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Abstract

The claim put forward in a recent paper by Jurado, Schmidt and Benlliure that the transient effect of nuclear fission may be
described simply as a relaxation process in the upright oscillator around the potential minimum is refuted. Some critical remarks
on the relevance of this effect in general are added.

0 2003 Published by Elsevier B.V. Open access under CC BY license,

In the paper [1] it has been claimed that “a ing which light particles might be emitteith addi-
new, highly realistic analytical approximation to the tion to those given by the conventional ratig /I"fSt
exact solution of the Fokker—Planck equation” has of the partial widthsl;, for neutron evaporation to the
been presented. In this Letter we should like to stationary valuel“fs‘t for fission, even if for the latter
raise some questions about the justifications of the the Bohr—Wheeler expressidry is replaced by the
approximations used there, in particular with respect smaller valuel'k of Kramers’ rate formula. In argu-
to its application to the decay of a metastable state. ments in favor of such a procedure it is often claimed
Before we address details of the approach a few that the time dependence comes in only if fission is
remarks of more general nature are in order. considered as a transport process underlying dissipa-

It has become customary to look at nuclear fission tive forces. In this one forgets that the transition state
as a time dependent process. As the curggratcross method is also based on “collective motion” which,
the barrier shows a “transient behavior”, simply be- in principle, like particle emission, is a time depen-
cause it takes some finite time befojg reaches a  dent event. It is only that for these processes one has
quasi stationary value, one likes to interpret the re- become accustomed to apply widths calculated in a

sult in terms of a time dependent decay widiz), time independenpicture, in which, in addition, in-
modifying in this way the one originally deduced by herent averaging procedures are applied. Truth is that
Kramers usingessentially the same pictur€his tran- also Kramers' rate formula does not represent any-

sient time seemingly implies a delay of fission dur- thing other than an inverssverage decay time. This
can directly be seen by exploiting the concept of the
“mean first passage time” (MFPT). For over-damped
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from which, under the usual conditions for Kramers’
rate formula, it follows thatl'k = % /tmfpt, S€€, €.9.,
[2]. Interestingly enough, the value of thgm: does
not depend much on the initial position of the system,
in clear distinction to the transient effect [3]. In [3] and
[4] the concept of the MFPT has been applied to nu-
clear fission to examine, for the limit of over-damped
motion, if more light particles may be emitted than
given by the ratiol,/I'k. In [4] it has been demon-
strated that Kramers’ rate formula is valid only for
simple potentials and under favorable conditions for
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[1] imply progress. To begin with, one should not
trace all problems back tjust the one constang.
Even discarding possible inaccuracies in the height of
the barrier, which enters the decay rate in exponential
fashion, there are crucial problems with the transport
coefficients themselves. Thg, for instance, only
stands for the ratio of frictiory to inertia M. For
obvious physical reasons, these two quantities must be
expected to exhibit a totally different variation with
temperature. Moreover, for a coordinate dependent
inertia, Kramers’ formula has to get an additional

the temperature. For potentials having some structure factor involving the square root of the ratio of the

in addition to just one pronounced minimum and one

inertias at barrier and minimum [8,9]. For truly over-

barrier the fission lifetime was seen to be considerably damped motion, on the other hand, any quantity which

longer than therx = /i/ Ik associated to Kramers’
rate. This feature may already by inferred from the
form

2y
v/ Ca| Cp|

the ¢ takes on for over-damped motion. Any uncer-
tainty in the product of the two stiffnesses at the min-
imum and the barrielC; andCp, respectively, reflects

itself in a corresponding error of their geometric mean,
and hence ink. Indeed, these stiffnesses are known

exp(Ep/T) 1)

K =

at best in the immediate neighborhood of the extrema.

Realistically, however, the potentials are hardly sym-

involves the inertia looses any meaning. Indeed, the
latter does not appear in formula (1).

Let us turn now to the more formal problems of [1].
The authors aim at delivering a simple way of calcu-
lating the time dependent prefactor which supposedly
relatesls(r) to Kramers' stationary valu€k . The es-
sential approximation is to calculate this prefactot
from a globalsolution of Kramers’ equation, which
would properly account for theotion across the bar-
rier, but from a solution of the same transport equation
restricted to the upright oscillatdoy which the fission
potential may be approximated in theighborhood of
the minimumA moments reflection tells one that at

metric about these extrema. In cases that beyond thethe barrier, where the currept is to be calculated, the

top of the barrier, for instance, the potential becomes
wider this property may effectively imply a smaller
|Cp| and, hence, a larger value ¥.

We agree with the authors of [1] that the under-
standing of nuclear dissipation is of great importance,
in particular its variation with shape and tempera-
ture. After all, these are perhatiee decisive features
through which different models or theories of nuclear
transport can be distinguished [5]. It may perhaps be
of interest to mention that, in addition to the papers
cited in [1], quite some work has been done, both ex-
perimentally [6,7] as well as theoretically [8], in which
such questions have specifically been addressed.

The main concern of [1] is that in previous analyses
of experimental results uncertainties of a factor of
two showed up in the so-called reduced friction
coefficient 8. There can be no question that the
ultimate goal must be to improve our understanding
about this problem, but it is questionable that the
uncertainties and ambiguities of the method used in

height of the artificial potential in this region may eas-
ily exceed the barrier height several times. The very
fact that in this region the stiffness of this auxiliary
potential has the wrong sign is most crucial for the
current, in particular at large times. Whereas for the
inverted oscillator thej,(t) eventually turns into the
stationary one already found by Kramers, the current
for an upright oscillator tends to zero exponentially.
In other words, replacing already in ([1]-6) (which is
to say in Eq. (6) of Ref. [1]) the correct distribution
W, by the one for an upright oscillator, callggPa"

in EQ. ([1]-9), leads to a vanishing denominator in this
basic formula.

To circumvent this problem some intermediate
steps are performed to finally end up with formula
([1]-8) for which the WP of ([1]-9) is to be in-
serted. One basic assumption for this is specified in
Eqg. ([1]-7). It implies that, for any time and at the
barrier top, the dependence of the distribution on co-
ordinate and velocity is identical to the one at infi-
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nite time. For an oscillator this statement is easily seen have zero width. In any case, it remains unclear why
to be incorrect, both for under-damped as well as for it should be the ground state and, hence, why there is
over-damped motion (for which it is claimed to be ex- no influence of the large intrinsic excitations which are

act). Take the distribution given in ([1]-9), namély produced in the first stage of the reaction; after all the
2 authors work with a finite temperature.
WP (x = xp1 1) = ;exp(_x_b), 2) At this stage it may be worth while to remind
V2o () 202(1) the reader of some basic features of transport theory,

which for an oscillator delivers the correct form for the Which may help to clarify a few critical steps used
density in coordinate space. For over-damped motion in [1]. To begin with, let us look how quantum

this statement is evident, for under-damped motion features may be accounted for. As it stands, Eq. ([1]-
one first needs to integrate over velocity. Putting the 10) describes relaxation to the equilibrium specified

form (2) into ([1]-7) theC () of ([1]-7) turns out to be by the equipartition theorem of classical mechanics,
represented here by the prefactor of the curly bracket.

C(t)= ot~ ) For a damped oscillator this may be generalized to
o(t) represent quantum fluctuations correctly (see, e.g.,
« expf — xg 1 1 3) [5]). In equilibrium they arenot given by those 01_‘
2(,) 02(1 — 00) the ground statdi/2uw; used here, for instance in

Eqg. ([1]-12). In fact for over-damped motion just the
opposite is true: there the correct quantum equilibrium
is indeed given by the classical limit, see [5] for the
oscillator and [10] for the general case.
Let us examine now the derivation of Eq. ([1]-
12), 1o = hB/(4w1T), meant to determine the time
lapse rp. This equation is obtained by assuming a
2 par, _ .
For the o%(r) ne_ede_d for_ thewP(x = xb’t.) linear dependence between thé(r) and time:.
of Eg. (2) a form is given in Eq. ([1]-10) which . L T .
L2 . This approximation is justified by arguing that the
corresponds to zero initial width. On the other hand, |
influence of the potential on the diffusion process”

the authors claim it to be more suitable to start from . ; e
. . . may be “neglected” as it “is anyhow small in the range
ground state fluctuations and they try to simulate this : - . 7
of the zero-point motion”. To see the catch in this

feature by introducinga time shiftzo. It is meant to . . .
" . ... argument let us simply write the correct equation for
represent the “time shift needed for the probability 5 . . :
o<(t), as it comes out of the Smoluchowski equation

distribution to reach the width of the zero-point motion ) )

. . N S “ for the oscillator:

in deformation space”, which is supposed to be “equal

to the time that the average energy of the collective iGZ(t) +2C02(t) = 2Dovd. 4)
degree of freedom needs to reach the vally@)iw1 dt

associated to the zero-point motion”. Obviously, the Here,C is the stiffness of the potential(x), such that
authors seem to understandas a kind of relaxation  the latter may be written as

time to the equilibrium of the oscillator, as represented c

by the ground state. It may be noted in passing that U(x) = =x? with C = uw?, 5)
for a genuine quantum system any application of ([1]-

10) is prohibited anyway as the distribution can never @ndDovd is the diffusion coefficient, which according
to (4) is determined by the equilibrium fluctuatier

which evidently isnot only a function of timebut
varies withx,. As the upright and inverted oscillator
turn into each other by analytic continuation (changing
only the sign of the stiffness) [5] the proof just given
also applies to the motion of a Gaussian across a
barrier, if simulated by a parabola.

- through
litis properly normalized, also in the sense of Eq. ([1]-5) if
. . - C C T
one only makes the common assumptions #jais sufficiently far Dovd = —0 (t 5 00) = _02 (6)
away from the minimum such that the tiny tail beyangddoes not ov y y eq”™ y

influence the normalization integral. . . w .
2 |t remains unclear why the authors did not simple generalize Eq. (4) implies that the “influence of the potential on

the analytic form ([1]-10) to one valid for any initial condition, such ~ the diﬁUSiqn process” is given 'by t_he second term on
as (7), shown below for over-damped motion. the left which has the same size independehthe



192

“range” of the coordinate. The solution of Eq. (4) for
t > 0is given by

o?(t) = (o%(t =0) — o2 exp<—27ct) tog ()

showing that relaxation to the equilibrium value hap-
pens on the time scatgyq = y/2C independent of the
initial fluctuation. Of course, for < Toyg and zero ini-

tial fluctuations ther2(r) becomes linear im, but the
reason why such &2(¢) should be identified as the
ground state fluctuatioaf theundampeascillator re-
mains unclear. Put in the context mentioned above: it
is unclear why such a value 6f(r) = /1 /2uw1 should

be relevant ifeached by a process of strong damping

Next we turn to the value found faf from Eq. ([1]-

12). It turns out so small that the introduction of
this quantity and the associated fluctuation cannot ex-
plain why the I}(z) starts to become finite only at
about 07 x 102! s. Indeed, forg = 2 x 10?1 s71,

hwi1 =1 MeV and T = 3 MeV one gets the very
small number ofip ~ 0.06 x 10721 s. The explana-
tion given in [3] comes much closer: there, by simu-
lating the whole fission process by a Langevin equa-
tion, it was demonstrated that such a shift is related to
the relaxation of the initial distribution to the quasi-
equilibrium in the minimum. For the numbers just
used the relaxation time,,q becomesgyg >~ 0.36 x
1021 s—provided one makes use of the relation (5).
The value ofroyg becomes evewery close to the

~ 0.7 x 10721 s at which in Fig. [1]-1 thel}(r) is
seen to rise if the relation of frequency to stiffness
is replaced by théncorrect one given in Eq. ([1]-13)
where the stiffnesX is assumed to be only half the
correct value given in (5), in accord with the com-
mon definition used in text books not only on nu-
clear physics but on classical and quantum mechan-
ics as well. It is true that, for the cases discussed in
Fig. [1]-1, the motion is not really over-damped (for
hw1 = 1), but thergyg May nevertheless be taken as a
fair estimate.

As indicated before, it is left unclear why in the
general case the system should start with a small fluc-
tuation. Indeed, formula ([1]-8) together with ([1]-9)
implies any transient effect (of the type discussed here)
to be absent if one chooses to start out of the quasi-
equilibrium, which is to say foWP¥(x = x;,t =0) =
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WP(x = xp,t — 00). For a bound system, like the
upright oscillator, such an initial condition implies that
the system stays in equilibrium for ever. For over-
damped motion this may be seen from Eq. (7) together
with (2). For a metastable situation like fission, on the
other hand, the situation is different: then there will be
a finite current outwards. Exactly this feature is not
described correctly by formulas ([1]-8) and ([1]-9).
Please recall that in many cases an initial condition
like that of the quasi-equilibrium specified before is
not at all unrealistic. For sufficiently large fission bar-
riers, as they are required for Kramers'’s rate formula
anyhow, the system may well have enough time to
reach such a stage around the first well before it de-
cays by fission.

Let us finally comment on the feature that for cer-
tain cases the present construction seems to represent
fairly well the numerically obtained global solutions
of the transport equation for the full fission potential.
In our opinion this feature should be considered acci-
dental rather than supply a decent basis for trustwor-
thy applications in future work of the approximations
advertised in this Letter. There are simply too many
inconsistencies to warrant applicability to the general
case.

References

[1] B. Jurado, K.-H. Schmidt, J. Benlliure, Phys. Lett. B 553
(2003) 186.

[2] C.W. Gardiner, Handbook of Stochastic Methods, Springer,
Berlin, 2002.

[3] H. Hofmann, F.A. Ivanyuk, Phys. Rev. Lett. 90 (2003) 132701.

[4] H. Hofmann, A.G. Magner, nucl-th/0304022, PRC, in press.

[5] H. Hofmann, Phys. Rep. 284 (4-5) (1997) 137.

[6] D.J. Hofman, B.B. Back, |. Diészegi, C.P. Montoya, S. Schad-
mand, R. Varma, P. Paul, Phys. Rev. Lett. 72 (1994) 470;
See also P. Paul, M. Thoennessen, Annu. Rev. Part. Nucl.
Sci. 44 (1994) 65.

[7] I. Dibszegi, N.P. Shaw, I. Mazumdar, A. Hatzikoutelis, P. Paul,
Phys. Rev. C 61 (2000) 024613.

[8] H. Hofmann, F.A. Ivanyuk, C. Rummel, S. Yamaji, Phys. Rev.
C 64 (2001) 054316.

[9] V.M. Strutinsky, Phys. Lett. B 47 (1973) 121.

[10] P. Petchukas, J. Ankerhold, H. Grabert, Ann. Phys. (Leipzig)

(2000) 1;
J. Ankerhold, P. Petchukas, H. Grabert, Phys. Rev. Lett. 87
(2001) 086802.



	A note on the time evolution of the fission decay width  under the influence of dissipation
	References




