y(i)[Wl.,y(i)<--co'] for every 1 (1 <1 _< p). 

Using the induction hypothesis and a generalization of Proposition 1.4, the product 

Sn.l[<--~lU{O)'}]•215215215215 ] is well quasi-ordered by 

the quasi-ordering product generated by -<S. So, there exist y(i) < y(i ') such that 

(0'l,y(i) . . . . .  0'q+p,y(i),'~'l,y(i) . . . .  ~'p,y(i)) <S (0'l,y(i') . . . . .  0'p,T(i'),,'C'l,y(i' ) . . . .  "C'p,y(i, ) ). Using 
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now the definition of T n and Lemmas 5.8 and 5.9, we can conclude that ty(i) <S t'y(i') and thus 

Tn[e--co 1 .. . . .  COk] is well quasi-ordered by <S" From Lemma 6.2, we conclude that for every 

integer k, Sn[e--co 1 ..... o) k] is well quasi-ordered by -<S. 

L e m m a  6.5 

Let S be a finite subset of T(2,co) and G a subset of T(Z,co). If  G is well quasi-ordered by 

gsc0, for every integer n and for every integer k, Tn[~--co I . . . . .  COk](G) and S n [<---co 1 . . . . .  cok](G) 

are well quasi-ordered by -<S~. 

Proof .  case n=0 Let (t i) be an infinite sequence in T0[+--co 1 .. . . .  COk](G) which is equal to 

S[4--o31 ..... COk](G). t i = si[uji~---coj I l<j<.<.<~][ vji~---0j i I j~ Ji] with sic S, 0j i ~ G. As S is a finite 

set, there exist an element s of S and an infinite subsequence of (ti), still denoted (ti), such that 

t i = s[uje--coj I l_<j<__k][ vj~---0j i t j~J]  with 0j i ~G. As -<So) is a well quasi-ordering on G, the 

product G IJI is well quasi-ordered by <So~. Thus, there are two integers q<r such that, for every 

j~ J, 0jq <Sco 0j r .We deduce that tq <So) tr , which proves T0[e-co 1 . . . . .  cok](G) well 

quasi-ordered by -<So). 

Induction case: In this part, we can use the same argument as in Lemma 6.4. 

Propos i t ion  6.6 

Let S be a finite subset of T(Z,CO) and G a subset of T(Z,co) well quasi-ordered by -<Sin. 

For every integer n, S n is well quasi-ordered by <S and Sn(G) is well quasi-ordered by -<Sco 

Proof.  It is an immediate consequence of Lemmas 6.4 and 6.5 where we take k=0. Thus 

Sn=Sn[+--O] and Sn(G)=Sn(G)[+--O] are well quasi-ordered by -<S and <So) respectively. 

Using the same kind of proof as the one used for Lemma 6.4 we prove that 

Q[Sn] = ut~ Q U u c  Vertex(t) Up:U--* S n t[U]p(U) is well quasi-ordered by <s when Q is a 

finite subset of T(Z,co). 

L e m m a  6.7 

Let S and Q be finite subsets of T(Z, CO). For every integer n, Q[Sn] is well quasi-ordered by 

<S. 

Proof.  Let (ti) an infinite sequence in Q[Sn]. As Q is a finite set, there exists an infinite 

subsequence (t~(i)) of (ti) such that t~(i)= t[...(uj,vj,7(i))...](...0j,~/(i) ... ) for suitable chosen 



378 L. Puel 

t~ Q, integer q, uj ~ Vertex(t) (l<j_<q), trees 0j,y(i) in S n and vj,y(i)~ Vertex(0j,y(i) ). Let 

0'j,T(i) = 0j,y(i)[vj,y(i)~-03' ]. As -<S is a well quasi-ordering on Sn[~---co'], the product 

quasi-ordering induced by -<S is a well quasi-ordering on Sn[+--m'] x . . .x  Sn[~---m' ]. Thus, there 

exist ~/(i) < 3~(i') such that (0'l,y(i) . . . . .  0'q,y(i)) <S (0'l,y(i') . . . . .  0'q,y(i,)). Using now the 

definition of Q[Sn] and Lemmas 5.8 and 5.9 we can conclude that t~i ) <S t~i') and thus Q[Sn] 

is well quasi-ordered by -<S. 

As a particular case we get the following corollary: 

Coro l l a ry  6.8 

Let Z be finite ranked alphabet and S a finite subset of T(Z, 03). For every k and n, Rk[Sn] is 

well quasi-ordered by -<S. 

L e m m a  6.9 

Let S be a finite subset of T(Z,c0), G a subset of T(Z,m) and Q a finite subset of T(Z). If G 

is well quasi-ordered by <--Sin, then, for every integer n, Q[Sn](G ) is well quasi-ordered by <so0. 

Proof.  The proof is the same as the proof of Lemma 6.7 where <so0 is substituted for <S and 

Q[Sn](G) for Q[Sn]. We could state a similar lemma with Q c T(Z,03) but in that case we have 

to avoid the substitution of elements of G for leaves of Q. 

T h e o r e m  6.10 

Let Q and S be finite subsets of T(Z) and T(Z,c0)-T(Z)-{c0}respectively. For every pair of 

integers m and n, Qllmll[Sn] is well quasi-ordered by <So~. 

P r o o f .  Let  n and m be two integers. Let (ti) be a minimal (with respect to <vertex) 

counterexample in Qllmll[Sn] (i.e. there is no i<j such that t i -<Sto tj). There are two cases 

according to the nature of the decomposition of the t i .which defines their residual branch height. 

1) There exists an infinite subsequence (ti) where t i = 0i[wj i +--0j i [ jE L i] with 0 i ~ Sn. Let I 

denotes the set of indices i for which t i satisfies this property. The set ~ ia I  UjeL i {0j i } is well 

quasi-ordered by <S0). Otherwise, let (0'1) be a counterexample in this set with 0' 1 =0j i. The 

sequence t 1 ..... ti.1, 0j i = 0'1,0' 2 .... is a counterexample because if t 1-<Sco 0'r = 0j 'i' then 

tl-<seo ti'=0i'[wji' <--0ji' 1 j~Li  '] which contradicts the hypothesis that (ti) is a counterexample. 

Furthermore this counterexample (0'1) is smaller than (ti) with respect to <vertex which 

contradicts the hypothesis that (ti) is minimal. We deduce now, from Proposition 6.6, that <Sa 

is a well quasi-ordering on  Sn(Ui~ I Uj~Li {0j i }) and that there exist i<j such that t i <--Sco tj 
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which contradicts the hypothesis that (ti) is a counterexample. 

2) There exists an infinite subsequence (ti) where the head symbol of  each t i belongs to the head 

residual tree (there is no element of S n inserted at the root  of  the head residual tree). As the 

alphabet is f ini te ,  there exist an infinite subsequence, still denoted (ti), where the t i have the 

same head symbol,  f for example. Thus t i = f (tli . . . . .  qi) and RBH ( tj i) < R B H  (t i )  - 1 for  

l<__j<l. We prove, by induction on m that (ti) cannot be a eounterexample.  When  re= l ,  the 

arguments tj i satisfy case 1) and there exist i<j such that (tli . . . . .  tl i) WEO(<Sco) (tlJ ..... tlJ) and 

thus f(tl i . . . . .  tli) -<S~ f(tlJ . . . . .  tlJ) ( Lemma 5.9 ). Let  us suppose now that for  every integer 

m '<m and for every integer n, QIIm'll[Sn] is well quasi-ordered by <So~- ti = f (tl i . . . . .  tli) ~ 

Qllmll[Sn] implies tjie QIIm-lll[Sn], which is well quasi-ordered by the induction hypothesis. We 

conclude by using Lemma 5.9 as in the previous case. 

7 M A I N  T h e o r e m  

We are now able to state the relation between the unavoidability property of  a set S and the 

property for the related quasi-ordering -<-S0~ which is the main result of  this paper. 

Proposition 7.1 

Let S C T(Ig,co). If  <S is a wellquasi-ordering on T(E,oJ), then S n (T(N, co)-T(I~))-{CO] 

is factor-unavoidable. 

Proof. If  S' = S  n (T(s {co} is not factor-unavoidable,  there exists an infinite 

subset T of T(I~.,co) such that every tree t in T has no factor in S'. We show that the trees of  T 

are pairwise incomparable with respect to <S, and thus T contradicts the hypothesis. If  t <S t' in 

T there are t O ..... t n in T(I~,03) with t O = t, t n = t' and for every i (1 _< i < n) t i I s ti+ 1. Let 1 the 

greatest index such that t 1 ~ t n. There is s in S' such that t n E tl[ ]s, which implies s <factor t', a 

contradiction. 

Proposition 7.2 

Let  S c T ( ~ ; , C O ) .  I f  <Sco is a wel l  

S n (T(Y.,c0) -T(I~)) - {co} is factor-unavoidable.  

q u a s i - o r d e r i n g  on T ( 2 )  , then  

Proof. If  S' = S n (T(2,co) -T(Y.)) - {co} is not factor-unavoidable, there exists an infinite 

subset T of T(Y,,o~) such that every tree t in T has no factor in S'. By well  quasi-ordering, there 

exists two trees t and t' be from T such that t <scot'. If  T is included in T(E), it is not possible 
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that t-<o~t'. Thus there exists a tree t" such that t <S t" <cot' and therefore a tree s in S' such that 

S<factor t". This implies S<factor t' which is a contradiction. On the other hand, if T is not 

included in T(E), let T' be T in which all the occurrences of m have been replaced by constants 

from Y.. T' is included in T(Y,) and thus there is a tree t' in T' and a tree s in S' such that s 

<factor t'. Removing the constants added in place of 03 does not disturb the factor s. So, i f  t is the 

tree of T from which t' has been built, s <factor t .  We get a contradiction and conclude that S is 

factor-unavoidable. 

Theorem 7.3 (Main Theorem) 
Let E be a finite ranked alphabet, co a constant not belonging to E and S a subset of 

T(2,c0)-T(lg)-{co}. <So~ is a well quasi-ordering on T(Y.) if and only if S is factor-unavoidable. 

Proof. I f  <So0 is a well quasi-ordering on T(Z) then S is factor-unavoidable (Proposition 7.2). 

In order to prove that S factor-unavoidable implies T(Ig) well quasi-ordered by <Sco, we put 

together the results obtained in previous sections. Let S be an unavoidable subset of T(Ig, c0) 

with avoidance bound k and R k the set of trees in T(Z) whose depth is less than or equaI to k. 

R k is finite. There is a finite subset F of S that is unavoidable with the same bound (Theorem 

3.3). The second structure theorem (Theorem 4.22) implies T(Z) c Rkllk+lll(F, k) which is well 

quasi-ordered by <Fco (Theorem 6.10). As <Fc0 C <S0~, Rkllk+lll(F, k) and thus T(Z) are also 

well quasi-ordered by <S~0. 

Application 

To illustrate the value of  our main theorem, we use it here to prove termination of a rewriting 

system that contains only one rule, namely, " f(s(x)) ---) *(s(x), f(p(s(x)))) ". With the usual 

orderings it is not possible to prove the termination of this system, because the left-hand side of 

the rule is embedded in the right-hand one. Let I; be the ranked alphabet {*, p, s, f}with arities 

2, 1, 1, 1 respectively. Let <1 be the transitive closure of the relation <r on T(Z u{x})  defined 

by t [ u+- *(s(x), f(p(s(x)))) ] <r t [ u~--f(s(x)) ] for every trees t and x and every vertex u. Let 

S be the unavoidable set { *(c0,co), s(co), f(co), p(p(co)) } with avoidance bound 3 and <Sea the 

quasi-ordering defined in section 5 related to S. Obviously <1 is irreflexive. The transitive 

closure of  (<Sco u <1), denoted <, is irreflexive too because it is necessary to build a factor 

f(p(s(co))) only by insertion of trees from S, i.e. with p(p(c0)), f(co) and s(co). But the additional f 

and s that have to be inserted never disappear. Thus <, including the well quasi-ordering -<So), is 

a well quasi-ordering. So, < is well founded and <1, included in < ,  is also well founded. This 

property implies the termination of the rewriting system considered. 
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8 P O S S I B L E  EXTENSIONS 

In this paper we defined in the case of a finite ranked alphabet a relation on trees that we 

proved to be a well quasi-ordering. The restriction of this quasi-ordering on words is the relation 

of insertion defined by Erhenfeucht et al.[2]. This result can be extended to an infinite well 

quasi-ordered alphabet. In that case, we keep the idea of insertion of  trees belonging to an 

unavoidable set but in a less restrictive sense: we allow the insertion of a tree split in several 

pieces. The definition of this relation is much more close to the general definition of  the 

embedding and can also be extended in a kind of recursive path ordering used to prove 

automatically the termination of term rewriting system. This results will be given in a 

forthcoming paper. 
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