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Abstract

We consider a supersymmetric model with a new strong interacting sector. The model is built on a 
strongly interacting N = 4 Super Yang Mills sector, broken explicitly to N = 1 supersymmetry by em-
bedding within the Minimal Supersymmetric Standard Model (MSSM). Due to cancellation of global and 
gauge anomalies, the model additionally features a fourth lepton superfamily. We propose a scenario where 
all elementary scalars, gauging and higgsinos are decoupled at an energy scale substantially higher than the 
electroweak (EW) scale, thereby avoiding the little hierarchy problem of MSSM.

We construct a low energy effective model, where EW symmetry breaking and viable mass spectrum are 
produced dynamically. To test further the viability of the model, we work out the Higgs couplings as well 
as the EW precision parameters and then perform a goodness of fit analysis using LHC and EW precision 
data. The model fits the given experimental data at a level comparable to that of the Standard Model.
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1. Introduction

The data collected at the LHC experiments during the 7 and 8 TeV runs, with the epochal 
discovery of the Higgs boson [1,2] and the measurement of its couplings [3,4], seem to have 
provided the experimental verification of the Standard Model (SM) in its entirety below a TeV. 
Because of this, new physics coupled with the Electroweak (EW) SM currents must have a typical 
scale of the order of a TeV or higher. One possibility is that the new physics scale is much above 
the terascale, and then naturality as a model building paradigm should be reinterpreted [5,6]. If 
on the other hand naturality is realized in nature, then the new physics scale should be near the 
terascale and the present LHC data would provide hints of a new spectrum awaiting discovery in 
the future runs at the LHC. In this paper we investigate a model framework falling into the latter 
category.

In Technicolor (TC) theories [7,8] the new physics scale is naturally of the order of a TeV. 
The EW symmetry is broken by a new strong interaction which generates a fermion condensate, 
in a way analogous to QCD. The absence of light elementary scalars in TC automatically solves 
the SM fine-tuning problem. The mass of the lightest composite scalar is usually expected to be 
of O(TeV), well above the measured 126 GeV value. A light scalar can arise as consequence of 
approximate global symmetries, chiral symmetry [9–11] or scale invariance [12–16]. However, 
only recently it has been realized that also with simple QCD-like TC dynamics the scalar particle 
can become light because of loop corrections originating from extended sectors, which are always 
required in TC models to account for the generation of fermion masses [17–19].

The observed mass pattern of matter fields is generated in TC by coupling the technifermions 
with the SM fermions either via heavy gauge bosons of an Extended Technicolor (ETC) sector 
[20–23] or through scalar fields in bosonic technicolor (BTC) [24–28]. In case the scalar media-
tors are elementary, one can control fine-tuning at scales above the elementary scalar masses by 
introducing supersymmetry (SUSY) [29,30]. Combining SUSY with TC is therefore appealing 
because of two general features

• The fundamental Higgs fields do not participate in electroweak symmetry breaking, but serve 
as natural messengers between the symmetry breaking sector and SM matter fields.

• The strong TC dynamics responsible for the EW symmetry breaking alleviates the little 
hierarchy problem of supersymmetric scenarios.

Recently supersymmetric TC models based on N = 4 super Yang–Mills were considered in 
[31,32] where the low energy effective theory at scales below the TC scale, �TC, was taken to be 
Minimal Walking Technicolor (MWT) [14,15,33]. In this paper we study a simpler but still, as 
we shall show, phenomenologically viable possibility within the UV complete theory of [31,32]: 
we assume a larger portion of the supersymmetric spectrum to be heavy which still allows the 
resulting low energy effective theory, featuring an SU(3) global symmetry in the TC sector, to 
break correctly EW symmetry. Due to its global symmetry and the near conformal TC coupling 
we call this SU(3)Walking Technicolor (3WT).

The paper is structured as follow: In Section 2 we review the particle content and renor-
malizable Lagrangian of MSCT, which represents the elementary description of 3WT. Next we 
integrate out the heavy mass eigenstates of MSCT and derive the effective Lagrangian at scales 
below the SUSY breaking scale, mSUSY, in Section 3. In the subsequent Section 4 we write 
the effective Lagrangian at scales below �TC, where the TC interaction becomes strong and is 
assumed to bind technifermions and technigluons within composite states. We continue in Sec-
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Table 1
Non-MSSM superfield content of MSCT. Here Adj and � denote the 
adjoint and fundamental representations, respectively. None of the fields 
above is charged under SU(3)c .

Superfield SU(2)TC SU(2)L U(1)Y

�L Adj � 1/2
�3 Adj 1 −1
V Adj 1 0
�L 1 � −3/2
N 1 1 1
E 1 1 2

tion 5 by working out the mass eigenstates, light Higgs couplings, and EW precision parameters 
of the model. Then, in Section 6, we test the 3WT viability by scanning the parameter space for 
data points satisfying the direct search limits on new particles and then performing a goodness of 
fit analysis of Higgs physics data at LHC with the viable scanned data points. The result of this 
analysis, which is that 3WT fits the current experimental data at a goodness level comparable to 
that of the SM, is the main result of the paper. Finally, we offer our conclusions in Section 7.

2. An UV complete technicolor model

The UV complete supersymmetric theory which provides our starting point is the same which 
has been introduced in [31,32] and called Minimal Supersymmetric Conformal Technicolor 
(MSCT). The gauge symmetry group of MSCT extends the SM one by the TC gauge group, 
SU(2)TC. The TC vector superfields can be rearranged with the chiral superfields, containing the 
technifermions which transform under the adjoint representation of SU(2)TC, in N = 4 super-
fields. The MSCT Lagrangian can hence be expressed in compact form as that of the Minimal 
Supersymmetric Standard Model (MSSM) extended by an N = 4 Super Yang Mills (4SYM) 
sector, which contains the TC sector. We furthermore add to the superpotential a fourth lepton 
superfamily sector, in which the fermion components are needed to cancel the Witten topological 
anomaly generated by the odd number of left-handed technifermions. The non-MSSM super-
fields introduced in MSCT and their quantum numbers are summarized in Table 1. Analogously 
the MSCT superpotential can be expressed in compact form in terms of the MSSM superpotential 
and its extension

P = PMSSM + PTC, (1)

where PMSSM is the MSSM superpotential, and PTC is expressed by

PTC = −gTC√
2
εabc�aL ·�bL�c3 + yU�aL ·Hu�a3 + yN�L ·HuN + yE�L ·HdE

+ yRE�a3�a3 , (2)

with Hu (Hd ) denoting the Y = +1/2 (−1/2)Higgs superfield. The dot (·) indicates a contraction 
between the SU(2)L doublets with the antisymmetric two-index Levi-Civita tensor ε.

To the potential obtained from Eq. (1) we add the soft SUSY breaking terms of the MSSM as 
well as those corresponding to PTC, with the latter expressed by:
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LTC
soft = −

[
aTCε

abcÛaLD̂
b
LÛ

∗c
R + aUQ̂aL · ĤuÛ∗a

R + aN�̂L · ĤuN̂∗
R

+ aE�̂L · ĤdÊ∗
R + aRÛ∗a

R Û
∗a
R Ê

∗
R + 1

2
MDD

†a
R D

†a
R + c.c.

]
−M2

QQ̂
†a
L Q̂

a
L

−M2
UÛ

∗a
R Û

a
R −M2

LL̂
†
LL̂L −M2

NN̂
∗
RN̂R −M2

EÊ
∗
RÊR, (3)

where we write a hat on top of the scalar component of the chiral supermultiplets.
The model defined by Eqs. (1), (2) and (3) constitutes the fundamental description of the 

theory we study in this paper. The relevant scales of the model are the SUSY breaking scale, 
mSUSY, and the EW scale that we identify with the low-energy strongly coupled regime of the 
TC theory �TC ∼ 4πvw , which for vw = 246 GeV implies �TC ∼ 3 TeV. We will assume here 
that the two scales satisfy

mSUSY ��TC. (4)

With this ordering the EW symmetry is broken dynamically. Furthermore, we assume the mass 
spectrum to feature roughly the following hierarchy:

1) All SUSY breaking masses as well as the μ parameter are of O(mSUSY), therefore all the 
superpartners as well as the elementary Higgs scalars have masses of the same order.

2) All the lightest composite states acquire masses, which are at most of the order of �TC.

In the following section we proceed to derive the effective Lagrangian describing the physics 
below the SUSY breaking scale by integrating out the heavy states.

3. Mesoscopic Lagrangian

After we integrate out all particles with mass greater than mSUSY, the only technifermions left 
are the fermionic components of the EW doublet superfield �L and EW singlet �3 in Table 1:

QaL =
(
UaL
DaL

)
, UaR , a = 1,2,3 . (5)

To derive the effective Lagrangian, valid between the scales �TC and mSUSY, one first writes 
down the Higgs Yukawa sector in MSCT:

−LMSCT
Yukawa = Ĥu · Fu + Ĥd · Fd + h.c. ,

Fu = qiLuY
i
uu

†i
R + yUQLU†

R + yNLLN†
R ,

Fd = qiLdY
i
dd

†i
R + liLY il e†i

R + yELLE†
R , (6)

where i = 1, 2, 3 is the flavor index and it is summed over. The matrices Yu, Yd , and Yl are 
diagonal, and the CKM matrix V is contained in the definitions of the vectors

qT iLu = (uiL,V ij djL) and qT iLd = (V †ij u
j
L, d

i
L) . (7)

Given that the potential of the MSSM Higgs fields is

VMSSM =
(
m2

SUSY + |μ|2
)

|Ĥu|2 +
(
m2

SUSY + |μ|2
)

|Ĥd |2 −
(
bĤuĤd + h.c.

)
+ . . . (8)

by solving the equation of motion in terms of the Higgs mass eigenstates and plugging the solu-
tions back into Eq. (6), leads us to the first line of the following dimension six interaction terms 
for the fermions in the intermediate scale (or mesoscopic) effective Lagrangian
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L4-fermion = c2
θ

m2
s

(
F †
uFu + F †

d Fd

)
− cθ sθ

m2
s

(Fu · Fd + h.c.)

+ g2
TC

m2
SUSY

εabcεcdeη
αa
i η

b
jαη

†d
iβ̇
η

†β̇e
j . (9)

Similarly, the last term originates in an analogous way from the potential and the Yukawa sector 
of 4SYM. In Eq. (9) we have defined

ηTα =
(
ULα,DLα,−iσ 2

αβU
†β
R

)
, (10)

where σ 2 is the second Pauli matrix, and the indices i and j denote SU(3) flavor; the first letters 
of the alphabet are reserved for the adjoint SU(2) technicolor indices, while the Greek indices 
label the spin component, and the TC indices, running from 1 to 3, are written explicitly only in 
the last term. We suppress summed spin indices as long as it can be done consistently. Finally, 
we have defined

m2
s =

(
μ2 +m2

SUSY

) (μ2 +m2
SUSY)

2 − b2(
μ2 +m2

SUSY

)2 + b2
, tan θ = b

μ2 +m2
SUSY

. (11)

In the rest of this paper we use abbreviations sθ ≡ sin θ , cθ ≡ cos θ and tθ ≡ tan θ .
The four-fermion interaction terms in Eq. (9) are relevant because they eventually give mass 

to the SM fermions once the technifermions condense. The first line in Eq. (9) derives from 
decoupling the Higgs scalars, and breaks the global SU(3) symmetry, while the last term in 
Eq. (9), stemming from the 4SYM sector, respects the global SU(3) symmetry of the pure TC 
sector.

At energy scales below �TC the TC interaction becomes strong, and physical states charged 
under TC get bound in composite states with zero TC charge. In the next section therefore we 
derive the effective Lagrangian involving such states.

4. Effective Lagrangian at the electroweak scale

Similarly to QCD, in TC a tower of composite states is predicted to arise at low energies. At 
scales below �TC the new physics degrees of freedom are the composite states associated with 
the strong TC interaction, and the form of the effective Lagrangian is constrained to satisfy the 
approximate global symmetries of the fundamental Lagrangian. In the following we derive the 
effective Lagrangian introducing first the composite scalars and then the composite vectors.

4.1. Technicolor scalar sector

The composite scalar matrix field M , singlet under SU(2)TC, has minimal particle content 
given by the techniquark bilinears:

Mij ∼ ηαi ηβj εαβ = ηiηj , with i, j = 1 . . .3. (12)

The field M transforms under the full SU(3) group according to

M → uMuT , with u ∈ SU(3) . (13)

The effective linearly transforming SU(3) invariant Lagrangian reads:
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Table 2
Transformation properties of the component fields of the matrix M un-
der SU(2)L × U(1)Y . The complex scalars are grouped, based on their 
transformation properties under SU(2)L , into one triplet, one doublet, 
and one singlet.

Field SU(2)L U(1)Y

�∼QLQL �� 1

σ ∼QLU†
R

� − 1
2

δ−− ∼U†
R
U

†
R

1 −2

LM = 1

2
Tr
[
DμM

†DμM
]
− VM , (14)

where the covariant derivative is given by

DμM = ∂μM − igL
[
GμM +MGTμ

]
,

with

Gμ = W̃ a
μ

λa

2
+ tξBμYM , a = 1,2,3 . (15)

In the above equation λa are the Gell-Mann matrices, tξ = tan ξ with ξ the EW mixing angle, 
W̃μ and Bμ are the SM EW gauge fields, and

YM = diag

(
1

2
,

1

2
,−1

)
. (16)

The most general SU(3) preserving effective potential, including operators up to dimension four, 
is2

VM = −m
2

2
Tr
[
M†M

]
+ λ

4
Tr
[
M†M

]2 + λ′Tr
[
M†MM†M

]
− 2m′ [detM + detM†

]
,

(17)

which breaks SU(3) spontaneously to SO(3) for positive m2, as we show explicitly in Ap-
pendix A. The TC gauge interaction is actually invariant under U(3) ≡ SU(3) × U(1)A, rather 
than just SU(3). However the U(1)A axial symmetry is anomalous, and is therefore broken at 
the quantum level. This corresponds to the detM term in Eq. (17). The components of the ma-
trix M ∼ ηT η can be described in terms of the transformation properties of the composite states 
under SU(2)L × U(1)Y . This notation is introduced in Table 2.

Using this notation, the matrix M is written in terms of complex scalars as

M =
⎛⎝

√
2�++ �+ σ 0

�+ √
2�0 σ−

σ 0 σ− √
2δ−−

⎞⎠ . (18)

This notation is suitable to study the vacuum, since the flavor extension sector breaks the global 
symmetry of the potential from SU(3) down to the EW gauge group SU(2) × U(1). Next, we 
discuss how to consistently introduce also the composite vector fields.

2 In principle the higher dimensional operators can play a role and should be systematically included. For an initial 
investigation and qualitative account of the various constraints, we truncate the effective theory at the level of dimension 
four operators. This provides a quantitative baseline for possibly more refined analyses in the future.
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4.2. Vector sector

A minimal set of composite vector fields transforming homogeneously under SU(3) can be 
written, in terms of Gell-Mann matrices λa , as

Aμ =Aaμ
λa

2
, (19)

which transform under SU(3) according to

Aμ → uAμu
† , with u ∈ SU(3) . (20)

The elementary particle content of Aμ is expressed by the equivalence

A
μj
i ∼ ηαi σμαβ̇η†β̇j − 1

3
δ
j
i η
α
k σ
μ

αβ̇
η†β̇k =�jγ μ�i − 1

3
δ
j
i �

kγ μ�k ,

� = (ŪL, D̄L, Ū c
R

)
, (21)

where the components of � in SU(3) space are Dirac spinors, with the superscript c on the last 
entry denoting the charge conjugation. The vector and axial-vector charge eigenstates and their 
elementary particle content are given in Appendix B.

The effective Lagrangian including composite vector fields, Aμ, has already been derived in 
[33] for a theory with SU(4) global symmetry in the TC sector by applying the hidden local 
symmetry principle [34,35]. Those results can be straightforwardly used for SU(3) symmetric 
TC by defining the corresponding vector field and the field strength tensor:

Cμ =Aμ − ε Gμ , ε = gL

gTC
, Fμν = ∂μAν − ∂νAμ − igTC

[
Aμ,Aν

]
, (22)

with Gμ defined in Eq. (15). The vector field Cμ has the same transformation law as Aμ:

Cμ → uCμu
† , with u ∈ SU(3) . (23)

The kinetic and mass terms for the vector fields can then be written as

LV = −1

2
Tr
[
W̃μνW̃

μν
]
− 1

4
BμνB

μν − 1

2
Tr
[
FμνF

μν
]+m2

ATr
[
CμC

μ
]
, (24)

while the scalar-vector field interaction terms up to dimension four operators read

LM–V = g2
TCr1Tr

[
CμC

μMM†
]
+ g2

TCr2Tr
[
CμMC

μTM†
]

− g2
TC
r3

4
Tr
[
CμC

μ
]

Tr
[
MM†

]
, (25)

with constants ri ∼ O(1). A few remarks are in order: First, higher dimensional operators are 
suppressed by powers of �TC, and are therefore subleading. Second, terms proportional to yU , 
which explicitly break SU(3) global symmetry, are small compared to those proportional to g2

TC
and can therefore be neglected at leading order. Third, to simplify the phenomenological analy-
sis of 3WT, presented in the next section, we neglect also a covariant derivative coupling term 
(see [33] for its precise definition).3 Finally, in the next subsection, we determine the effective 
Lagrangian terms of the flavor extension of 3WT below scale �TC and then summarize the 3WT 
full Lagrangian.

3 Neglecting this term is simply a restriction on the parameter space: this term could be included in more thorough 
future analyses.
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4.3. Flavor extension sector

The four-fermion theory, Eq. (9), is given just below the SUSY breaking scale and the tech-
niquark condensate needs to be evolved down to the EW scale. This is achieved by multiplying 
the techniquark Yukawa coupling yU , renormalized at the SUSY breaking scale, with the dimen-
sionless factor

ω= 〈ULU†
R〉mSUSY

〈ULU†
R〉�TC

=
(
mSUSY

�TC

)γ
, (26)

written under the assumption that the anomalous dimension γ of the techniquark mass operator 
is constant.

Note that in the following we neglect the contribution of the last term in Eq. (9) because that 
term respects the global SU(3) symmetry, and therefore its effects should already be parametrized 
by the quartic couplings in the TC effective Lagrangian, Eq. (17). The masses of the SM fermions 
and the fourth family leptons arise from the terms on the first line of Eq. (9): more specifically 
those masses are generated by the following four-fermion operator

ηT Kη , (27)

with

Kij = yUcθω

m2
s

[
δikcθ

(
q

†k
LuY

∗
u uR + y∗

NL
†k
L NR

)
− εiksθ

(
qkLdYdd

†
R + lkLYle†

R + yELkLE†
R

)]
δ3j ,

i, j = 1, . . . ,3; k = 1,2; ε3k ≡ 0 , (28)

upon condensation of the techniquarks. Under SU(3) global symmetry the spurion K transforms 
as K → u∗Ku†.

The four-techniquark term on the other hand is

y2
Uc

2
θ

m2
s

ω2(QLU
†
R)(Q

†
LUR)=K ′

ijklη
α
i ηjαη

†
kβη

†β
l ,

K ′
ijkl =

y2
Uc

2
θ

m2
s

ω2 (δik1 + δik2) δjl3, (29)

where α and β are spin indices. For this term to be invariant under SU(3), the spurion K ′ must 
transform as K ′

ijkl → uimujnu
∗
kou

∗
lpK

′
mnop, with u ∈ SU(3). To estimate the effects of renormal-

ization, we simply assume factorization, leading to a multiplicative factor of ω2.
At the lowest order in the spurions, the SU(3) breaking effective Lagrangian, obtained from 

Eqs. (28) and (29) is:

LF = c1�
2
TCTr [MK] + c2�

4
TCK

′
ijklMijM

∗
kl + h.c. , (30)

where we introduced factors of �TC to define the dimensionless coefficients ci , which 
parametrize the couplings of the effective Lagrangian in terms of those of the underlying theory. 
We estimate these coefficients using dimensional analysis [36–38] and find

c1 =O
(
ϒ−1

)
, c2 =O

(
ϒ−2

)
, ϒ ≡ �TC

. (31)

vw
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To summarize, the 3WT effective Lagrangian is given by

L3WT = Lk +m2
ATr

[
CμC

μ
]+LM−V +LYukawa − V , (32)

where Lk contains all the covariant kinetic terms for the composite scalar and vector fields given 
respectively in Eqs. (14) and (24). The terms included in LM−V are given by Eq. (25), while the 
Yukawa interactions and the potential are defined by

LYukawa = c1�
2
TCTr [MK] + h.c. , V = VM −

[
c2�

4
TCK

′
ijklMijM

∗
kl + h.c.

]
, (33)

with TC potential VM given by Eq. (17). Having at hand the full Lagrangian for the model, we 
proceed to work out its phenomenological consequences in the next section.

5. Phenomenology

In this section we work out the mass eigenstates arising at low energy in 3WT, the couplings 
of the light composite Higgs boson to SM mass eigenstates, and the EW precision parameters S
and T .

5.1. EW symmetry breaking & mass eigenstates

The most general ground state which breaks the EW gauge group down to the electromagnetic 
U(1)Q can be parametrized by the following form of the vacuum expectation value (vev) of the 
matrix field M

〈M〉 = 1√
2

⎛⎝ 0 0 vσ

0
√

2v� 0
vσ 0 0

⎞⎠ . (34)

Minimizing the scalar potential given in Eqs. (17) and (30) leads to the following relations be-
tween the parameters:

m2 = λ
(
v2
σ + v2

�

)
+ 4λ′v2

� − 2λ′′v2
σ , m̃2 = 2

(
λ′ + λ′′)(v2

σ − 2v2
�

)
, (35)

where

m̃2 = c2y
2
Uc

2
θ

�4
TCω

2

m2
s

, λ′′ ≡ −m
′

v�
. (36)

A sufficient condition for the potential to be bounded from below is λ, λ′ > 0. In the limit vσ =√
2v� we obtain m̃= 0, consistently with the pure TC result in Appendix A. We notice that the 

ground state changes because of the four-technifermion interaction in Eq. (29). An analogous 
change of ground state occurs in ETC theories where some of the chiral symmetries of the pure 
TC theory are broken by extended gauge interactions. In our model setup the effective four 
fermion interactions at low energy arise from attractive Yukawa couplings which is different 
from the usual ETC scenario where the underlying gauge interactions can be either repulsive or 
attractive.

The mass spectrum of 3WT, corresponding to the vev in Eq. (34), includes two neutral scalars, 
h0 and H 0, as well as one neutral pseudoscalar, �0, one singly charged and two doubly charged 
scalars, H±, h±±, and H±±, respectively, with the corresponding squared mass matrices given 
in Appendix C. We introduce for later use the mixing angle ϕ defined by
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(
h0

H 0

)
= 1√

2

(
cϕ −sϕ
sϕ cϕ

)(� (σ 0
)

� (�0
)) . (37)

Assuming that only the third generation SM fermions have non-negligible Yukawa couplings, 
it follows from Eq. (30) that the masses of the upper component u and the lower component d of 
a generic SM fermion EW doublet are given, respectively, by

mu = c1
c2
θyUyuω�

2
TC

m2
s

vσ√
2
, md = yd

yu
tθmu . (38)

Using the previous equation, the fact that both members of the fourth fermion doublet, E and N , 
have to be heavier than about 100 GeV, and requiring the Yukawa couplings to be perturbative, 
we deduce that θ cannot be close to either 0 or π/2. To simplify the study of 3WT from here on 
we take ms =mSUSY, which from Eq. (11) is equivalent to imposing:

mSUSY =ms ⇒ b

μ2
= tθ + t−1

θ

2
. (39)

From the fact that neither tθ nor its inverse are large, it follows that our choice does not introduce 
any large hierarchy between b and μ2, and both can be taken of O(m2

s ). This is consistent with 
our assumption that the higgsinos are heavy and decoupled from low energy phenomenology.

Finally, the composite axial-vector and vector resonances mix with the SM gauge bosons, 
while the doubly charged baryon technivector does not. The resulting physical massive vector 
states are Zμ, Z′

μ, Z′′
μ, W±

μ , W ′ ±
μ , W ′′ ±

μ , �±±
μ , with the corresponding squared mass matrices 

given in Appendix C. The masses of W± and Z in the limit of negligible mixing (ε = 0) read:

m2
W

∼= 1

4
g2
Lv

2
w , m2

Z
∼= 1

4
(g2
L + g2

Y )(1 + t2ρ)v2
w , (40)

where tρ = √
2v�/vσ , and the EW scale is given by

v2
w = (√2GF )

−1 = (246 GeV)2 = v2
σ + 2v2

� . (41)

In the next subsection we give a more detailed discussion on the Higgs mass.

5.2. Higgs mass

The mass of a light Higgs in TC models deserves a little introduction. In [17] it has been 
shown that m2

h0 receives a large negative corrections at one loop from the top quark and the W±
and Z bosons. In [18,19] these considerations have been extended to fully dynamical settings of 
electroweak symmetry breaking and generation of fermion masses. Because of these corrections 
the tree level Higgs mass can be significantly larger than 126 GeV: adapting the formulas given 
in [17] to the 3WT case, while neglecting in first approximation any mixing between the two 
neutral scalar states, we can write(

m2
h0

)
tree

�m2
h0 + 8

3
κ2

[
2a2
f

(
3m2

t +m2
E +m2

N

)
− 3a2

π

(
m2
W + m2

Z

2

)]
, (42)

where (m2
h0)tree is the scalar mass due to pure strong dynamics, neglecting the scalar coupling 

with the EW gauge currents and SM matter. Furthermore, κ is an O(1) renormalization coeffi-
cient, while af and aπ are rescaling coefficients of the SM Higgs linear coupling to fermions 
and quadratic coupling to gauge bosons, respectively. In writing the formula above we set the 
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dimension of the TC representation to 3 and the number of technidoublets to 0.75, as it is 
the case for 3WT. To illustrate the idea we evaluate the formula above by assuming couplings 
and renormalization coefficient to be SM like (aF = aπ = κ = 1), and mE = mN = mt . With 
these choices we find a light Higgs, (m2

h0)tree = 740 GeV. This value is not far from the naive 
TC estimate for 3WT, obtained by scaling up the mass of the f0(500) QCD resonance [39]
(mf0 = 400–550 GeV):(

m2
h0

)
naive

� 4

3

v2
w

f 2
π

m2
f0

= 1200–1700 GeV . (43)

The required suppression of the tree level Higgs mass, around 50%, might realistically come 
from near-conformal dynamics. This should be indeed the case for 3WT, which has 1.5 adjoint 
Dirac flavors and is outside but close to the conformal window [40].

As this discussion implies, there will be some amount of fine tuning involved in this scenario. 
However, the same applies to practically any BSM scenario which explains the relatively small 
mass of the observed Higgs boson. In our case the amount of fine tuning can be quantified in a 
simple way as

FT = (125 GeV)2(
m2
h0

)
naive

. (44)

The concrete values are on the level of few percents. For example, for 
(
mh0

)
naive � 1 TeV, FT �

1.6%, whereas for 
(
mh0

)
naive ∼ 740 GeV, FT � 2.9%.

We observe that the couplings involved in the one loop correction to mh0 are SM-like in size, 
and this ensures that higher order corrections are indeed perturbative and do not spoil the partial 
cancellation with the effective TC tree level contribution.

5.3. Coupling coefficients

In our model the linear Higgs coupling to charged vector bosons can be written in compact 
form as

L ⊃ 2m2
A

vw
W̄ †
μ�W̄

μh0 , W̄ †
μ =

(
W̃−
μ ,V

−
μ ,A

−
μ,�

−−
μ

)
, (45)

with the non-zero terms of the matrix � given by

�1,1 =
(
x2 + ε2z1

)(
cϕcρ − √

2sϕsρ
)

+ ε2z3√
2

(
sϕsρ − √

2cϕcρ
)
,

�2,2 = z1

(
cϕcρ − √

2sϕsρ
)

+ z2

(
cϕsρ − √

2cρsϕ
)

+ z3√
2

(
sϕsρ − √

2cϕcρ
)
,

�3,3 = z1

(
cϕcρ − √

2sϕsρ
)

− z2

(
cϕsρ − √

2cρsϕ
)

+ z3√
2

(
sϕsρ − √

2cϕcρ
)
,

�1,2 = − ε

2
√

2
�2,2 , �1,3 = − ε

2
√

2
�3,3 ,

�4,4 = 2cϕcρ (z1 + z2)+ z3√
2

(
sϕsρ − √

2cϕcρ
)
. (46)

Here ϕ is the mixing angle of the neutral scalars, Eq. (37), and
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ε = gL

gTC
, x = gLvw

2mA
, tρ =

√
2v�
vσ

, zi =
(
gTCvw

2mA

)2

ri , i = 1,2,3 . (47)

To simplify the analysis we select the slice of parameter space where the axial vector coupling 
to the light Higgs is zero (�1,3 =�3,3 = 0). Moreover, we require the mixing mass term of the 
axial-vector to arise only from mixing ((M2

W)1,3 = −εm2
A/

√
2), which is taken to be small. 

Together these conditions are satisfied by imposing

z1 = 1

4

(
3 + c−1

2ρ

)
z3 , z2 = 1

4
t2ρz3 . (48)

With the help of the two equations above, the charged vector boson squared mass matrix in 
Eq. (C.6) can be written in compact form as [41]:

M2
W =

⎛⎜⎜⎜⎝
m2
W̃

− εm2
V√
2

− εm2
A√
2

− εm2
V√
2

m2
V 0

− εm2
A√
2

0 m2
A

⎞⎟⎟⎟⎠ , (49)

with

m2
W̃

=
[
x2 +

(
1 + s2

)
ε2
]
m2
A , m2

V =
(

1 + 2s2
)
m2
A , s2 = z3

4
s2ρt2ρ . (50)

The mass eigenvalues can be expanded in x and ε, which in TC are both expected to be small:

m2
W

∼=m2
Ax

2
[
1 − ε2

]
, m2

W ′′ ∼=m2
A

[
1 + 1

2

(
1 + x2

)
ε2 − 1

8

(
2 + 1

s2

)
ε4
]
,

m2
W ′ ∼=m2

A

[
1 + 2s2 + 1

2

(
1 + 2s2 + x2

)
ε2 + 1

8

(
2 + 1

s2

)
ε4
]
, (51)

where we kept contributions up to O(xnε4−n), with n = 0, . . . , 4.
Generally the linear couplings of the light Higgs are conveniently expressed in terms of cou-

pling coefficients defined by

Leff =
∑
i

aWi

2m2
Wi

vw
hW+

iμW
−μ
i +

∑
j

aZj

m2
Zj

vw
hZjμZ

μ
j

− af
∑

ψ=t,b,τ,N,E

mψ

vw
hψ̄ψ −

∑
k

aSk

2m2
Sk

vw
hS+
k S

−
k , (52)

where the indices i and k run over all the charged scalars and vector bosons (including the states 
with double charge). By normalizing the linear Higgs couplings to the charged vector bosons 
according to Eq. (52), with the masses given by Eqs. (51), (C.7), we determine the relations

aW =
(
cϕcρ − √

2sϕsρ
)[

1 − x2ε2

2

(
1 + 1

1 + 2s2

)]
+ x2ε2s2

2
(
1 + 2s2

)2 (cϕcρ − √
2
sϕ

sρ

)
,

aW + aW ′ + aW ′′ = cϕcρ − √
2sϕsρ + s2

1 + 2s2

(
cϕ

cρ
− √

2
sϕ

sρ

)
,

a� = s2

sρ

2cϕ
(
1 + t−1

ρ

)+ √
2c2ρc

−2
ρ sϕ

2 − 4s2 + s2
(

2
(
t−1
ρ + s−2

ρ

)
+ c−2

ρ

) . (53)
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The corresponding result for fermions reads simply

af = cϕ

cρ
. (54)

Among the neutral vector resonances only Z is relevant for the LHC observables we include in 
this study. As we discuss in the next section, the numerical values of aZ that we find are very 
close to aW , and for all practical purposes they can therefore be taken equal to each other.4

5.4. Oblique corrections

The precision EW parameters [42,43] can be calculated directly from the vector-boson sector 
of the effective Lagrangian, Eqs. (24) and (25), by integrating out the heavy charged and neutral 
states and then using the formulas provided by [44,45].5 At tree level and linear order in the 
mixing parameter ε we find:

Stree = 0 , αeTtree = −2v2
�

v2
w

. (55)

For the T parameter to be consistent with the experiments, the vev component v� clearly has to 
be small in comparison to the EW scale. We note that the S parameter is zero up to corrections of 
order ε4 while the T parameter obtains further contributions of order ε2 which we neglect since 
ε� 1.

The intrinsic TC contribution is usually calculated from the one loop perturbative diagrams of 
the technifermions, which are assumed to be massive because of dynamical symmetry breaking. 
The dynamical mass divided by mZ is usually taken infinite, as this gives a meaningful result with 
no unknown parameters. These contributions are denoted by Snaive and Tnaive. For our underlying 
technicolor theory, Eq. (5), the dynamical masses are such that while the up-techniquark, U , gains 
only a Dirac mass, mU , the down-techniquark, DL, acquires also a Majorana mass, mL. Oblique 
corrections for this general case have been calculated in [46] in terms of integral functions, which 
we use to derive the explicit formulas given in Appendix D. In the pure 3WT limit the Dirac and 
Majorana masses are equal to each other,6 mL =mU , and we find

Snaive ≈ 3

4π
, Tnaive ≈ m2

U log[ mU
�NP

]
4m2

Zs
2
ξ c

2
ξπ

. (56)

The dependence of T on the renormalization scale �NP is due to the Majorana mass, and it 
should be matched onto a renormalizable term in the underlying theory. Indeed in the full theory, 
Eqs. (1), (2), (3), the contribution to T of the technifermion DR cancels the one in Eq. (56) when 
its mass is the same as that of U . Phenomenological viability therefore would require the two 
masses to be close in value, and we implement this requirement in the current analysis by assum-
ing mD ∼�NP and �NP to be close to mU . With this assumption the one-loop contribution Tnaive
is negligible when compared to the tree-level contribution, Ttree, and therefore we approximate 
the naive parameters as given by:

Snaive ≈ 3

4π
, Tnaive ≈ 0 . (57)

4 The analytic expressions for aZj and aSk are lengthy and we do not reproduce them here.
5 For this task we adapted the code provided by the authors of [33] to 3WT.
6 This follows from the SO(3) invariance of the mass terms implied by Eq. (18).
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Another independent contribution to S and T in 3WT comes from the fourth family leptons 
N and E. These have been already evaluated in [47]: for mE >mN , the SN,E contribution is ac-
tually negative and can offset the positive Snaive. We can therefore summarize the non-negligible 
contributions to the S and T parameters, with the assumptions described above, as:

S = Snaive + SN,E , T = Ttree + TN,E, (58)

where Ttree, Snaive, and the Higgs contributions are given in Eqs. (55) and (57).
The contribution of the heavy leptons to the S parameter is indeed critical to partially cancel 

the naive TC contribution (∼0.24) and match the experimental result (0.04 ± 0.09): the required 
cancellation imposes a moderate constraint on the ratio mE/mN [15,46].

In the next section we study the viability of 3WT by performing a goodness of fit analysis 
based on the recent LHC and Tevatron data on Higgs physics, as well as the experimental values 
of the S and T parameters.

6. Experimental validation

To test the model’s viability, we start by performing a numerical scan over the parameter space 
and collecting data points that satisfy the direct search lower bounds on the new physics mass 
spectrum and the EW precisions tests. We also require perturbativity of all couplings excluding 
gTC, and stability of the potential at large values of the scalar fields. The unknown parameters 
derived from strong dynamics are estimated using dimensional analysis [36–38]. Finally, we fix 
the anomalous dimension to γ = 1.5, and require the supersymmetry breaking scale to be larger 
than 5 TeV. Putting all this together, the free parameters in our scan acquire values in the domain 
defined by the following relations:

210 GeV ≤ |vσ | ≤ 246 GeV , mA = 1 TeV , γ = 1.5 , π ≤ϒ ≤ 4π , 0.5 ≤ c1ϒ
−1 ≤ 5 ,

0.1 ≤ λ≤ (2π)2 , 0.1 ≤ yt , yN , yE, yU ≤ 2π , 0.1 ≤ λ′′ ≤ 200 , 0 ≤ z3 ≤ 1 , |ε| ≤ 2x .

(59)

The remaining model parameters, λ′, θ , x and v�, are determined in terms of the ones above 
by using, respectively, Eqs. (C.1), (38), (41), and (51) together with the observed masses of the 
Higgs boson, top quark, W boson, and the EW vev. The last relation above ensures that the 
physical W is mostly made of the SU(2)L gauge field. We scan the parameter space defined 
above and collect 1000 data points, each satisfying the following constraints,

mSUSY > 5 TeV , mH 0 > 600 GeV , m�0,mH± ,mh±± ,mH±± ,mE,mN ≥ 100 GeV , (60)

as well as the experimental limits on S and T [39]. We also check that the collected data points 
satisfy the ATLAS lower limit on the mass of a sequential W ′ boson [48], equal to 2.55 TeV, 
after an appropriate rescaling of the limit which takes into account the non-SM value of the W ′
coupling to fermions [41].

Having at hand a sufficiently large collection of viable points in the 3WT parameter space, 
we perform a goodness of fit analysis by using the observed Higgs decay rates to γ γ , ZZ, WW , 
ττ , bb, γ γ JJ at ATLAS [49–53] and CMS [54–57], and to γ γ , WW , and bb at Tevatron [58], 
as well as the S and T experimental values [39], for a total of 19 observables. The LHC and 
Tevatron results are expressed in terms of the signal strengths, defined as

μ̂ij = σtotBrij
σ SM

tot BrSM
ij

, σtot =
∑

′
ε�′σ�→�′ , �= pp,pp̄ , (61)
� =h,qqh,...
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Table 3
Combined signal strengths from LHC and Tevatron experiments.

ij ATLAS CMS Tevatron

ZZ 1.50 ± 0.40 0.91 ± 0.27
γ γ 1.65 ± 0.32 1.11 ± 0.31 6.20 ± 3.30
WW 1.01 ± 0.31 0.76 ± 0.21 0.89 ± 0.89
ττ 0.70 ± 0.70 1.10 ± 0.40
bb −0.40 ± 1.10 1.30 ± 0.70 1.54 ± 0.77

Table 4
Signal strengths and efficiencies for Higgs decay to γ γ associated to a dijet at LHC.

ATLAS 7 TeV ATLAS 8 TeV CMS 7 TeV CMS 8 TeV

γ γ JJ 2.7 ± 1.9 2.8 ± 1.6 2.9 ± 1.9 0.3 ± 1.3

pp→ h 22.5% 45.0% 26.8% 46.8%
pp→ qqh 76.7% 54.1% 72.5% 51.1%
pp→ t t̄h 0.6% 0.8% 0.6% 1.7%
pp→ V h 0.1% 0.1% 0% 0.5%

where ε�′ is the efficiency associated with the given final state �′ in an exclusive search, while 
for inclusive searches one simply has σtot = σpp→h0(X), the h0 production total cross section.

The combined signal strengths from ATLAS, CMS,7 and Tevatron are given in Table 3, while 
the signal strengths and efficiencies8 for dijet associated γ γ production at ATLAS and CMS are 
listed in Table 4.

Finally, the observed values for the S and T parameters are [39]

S = 0.04 ± 0.09 , T = 0.07 ± 0.08 , r(S,T )= 88% , (62)

with the last quantity defining the correlation of the two parameters.
For a detailed description of the present fit we refer the reader to [41], where the same sta-

tistical analysis has been performed for a different model. Given that no new physics has been 
detected, only the contributions of new charged particles at one loop to �h→γ γ become relevant 
when comparing the 3WT predictions to the data in Tables 3, 4. More explicitly one has [59]

�h→γ γ = α2
em

3
h

256π3v2
w

∣∣∣∣∣∑
i

Nie
2
i Fi

∣∣∣∣∣
2

, (63)

with i summed over all the charged particles, Ni is the number of colors, ei the charge in electron 
units, and Fi a function of the mass mi and the coupling coefficient defined in [41]. In the limit 
of new particles being much heavier than the light Higgs, one finds

FWi = 7aWi , FE = FN = −af 4

3
, FSi = −aSi

1

3
, (64)

with the coupling coefficients defined by Eq. (52). We can therefore mimic the contribution of 
the charged non-SM particles in 3WT to the observables in Tables 3, 4 by including only the new 
contribution of a heavy singly charged vector boson with coupling coefficient aV ′ determined by

7 We use the mass cut based result for CMS result on the Higgs to diphoton decay.
8 We chose to include only the loose categories from the ATLAS and CMS dataset at 8 TeV.
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Fig. 1. Viable data points in the (aV , af ) (left panel) and (aV , aV ′ ) (right panel) planes, together with the 68% (green), 
90% (blue), and 95% (yellow) CL region. The blue star in each plot marks the optimal coupling coefficients on the 
respective planes. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

aV ′ ≡ 1

7
(FW ′ + FW ′′ + 4F�)− aS

21
,

aS ≡ −3 (16FE + 4FN + FH± + 4Fh±± + 4FH±±) , (65)

where the factors of 4 account for the double charge of the corresponding states. Moreover, to 
simplify the analysis we redefine consistently with [41]

aZ ≈ aW ≡ aV , (66)

where the numerical deviations from the first approximate equality above turn out to be negligible 
for the collected data points compared to the uncertainties on the coupling coefficients. At each 
collected data point we determine the numerical values of af , aV , and aV ′ by Eqs. (53), (65) and 
(66), while we calculate numerically the coupling coefficients of the charged scalars. In Fig. 1 we 
plot the viable data points on the (aV , af ) (left panel) and (aV , aV ′) (right panel) planes, while in 
Fig. 2 we plot the data points on the (aV ′ , af ) plane, together with the 68% (green), 90% (blue), 
and 95% (yellow) confidence level (CL) regions. In both plots the missing parameter is fixed 
to the optimal value marked with a blue star. It is clear from Fig. 1, left panel, that the W and 
Z couplings are enhanced, compared to their SM values, while the SM fermion couplings are 
suppressed. This result for the 3WT couplings enhances the Higgs decay to diphotons. However, 
the contribution of the new charged fermions and scalars, expressed by Eq. (65), is large and 
interferes destructively with the W contribution to the same process. As a consequence the data 
point minimizing χ2 in the (af , aV , aS) space, obtained from a 3WT particle spectrum without 
the composite vector resonances at low energy, is ruled out:

aV = 1.00 , af = 1.00 , aS = 20.5 , S = 0.04 , T = 0.07 ;
χ2

min/d.o.f. = 3.42 , P
(
χ2 > χ2

min

)
= 0.0004 % , d.o.f. = 16 . (67)

In calculating χ2
min/d.o.f. in the above equations we assumed the model to allow three free param-

eters (af , S, T ), since aV is strongly correlated with af near χ2
min and aS is basically constant. 

The contribution of the new charged vector bosons, and especially that of the vector baryon �, to 
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Fig. 2. Viable data points in the (aV ′ , af ) plane passing through the point with optimal coupling coefficients in the 
(aV ′ , af , aV ) space, marked by a blue star, together with the 68% (green), 90% (blue), and 95% (yellow) CL region. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the Higgs decay into diphoton is large, and offsets entirely the negative contribution ofE,N , and 
charged scalars in Eq. (65). Among the 1000 viable data points, the one producing the minimum 
value for χ2 is:

aV = 1.01 , af = 0.99 , aV ′ = 0.21 , S = 0.04 , T = 0.07 ;
χ2

min/d.o.f. = 0.83 , P
(
χ2 > χ2

min

)
= 65 % , d.o.f. = 15 , (68)

where the number of degrees of freedom (d.o.f.) has decreased by one, since aV ′ is a free pa-
rameter. It is interesting to notice that the optimal value of aV ′ above is equal to the average aV ′ , 
calculated over the 1000 data points, while the average values of af and aV are, respectively, 
0.98 and 1.03, which are very close to the corresponding optimal values given above. This shows 
that strong dynamics, which we used to determine the scanned range of values of the free pa-
rameters, generates rather naturally the coupling strengths favored by LHC data, at least once the 
direct constraints on the mass spectrum and the EW precision parameters are satisfied.

The 3WT result in Eq. (68) should be compared to the SM one:

χ2
min/d.o.f. = 0.89 , P

(
χ2 > χ2

min

)
= 60% , d.o.f. = 19 . (69)

While the SM fit is less satisfactory than the 3WT one, it clearly shows that the SM is still 
perfectly viable in light of present collider data. It is instructive to notice that the fit performed 
with completely free coupling coefficients, therefore not motivated by any specific underlying 
theory, produces a worse fit than the 3WT:

aV = 0.97+0.10
−0.11 , af = 1.02+0.25

−0.32 , aV ′ = 0.21+0.16
−0.18 ,

χ2
min/d.o.f. = 0.85 , P

(
χ2 > χ2

min

)
= 62% , d.o.f. = 14 . (70)

This is because the underlying strong dynamics introduces a large correlation between af and 
aV , hence increasing the number of d.o.f. by one, while achieving a χ2

min very close to the corre-
sponding result obtained with free coupling coefficients (Fig. 2).
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7. Conclusions

In this paper we derived the low energy effective theory of a supersymmetric model with a 
new strong interacting sector and tested its viability at the LHC. We started from MSSM ex-
tended by a strong interacting N = 4 Super Yang Mills (4SYM) sector as well as by a fourth 
lepton superfamily. By integrating out all the elementary scalars (as well as gauginos and hig-
gsinos), which we assume to be very heavy, we obtained a Technicolor (TC) sector extended by 
four-fermion interactions between the (4SYM) TC fermions and the SM ones. Due to these inter-
actions, the TC fermion condense gives mass to the EW gauge bosons and to the SM fermion as 
well. The advantage of this setup is twofold: Supersymmetry naturalizes the scalars which allow 
ETC-type generation of fermion masses, while the strong sector disentangles the SUSY breaking 
scale from the electroweak scale and solves the little hierarchy problem.

Given that at low energy the strong interacting states form bound states, we constructed the 
effective Lagrangian at the EW scale expressed in terms of composite scalar and vector fields, in 
addition to the SM fields. Because the TC potential features an SU(3) global symmetry and the 
TC coupling is near conformal, we called this model SU(3) walking technicolor (3WT). To test 
the viability of the model, we worked out the Higgs couplings to the fermion and vector mass 
eigenstates, as well as the S and T EW parameters. We then scanned the model parameter space 
for data points featuring a viable mass spectrum, ensuring that the couplings remain perturbative 
at large scales. By performing a goodness of fit analysis using Higgs physics data from LHC as 
well as the experimental values of the EW precision parameters, we showed that 3WT fits the 
experimental data with a level of goodness comparable to that of the SM. Remarkably, the role 
played by heavy composite vector resonances turned out to be critical, as their contribution to 
the diphoton decay of the light Higgs is absolutely necessary to bring the corresponding 3WT 
prediction within the experimental constraints. These composite vector resonances, having mass 
of O(TeV), should in principle be observable at LHC.

To conclude, we highlight that SU(3) Walking Technicolor is an UV complete model, which, 
by avoiding any scalars at the EW scale, in principle solves fine tuning problem. This model, 
moreover, is favored by Higgs physics and EW precision data at a level comparable to that of 
the SM.
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Appendix A. EW symmetry breaking in global SU(3) invariant technicolor

The SU(3) symmetry of the microscopic TC Lagrangian is spontaneously broken to the 
maximal diagonal subgroup, SO(3). The symmetry breaking pattern leaves us with five broken 
generators with associated Goldstone bosons. Such a breaking is driven by the condensate

〈ηαi ηβj εαβEij 〉 = 〈2U†
RUL +DLDL〉 , (A.1)

where the indices i, j = 1, . . . , 3 denote the components of the triplet of η, and the Greek indices 
indicate the ordinary spin. The matrix E is a 3 × 3 matrix defined as
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E =
⎛⎝ 0 0 1

0 1 0
1 0 0

⎞⎠ . (A.2)

The above condensate is invariant under an SO(3) symmetry. It is convenient to separate the 
eight generators of SU(3) into the three that leave the vacuum invariant, Sa , and the remaining 
five that do not, Xa . Then the Sa generators of the SO(3) subgroup satisfy the relation

Sa E +E SaT = 0 , with a = 1, . . . ,3 , (A.3)

so that uEuT = E, for u ∈ SO(3). An explicit realization of the generators is shown in Ap-
pendix B.

The scalar and pseudoscalar degrees of freedom, necessary to model the Goldstone bosons 
and spontaneous symmetry breaking, consist of a composite Higgs and its pseudoscalar partner, 
as well as five pseudoscalar Goldstone bosons and their scalar partners. These can be assembled 
in the matrix

M =
[
σ + i √

3
I3 + √

2(i�a + �̃a)Xa
]
E , (A.4)

which transforms under the full SU(3) group according to

M → uMuT , with u ∈ SU(3) . (A.5)

The Xa’s, a = 1, . . . , 5 are the generators of the SU(3) group which do not leave the vacuum 
expectation value (VEV) of M invariant

〈M〉 = v√
3
E . (A.6)

Appendix B. SU(3) generators

The generators Si of SO(3) satisfy SiE + ESiT = 0. The other generators of SU(3) are 
written as Xi . The generators are normalized as

Tr[SiSj ] = δij /2 Tr[XiXj ] = δij /2 Tr[XiSj ] = 0 (B.1)

and given in terms of the Gell-Mann matrices λi by

S1 = 1

2
√

2

(
λ1 − λ6

)
(B.2)

S2 = 1

2
√

2

(
λ2 − λ7

)
(B.3)

S3 = 1

4

(
λ3 + √

3λ8
)

(B.4)

X1 = 1

2
√

2

(
λ1 + λ6

)
(B.5)

X2 = 1

2
√

2

(
λ2 + λ7

)
(B.6)

X3 = 1 (√
3λ3 − λ8

)
(B.7)
4
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X4 = 1

2
λ4 (B.8)

X5 = 1

2
λ5 (B.9)

Using the generators above, it is straightforward to obtain the vector and axial-vector charge 
eigenstates and their elementary particle content from Eqs. (19), (21). First note that the charge 
operator is Q = S3. We find first the linear combinations of the generators corresponding to 
charge eigenvalues 0, ±1 and ±2. Then we project the corresponding vector states, e.g. v0

μ =
2Tr(S3Aμ), and obtain:

v0
μ ≡ A3

μ + √
3A8

μ

2
∼ ŪLγμUL + ŪRγμUR ,

v+
μ ≡ A1

μ −A6
μ

2
− i A

2
μ −A7

μ

2
∼ D̄LγμUL + D̄c

LγμUR ,

v−
μ ≡ A1

μ −A6
μ

2
+ i A

2
μ −A7

μ

2
∼ ŪLγμDL + ŪRγμDc

L ,

a0
μ ≡

√
3A3

μ −A8
μ

2
∼ ŪLγμUL − ŪRγμUR − 2D̄LγμDL ,

a+
μ ≡ A1

μ +A6
μ

2
− i A

2
μ +A7

μ

2
∼ D̄LγμUL − D̄c

LγμUR ,

a−
μ ≡ A1

μ +A6
μ

2
+ i A

2
μ +A7

μ

2
∼ ŪLγμDL − ŪRγμDc

L ,

�++
μ ≡ A4

μ − iA5
μ√

2
∼ Ū c

RγμUL , �−−
μ ≡ A4

μ + iA5
μ√

2
∼ ŪLγμU c

R . (B.10)

The particle contents given above reproduce the corresponding results in [33] if one applies there 
the substitution DR →Dc

L.

Appendix C. Squared mass matrices

For the neutral scalar and pseudoscalar states, the charged and doubly charged states, the 
squared mass matrices are, respectively

M2
h̄0 =

(
2v2
σ

(
λ+ 2λ′) 2v�vσ

(
λ− 2λ′′)

2v�vσ
(
λ− 2λ′′) 2

(
v2
σ λ

′′ + v2
�

(
λ+ 4λ′)) ) , (C.1)

in the � 
(
σ 0
)
, � 
(
�0
)

basis,

M2
π̄0 =

(
8v2
�λ

′′ 4v�vσλ′′
4v�vσλ′′ 2v2

σ λ
′′
)
, (C.2)

in the � 
(
σ 0
)
, � 
(
�0
)

basis,

M2
h̄± =

(
2v2
σ

(
λ′′ + λ′) 2

√
2v�vσ

(
λ′′ + λ′)

2
√

2v�vσ
(
λ′′ + λ′) 4v2

�

(
λ′′ + λ′) )

, (C.3)

in the �±, σ± basis,
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M2
h̄±± =

(
2v2
σ λ

′′ − 4
(
v2
� − v2

σ

)
λ′ 4v2

�λ
′′ + 2v2

σ λ
′

4v2
�λ

′′ + 2v2
σ λ

′ 2v2
σ λ

′′ − 4
(
v2
� − v2

σ

)
λ′
)
, (C.4)

in the �±±, δ±± basis.
We define, besides ε in Eq. (22), the following dimensionless parameters:

x = gLvw

2mA
, tρ =

√
2v�
vσ

, zi =
(
gTCvw

2mA

)2

ri , i = 1,2,3 . (C.5)

Then the non-zero terms of the charged vector boson squared mass matrix (which by definition 
is symmetric) are(

M2
W̄

)
1,1

=m2
A

[
x2 + ε2

(
1 + z1 − z3

2

(
1 + c2

ρ

))]
,(

M2
W̄

)
2,2

=m2
A

[
1 + z1 + z2s2ρ − z3

2

(
1 + c2

ρ

)]
,

(
M2
W̄

)
1,2

= − ε√
2

(
M2
W̄

)
2,2
,(

M2
W̄

)
3,3

=m2
A

[
1 + z1 − z2s2ρ − z3

2

(
1 + c2

ρ

)]
,

(
M2
W̄

)
1,3

= − ε√
2

(
M2
W̄

)
3,3
,

(C.6)

in the W̃±
μ , V

±
μ , A

±
μ basis, with furthermore the squared mass of the doubly charged vector boson 

given by

m2
� =m2

A

[
1 + 2c2

ρ (z1 + z2)− z3

2

(
1 + c2

ρ

)]
. (C.7)

Finally, the non-zero terms of the neutral vector boson squared mass matrix in the W̃ 3
μ, Bμ, V

3
μ,

A3
μ basis are(

M2
Z̄

)
1,1

=m2
A

[
x2
(

1 + s2
ρ

)
+ ε2

(
1 + z1 − 1

2

(
1 + c2

ρ

)
z3 + z2s

2
ρ

)]
,(

M2
Z̄

)
1,2

= −m2
A

[
x2
(

1 + s2
ρ

)
+ ε2

(
z1 − c2

ρ (2z1 − z2)+ z2

)]
tξ ,(

M2
Z̄

)
2,2

=m2
A

[
x2
(

1 + s2
ρ

)
+ ε2

(
3 + z1 + c2

ρ (4z1 − 5z2)+ z2 − 3

2

(
1 + c2

ρ

)
z3

)]
t2ξ ,(

M2
Z̄

)
3,3

=m2
A

[
1 + 2c2

ρ (z1 − z2)− z3

2

(
1 + c2

ρ

)]
,(

M2
Z̄

)
1,3

= −ε
2

(
M2
Z̄

)
3,3
,

(
M2
Z̄

)
2,3

= −3

2
ε tξ

(
M2
Z̄

)
3,3
,(

M2
Z̄

)
4,4

=m2
A

[
1 + z1 − z2s2ρ − z3

2

(
1 + c2

ρ

)]
,(

M2
Z̄

)
1,4

= −
√

3

2
ε
(
M2
Z̄

)
4,4
,

(
M2
Z̄

)
2,4

=
√

3

2
ε tξ

(
M2
Z̄

)
4,4
. (C.8)

Appendix D. S and T parameters for general neutrino mass matrix

The most general mass terms for a pair of right- and left-handed neutrinos is defined by

L ⊃ −mEĒREL − 1
nTLMnL + h.c., M =

(
ML mD
m M

)
, nL = (NL, N̄R)T (D.1)
2 D R
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with eigenvalues

λ1,2 = 1

2

[
(ML +MR)±

√
(ML −MR)2 + 4m2

D

]
. (D.2)

The contributions of the corresponding heavy neutrinos mass eigenstates and of the heavy elec-
tron E to the S and T parameters have been derived in terms of integral functions in [46]. From 
those, we derived the corresponding explicit results:

S = 1

12π

[
1 + 2c4

ζ

(
1 + logν2

1

)
− 2 logν2

E + 2s4
ζ

(
1 + logν2

2

)]
+ s2

2ζ

36π

9
(
1 − logν2

1

)
ν4

1ν
2
2 − 9

(
1 − logν2

2

)
ν2

1ν
4
2 − (1 − 3 logν2

1

)
ν6

1 + (1 − 3 logν2
2

)
ν6

2(
ν2

1 − ν2
2

)3
− (−1)βs2

2ζ

8π

ν1ν2

(
ν4

1 − 2ν2
1ν

2
2 log

ν2
1
ν2

2
− ν4

2

)
(
ν2

1 − ν2
2

)3 , (D.3)

T = �2
NP

64πc2
ξ s

2
ξ m

2
Z

[
16c4

ζ ν
2
1 logν2

1 + 16s4
ζ ν

2
2 logν2

2 + 8ν2
E logν2

E

− s2
2ζ

(
1 − 2 logν2

1

)
ν4

1 − (1 − 2 logν2
2

)
ν4

2

ν2
1 − ν2

2

+ 4(−1)βs2
2ζ

(
1 − logν2

1

)
ν3

1ν2 − (1 − logν2
2

)
ν1ν

3
2

ν2
1 − ν2

2

+ 4c2
ζ

(
1 − 2 logν2

1

)
ν4

1 − (1 − 2 logν2
E

)
ν4
E

ν2
1 − ν2

E

+ 4s2
ζ

(
1 − 2 logν2

2

)
ν4

2 − (1 − 2 logν2
E

)
ν4
E

ν2
2 − ν2

E

]
, (D.4)

where �NP is the given renormalization scale, ξ is the EW mixing angle, and

ν1 = λ1

�NP
, ν2 = λ2

�NP
, νE = mE

�NP
, t2ζ = 2mD

MR −ML ,

β = 1

2

⎡⎢⎣1 +
⎛⎝√ λ1

|λ1|
∗√

λ2

|λ2|

⎞⎠2
⎤⎥⎦ . (D.5)

In the limit MR → ∞, and ML =mE ≡mU , one recovers the results in Eqs. (56).
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