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Abstract

The claim put forward in a recent paper by Jurado, Schmidt and Benlliure that the transient effect of nuclear fission
described simply as a relaxation process in the upright oscillator around the potential minimum is refuted. Some critica
on the relevance of this effect in general are added.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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In the paper [1] it has been claimed that
new, highly realistic analytical approximation to th
exact solution of the Fokker–Planck equation” h
been presented. In this Letter we should like
raise some questions about the justifications of
approximations used there, in particular with resp
to its application to the decay of a metastable st
Before we address details of the approach a
remarks of more general nature are in order.

It has become customary to look at nuclear fiss
as a time dependent process. As the currentjb across
the barrier shows a “transient behavior”, simply b
cause it takes some finite time beforejb reaches a
quasi stationary value, one likes to interpret the
sult in terms of a time dependent decay widthΓf(t),
modifying in this way the one originally deduced b
Kramers usingessentially the same picture. This tran-
sient time seemingly implies a delay of fission d

E-mail address:helmut_hofmann@physik.tu-muenchen.de
(H. Hofmann).
0370-2693  2003 Published by Elsevier B.V.
doi:10.1016/j.physletb.2003.06.053

Open access under CC BY lice
ing which light particles might be emittedin addi-
tion to those given by the conventional ratioΓn/Γ

st
f

of the partial widthsΓn for neutron evaporation to th
stationary valueΓ st

f for fission, even if for the latte
the Bohr–Wheeler expressionΓBW is replaced by the
smaller valueΓK of Kramers’ rate formula. In argu
ments in favor of such a procedure it is often claim
that the time dependence comes in only if fission
considered as a transport process underlying diss
tive forces. In this one forgets that the transition st
method is also based on “collective motion” whic
in principle, like particle emission, is a time depe
dent event. It is only that for these processes one
become accustomed to apply widths calculated
time independentpicture, in which, in addition, in-
herent averaging procedures are applied. Truth is
also Kramers’ rate formula does not represent a
thing other than an inverseaverage decay time. Th
can directly be seen by exploiting the concept of
“mean first passage time” (MFPT). For over-damp
motion an analytic formula for theτmfpt can be derived
nse.
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from which, under the usual conditions for Krame
rate formula, it follows thatΓK = h̄/τmfpt, see, e.g.
[2]. Interestingly enough, the value of theτmfpt does
not depend much on the initial position of the syste
in clear distinction to the transient effect [3]. In [3] an
[4] the concept of the MFPT has been applied to
clear fission to examine, for the limit of over-damp
motion, if more light particles may be emitted th
given by the ratioΓn/ΓK. In [4] it has been demon
strated that Kramers’ rate formula is valid only f
simple potentials and under favorable conditions
the temperature. For potentials having some struc
in addition to just one pronounced minimum and o
barrier the fission lifetime was seen to be considera
longer than theτK = h̄/ΓK associated to Kramers
rate. This feature may already by inferred from t
form

(1)τK = 2πγ√
Ca|Cb| exp(Eb/T )

the τK takes on for over-damped motion. Any unc
tainty in the product of the two stiffnesses at the m
imum and the barrier,Ca andCb, respectively, reflect
itself in a corresponding error of their geometric me
and hence inτK. Indeed, these stiffnesses are kno
at best in the immediate neighborhood of the extre
Realistically, however, the potentials are hardly sy
metric about these extrema. In cases that beyond
top of the barrier, for instance, the potential becom
wider this property may effectively imply a small
|Cb| and, hence, a larger value ofτK.

We agree with the authors of [1] that the und
standing of nuclear dissipation is of great importan
in particular its variation with shape and tempe
ture. After all, these are perhapsthedecisive features
through which different models or theories of nucle
transport can be distinguished [5]. It may perhaps
of interest to mention that, in addition to the pap
cited in [1], quite some work has been done, both
perimentally [6,7] as well as theoretically [8], in whic
such questions have specifically been addressed.

The main concern of [1] is that in previous analys
of experimental results uncertainties of a factor
two showed up in the so-called reduced fricti
coefficient β . There can be no question that t
ultimate goal must be to improve our understand
about this problem, but it is questionable that
uncertainties and ambiguities of the method used
[1] imply progress. To begin with, one should n
trace all problems back tojust the one constantβ .
Even discarding possible inaccuracies in the heigh
the barrier, which enters the decay rate in exponen
fashion, there are crucial problems with the transp
coefficients themselves. Theβ , for instance, only
stands for the ratio of frictionγ to inertia M. For
obvious physical reasons, these two quantities mus
expected to exhibit a totally different variation wi
temperature. Moreover, for a coordinate depend
inertia, Kramers’ formula has to get an addition
factor involving the square root of the ratio of th
inertias at barrier and minimum [8,9]. For truly ove
damped motion, on the other hand, any quantity wh
involves the inertia looses any meaning. Indeed,
latter does not appear in formula (1).

Let us turn now to the more formal problems of [1
The authors aim at delivering a simple way of calc
lating the time dependent prefactor which suppose
relatesΓf(t) to Kramers’ stationary valueΓK. The es-
sential approximation is to calculate this prefactornot
from a globalsolution of Kramers’ equation, whic
would properly account for themotion across the bar
rier, but from a solution of the same transport equat
restricted to the upright oscillatorby which the fission
potential may be approximated in theneighborhood of
the minimum. A moments reflection tells one that
the barrier, where the currentjb is to be calculated, th
height of the artificial potential in this region may ea
ily exceed the barrier height several times. The v
fact that in this region the stiffness of this auxilia
potential has the wrong sign is most crucial for t
current, in particular at large times. Whereas for
inverted oscillator thejb(t) eventually turns into the
stationary one already found by Kramers, the curr
for an upright oscillator tends to zero exponentia
In other words, replacing already in ([1]-6) (which
to say in Eq. (6) of Ref. [1]) the correct distributio
Wn by the one for an upright oscillator, calledWpar

in Eq. ([1]-9), leads to a vanishing denominator in t
basic formula.

To circumvent this problem some intermedia
steps are performed to finally end up with formu
([1]-8) for which the Wpar of ([1]-9) is to be in-
serted. One basic assumption for this is specifie
Eq. ([1]-7). It implies that, for any timet and at the
barrier top, the dependence of the distribution on
ordinate and velocity is identical to the one at in
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nite time. For an oscillator this statement is easily s
to be incorrect, both for under-damped as well as
over-damped motion (for which it is claimed to be e
act). Take the distribution given in ([1]-9), namely1

(2)Wpar(x = xb; t) = 1√
2πσ(t)

exp

(
− x2

b

2σ 2(t)

)
,

which for an oscillator delivers the correct form for t
density in coordinate space. For over-damped mo
this statement is evident, for under-damped mot
one first needs to integrate over velocity. Putting
form (2) into ([1]-7) theC(t) of ([1]-7) turns out to be

C(t) = σ(t → ∞)

σ (t)

(3)× exp

(
−x2

b

2

[
1

σ 2(t)
− 1

σ 2(t → ∞)

])
,

which evidently isnot only a function of timebut
varies withxb. As the upright and inverted oscillato
turn into each other by analytic continuation (chang
only the sign of the stiffness) [5] the proof just give
also applies to the motion of a Gaussian acros
barrier, if simulated by a parabola.

For the σ 2(t) needed for theWpar(x = xb; t)

of Eq. (2) a form is given in Eq. ([1]-10) whic
corresponds to zero initial width. On the other ha
the authors claim it to be more suitable to start fr
ground state fluctuations and they try to simulate
feature by introducing2 a time shiftt0. It is meant to
represent the “time shift needed for the probabi
distribution to reach the width of the zero-point moti
in deformation space”, which is supposed to be “eq
to the time that the average energy of the collec
degree of freedom needs to reach the value(1/2)h̄ω1
associated to the zero-point motion”. Obviously,
authors seem to understandt0 as a kind of relaxation
time to the equilibrium of the oscillator, as represen
by the ground state. It may be noted in passing
for a genuine quantum system any application of ([
10) is prohibited anyway as the distribution can ne

1 It is properly normalized, also in the sense of Eq. ([1]-5)
one only makes the common assumptions thatxb is sufficiently far
away from the minimum such that the tiny tail beyondxb does not
influence the normalization integral.

2 It remains unclear why the authors did not simple genera
the analytic form ([1]-10) to one valid for any initial condition, su
as (7), shown below for over-damped motion.
have zero width. In any case, it remains unclear w
it should be the ground state and, hence, why the
no influence of the large intrinsic excitations which a
produced in the first stage of the reaction; after all
authors work with a finite temperature.

At this stage it may be worth while to remin
the reader of some basic features of transport the
which may help to clarify a few critical steps us
in [1]. To begin with, let us look how quantum
features may be accounted for. As it stands, Eq. (
10) describes relaxation to the equilibrium specifi
by the equipartition theorem of classical mechan
represented here by the prefactor of the curly brac
For a damped oscillator this may be generalized
represent quantum fluctuations correctly (see, e
[5]). In equilibrium they arenot given by those of
the ground statēh/2µω1 used here, for instance i
Eq. ([1]-12). In fact for over-damped motion just th
opposite is true: there the correct quantum equilibri
is indeed given by the classical limit, see [5] for t
oscillator and [10] for the general case.

Let us examine now the derivation of Eq. ([1
12), t0 = h̄β/(4ω1T ), meant to determine the tim
lapse t0. This equation is obtained by assuming
linear dependence between theσ 2(t) and time t .
This approximation is justified by arguing that t
“influence of the potential on the diffusion proces
may be “neglected” as it “is anyhow small in the ran
of the zero-point motion”. To see the catch in th
argument let us simply write the correct equation
σ 2(t), as it comes out of the Smoluchowski equat
for the oscillator:

(4)
d

dt
σ 2(t) + 2

C

γ
σ 2(t) = 2Dovd.

Here,C is the stiffness of the potentialU(x), such that
the latter may be written as

(5)U(x) = C

2
x2 with C = µω2

1,

andDovd is the diffusion coefficient, which accordin
to (4) is determined by the equilibrium fluctuationσ 2

through

(6)Dovd = C

γ
σ 2(t → ∞) ≡ C

γ
σ 2

eq ≈ T

γ
.

Eq. (4) implies that the “influence of the potential
the diffusion process” is given by the second term
the left which has the same size independentof the
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“range” of the coordinate. The solution of Eq. (4) f
t � 0 is given by

(7)σ 2(t) = (
σ 2(t = 0) − σ 2

eq

)
exp

(
−2C

γ
t

)
+ σ 2

eq,

showing that relaxation to the equilibrium value ha
pens on the time scaleτovd = γ /2C independent of the
initial fluctuation. Of course, fort 
 τovd and zero ini-
tial fluctuations theσ 2(t) becomes linear int , but the
reason why such aσ 2(t) should be identified as th
ground state fluctuationof theundampedoscillator re-
mains unclear. Put in the context mentioned abov
is unclear why such a value ofσ 2(t) ≡ h̄/2µω1 should
be relevant ifreached by a process of strong dampin.

Next we turn to the value found fort0 from Eq. ([1]-
12). It turns out so small that the introduction
this quantity and the associated fluctuation cannot
plain why theΓf(t) starts to become finite only a
about 0.7 × 10−21 s. Indeed, forβ = 2 × 1021 s−1,
h̄ω1 = 1 MeV and T = 3 MeV one gets the ver
small number oft0 � 0.06× 10−21 s. The explana
tion given in [3] comes much closer: there, by sim
lating the whole fission process by a Langevin eq
tion, it was demonstrated that such a shift is relate
the relaxation of the initial distribution to the quas
equilibrium in the minimum. For the numbers ju
used the relaxation timeτovd becomesτovd � 0.36×
10−21 s—provided one makes use of the relation (
The value ofτovd becomes evenvery close to the
� 0.7 × 10−21 s at which in Fig. [1]-1 theΓf(t) is
seen to rise if the relation of frequency to stiffne
is replaced by theincorrect one given in Eq. ([1]-13)
where the stiffnessK is assumed to be only half th
correct value given in (5), in accord with the com
mon definition used in text books not only on n
clear physics but on classical and quantum mech
ics as well. It is true that, for the cases discussed
Fig. [1]-1, the motion is not really over-damped (f
h̄ω1 = 1), but theτovd may nevertheless be taken a
fair estimate.

As indicated before, it is left unclear why in th
general case the system should start with a small fl
tuation. Indeed, formula ([1]-8) together with ([1]-9
implies any transient effect (of the type discussed h
to be absent if one chooses to start out of the qu
equilibrium, which is to say forWpar(x = xb, t = 0) =
Wpar(x = xb, t → ∞). For a bound system, like th
upright oscillator, such an initial condition implies th
the system stays in equilibrium for ever. For ov
damped motion this may be seen from Eq. (7) toge
with (2). For a metastable situation like fission, on
other hand, the situation is different: then there will
a finite current outwards. Exactly this feature is n
described correctly by formulas ([1]-8) and ([1]-9
Please recall that in many cases an initial condit
like that of the quasi-equilibrium specified before
not at all unrealistic. For sufficiently large fission ba
riers, as they are required for Kramers’s rate form
anyhow, the system may well have enough time
reach such a stage around the first well before it
cays by fission.

Let us finally comment on the feature that for c
tain cases the present construction seems to repr
fairly well the numerically obtained global solution
of the transport equation for the full fission potenti
In our opinion this feature should be considered a
dental rather than supply a decent basis for trustw
thy applications in future work of the approximatio
advertised in this Letter. There are simply too ma
inconsistencies to warrant applicability to the gene
case.

References

[1] B. Jurado, K.-H. Schmidt, J. Benlliure, Phys. Lett. B 5
(2003) 186.

[2] C.W. Gardiner, Handbook of Stochastic Methods, Spring
Berlin, 2002.

[3] H. Hofmann, F.A. Ivanyuk, Phys. Rev. Lett. 90 (2003) 1327
[4] H. Hofmann, A.G. Magner, nucl-th/0304022, PRC, in press
[5] H. Hofmann, Phys. Rep. 284 (4–5) (1997) 137.
[6] D.J. Hofman, B.B. Back, I. Diószegi, C.P. Montoya, S. Sch

mand, R. Varma, P. Paul, Phys. Rev. Lett. 72 (1994) 470;
See also P. Paul, M. Thoennessen, Annu. Rev. Part. N
Sci. 44 (1994) 65.

[7] I. Diószegi, N.P. Shaw, I. Mazumdar, A. Hatzikoutelis, P. Pa
Phys. Rev. C 61 (2000) 024613.

[8] H. Hofmann, F.A. Ivanyuk, C. Rummel, S. Yamaji, Phys. R
C 64 (2001) 054316.

[9] V.M. Strutinsky, Phys. Lett. B 47 (1973) 121.
[10] P. Petchukas, J. Ankerhold, H. Grabert, Ann. Phys. (Leip

(2000) 1;
J. Ankerhold, P. Petchukas, H. Grabert, Phys. Rev. Lett
(2001) 086802.


	A note on the time evolution of the fission decay width  under the influence of dissipation
	References




