Fixed points on pairs of nilmanifolds

Peter Wong

Department of Mathematics, Bates College, Lewiston, ME 04240, USA

Received 13 August 1993; revised 20 January 1994

Abstract

A theorem of D. Anosov states that, for any selfmap \(f : M \to M \) of a compact nilmanifold \(M \), \(N(f) = |L(f)| \) where \(N(f) \) and \(L(f) \) denote the Nielsen and the Lefschetz numbers of \(f \), respectively. We generalize this result for relative Nielsen type numbers to selfmaps of pairs of nilmanifolds. As an application, we estimate the minimal number of periodic points of prime power period.

Keywords: Relative Nielsen fixed point theory; Nilmanifolds; Periodic points

AMS (MOS) Subj. Class.: Primary 55M20; secondary 57F99

1. Introduction

One of the central questions in Nielsen fixed point theory is the computation of the Nielsen number. Anosov [1] showed that the Nielsen number of a selfmap on a compact nilmanifold is the absolute value of its Lefschetz number. In other words, the essential Nielsen classes are of the same index of value +1 or −1. For relative Nielsen theory, the computation is more difficult (see [7]). The purpose of this paper is to generalize Anosov’s theorem, similar to the generalization in [11] for map extensions, for other relative Nielsen type numbers. As an application, we employ the approach of [12] to study periodic points on nilmanifolds. We assume that the reader is familiar with the basics of Nielsen theory as presented in [5] as well as relative Nielsen theory in [8,9,13]. We follow the notations of [11].

First we recall the definitions of some of the relative Nielsen type numbers. For any selfmap \(f : (X,A) \to (X,A) \) of a pair of compact connected polyhedra, there is a well-defined function \(\text{FPC} : \text{FPC}_0(f_A) \to \text{FPC}_0(f) \) where \(\text{FPC}_0(f_A) \) and \(\text{FPC}_0(f) \) denote...
the sets of Nielsen (nonempty fixed point) classes of $f_A = f|A$ and f respectively. This function FPC_c simply sends a Nielsen class of f_A to the unique Nielsen class of f containing it. If A has more than one component, we let $\text{FPC}_0(f_A) = \bigcup_j \text{FPC}_0(f_j)$ where the union is taken over all components A_j of A which are mapped under f to themselves, and f_j is the restriction of f_A on the component A_j. In the case where $f(A_j) \not\subset A_j$ for all j, then $\text{FPC}_0(f_A) = \emptyset$.

The relative Nielsen number [8] is defined by

$$N(f; X, A) = N(f) - N(f, f_A) + N(f_A)$$

where $N(f, f_A) = \#\{\mathcal{H} \in \text{FPC}_0(f) \mid i(X, f, \mathcal{H}) \neq 0 \text{ and } \mathcal{H} = \text{FPC}_0(\mathcal{F}) \text{ for some } \mathcal{F} \in \text{FPC}_0(f_A) \text{ with } i(A, f_A, \mathcal{F}) \neq 0\}. (i(Z, \varphi, T) \text{ is the fixed point index of the class } T \text{ of } \varphi \text{ in } Z.)$

A Nielsen class $\mathcal{H} \in \text{FPC}_0(f)$ of f does not assume its index in A [9] if $i(X, f, \mathcal{H}) \neq i(A, f_A, \mathcal{H} \cap A)$. The relative Nielsen number of the closure [10] (same as $\bar{N}(f; X, A)$ defined in [9]) is defined to be

$$N(f; \overline{X - A}) = \#\{\mathcal{H} \in \text{FPC}_0(f) \mid \mathcal{H} \text{ does not assume its index in } A\}$$

and the (topological) extension Nielsen number [2] is defined to be

$$N(f|f_A) = \#\{\mathcal{H} \in \text{FPC}_0(f) \mid \mathcal{H} \text{ does not assume its index in } A$$

$$\text{ and } \mathcal{H} \cap \partial A = \emptyset\}$$

where ∂A denotes the boundary of A in X.

Using the covering space approach [5, Ch.1], all fixed point classes (including empty ones) are determined by the conjugacy classes of liftings to the universal cover. Let $\tilde{f} : \tilde{X} \rightarrow X$ and $\tilde{i}_j : \tilde{A}_j \rightarrow \tilde{X}$ be liftings of f and the inclusion $i_j : A_j \hookrightarrow X$ to the respective universal covers where A_j is a component of A. We say that the fixed point class $\eta \text{Fix } \alpha \tilde{f}$ does not contain any fixed point class of f_A if $\tilde{i}_j \circ \tilde{f} \neq \alpha \tilde{f} \circ \tilde{i}_j$ for all liftings \tilde{f}_j of f_j, where α is an element of the group of deck transformations of the universal covering map $\eta : \tilde{X} \rightarrow X$. The relative Nielsen number of f on the complement [13] is defined by

$$N(f; X - A) = \#\{\mathcal{H} \in \text{FPC}_0(f) \mid i(X, f, \mathcal{H}) \neq 0 \text{ and } \mathcal{H} \text{ does not contain any fixed point class of } f_A\}.$$

The numbers $N(f; X, A), N(f; \overline{X - A}), N(f|f_A)$ and $N(f; X - A)$ have the usual properties of the ordinary Nielsen number. In particular, they have the homotopy (type) invariance and the lower bound properties. For further details, see [2,8,9,13]. We denote by $L(f, f_A) = L(f) - L(f_A)$ the relative Lefschetz number of $f : (X, A) \rightarrow (X, A)$ and by $R(f)$ the Reidemeister number of f [5, p.6].
2. Main results

It is well known that every nilmanifold M admits a principal torus bundle $T \rightarrow M \xrightarrow{p} N$ such that T is a torus and N is a nilmanifold of lower dimension. Furthermore, every selfmap $f : M \rightarrow M$ is homotopic to a fiber preserving map f' which induces the following commutative diagram

$$
\begin{array}{ccc}
T & \xrightarrow{f'} & T \\
\downarrow & & \downarrow \\
M & \xrightarrow{f'} & M \\
\downarrow p & & \downarrow p \\
N & \xrightarrow{f'} & N
\end{array}
$$

Note that if $L(f') \neq 0$ then $i^\text{FPC} : \text{FPC}_0(f') \rightarrow \text{FPC}_0(f')$ is injective. Moreover, a product formula for the generalized Lefschetz numbers can be established (see [6]) so that we obtain the following strengthened version of Anosov's theorem.

Theorem 2.1 ([6, Corollary 9.4]). Let M be a compact nilmanifold and $f : M \rightarrow M$ a map. If $L(f) \neq 0$ then $N(f) = |L(f)| = R(f)$; otherwise $N(f) = 0$.

As an immediate consequence of this result and the homotopy type invariance of $N(f)$, $L(f)$ and $R(f)$, we have the following

Proposition 2.2. Let (X, A) be a compact polyhedral pair of the homotopy type of a compact nilmanifold pair with X connected and $f : (X, A) \rightarrow (X, A)$ be a map. If $L(f) \cdot L(f_j) \neq 0$ then all Nielsen classes of f and f_j are essential, and hence $i(X, f, i^\text{FPC}(F)) \neq 0$ if and only if $i(A, f^0, F) \neq 0$ for all $F \in \text{FPC}_0(f_j)$.

Recall that a point x in a space X is said to be a local cut point if there is a connected neighborhood U of x such that $U - \{x\}$ is not connected. A subspace $A \subset X$ can be bypassed if the inclusion $i : X - A \hookrightarrow X$ induces an epimorphism $i_2 : \pi_1(X - A) \twoheadrightarrow \pi_1(X)$ on fundamental groups.

Here is our main theorem.

Theorem 2.3. Let (X, A) be a compact polyhedral pair of the homotopy type of a compact nilmanifold pair such that X is connected, $X - A$ has no local cut points and is not a 2-manifold; A can be bypassed. Suppose that $f : (X, A) \rightarrow (X, A)$ is a map such that $i^\text{FPC} : \text{FPC}_0(f_A) \rightarrow \text{FPC}_0(f)$ is injective.

1. If $L(f) \neq 0$ then $N(f; X, A) = |L(f)|$; otherwise, $N(f; X, A) = \sum_j |L(f_j)|$.
2. If $L(f) \neq 0$ and $L(f) \cdot L(f_j) \geq 0$ for all j, then $N(f; X - A) = |L(f, f_A)|$. If $L(f) = 0$, then $N(f; X - A) = \sum_j |L(f_j)|$.
3. If $L(f) \cdot \prod_j L(f_j) \neq 0$, then $N(f; X - A) = |L(f)| - \sum_j |L(f_j)|$.

Proof. (1) The assertion follows from definition in the cases where \(L(f) = 0 = N(f) \) or \(L(f_j) = 0 \) for all \(j \), i.e., \(N(f_A) = 0 \). Suppose that \(L(f) \cdot L(f_j) \neq 0 \) for some \(j \). By Proposition 2.2 and the injectivity of \(i^{\text{FPC}} \), there are \(|L(f_j)| \) essential Nielsen classes of \(f \) containing the essential Nielsen classes of \(f_j \). Applying this argument to all \(f_j \) with \(L(f_j) \neq 0 \), we conclude that \(N(f, f_A) = \sum_j N(f_j) = N(f_A) \) and hence \(N(f;X,A) = N(f) = |L(f)| \).

(2) Following the proof of Theorem 2.4 of [11] (see also [8, Theorem 6.2]), we may homotope \(f \) relative to \(A \) to a map \(f' : (X,A) \to (X,A) \) such that \(f' \) retracts some open neighborhood \(U \) of \(A \) onto \(A \) so that \(i(X, f', \mathcal{H}) = i(A, f_A, \mathcal{H} \cap A) \) for \(\mathcal{H} \in \text{FPC}_0(f') \); that each of the fixed point classes of \(f'|X - A \) is a distinct essential Nielsen class of \(f \) in \(X \). Suppose that \(L(f) \cdot L(f_j) > 0 \) for some \(j \). Then \(i(X, f', \mathcal{H}) = i(A_j, f_j, \mathcal{F}_j) (= \pm 1) \) for any \(\mathcal{H} \in \text{FPC}_0(f') \) and \(\mathcal{F}_j \in \text{FPC}_0(f_j) \). Thus, if \(x \in \text{Fix} f' \cap (X - A) \), and \(\mathcal{F} \in \text{FPC}_0(f_k) \) (for any \(k \) with \(L(f_k) \neq 0 \)) were Nielsen equivalent, then \(\mathcal{F} \cup \{x\} \in \text{FPC}_0(f') \) and hence \(i(X, f', x) = 0 \) contradicting the assumption on \(\text{Fix} f' \cap (X - A) \). In other words, \(\text{Fix} f' \cap (X - A) \) consists of essential Nielsen classes of \(f' \) that do not assume their index in \(A \). Since \(\#(\text{Fix} f' \cap (X - A)) = |L(f') - L(f_A)| \), we have \(N(f;X - A) = N(f',X - A) = |L(f', f_A)| = |L(f, f_A)| \). If \(L(f_j) = 0 \) for all \(j \), then \(N(f;X - A) = \#(\text{Fix} f' \cap (X - A)) = |L(f)| = |L(f, f_A)| \). If \(L(f) = 0 \), then all Nielsen classes of \(f \) are inessential. The only Nielsen classes of \(f \) that do not assume their index in \(A \) must contain essential classes of \(f_j \) with \(L(f_j) \neq 0 \). Therefore, there must be \(\sum_j |L(f_j)| \) of them.

(3) Suppose that \(L(f) \cdot \prod_j L(f_j) \neq 0 \). It follows from Proposition 2.2 that all fixed point classes of \(f_j \) and \(f \) are essential. By the injectivity of \(i^{\text{FPC}} \), there are \(|L(f)| - \sum_j |L(f_j)| \) essential classes that do not contain any fixed point class of \(f_A \). Hence the assertion follows. \(\Box \)

Note that when \(A = \emptyset, L(f_j) = 0 \) for all \(j \) so that in this case, (1) and (2) of Theorem 2.3 reduce to Anosov's theorem. Furthermore, if in addition to the assumption on \(i^{\text{FPC}} \), the interior \(\text{int} A \) of \(A \) in \(X \) is empty and \(L(f) \cdot \prod_j L(f_j) \neq 0 \) then one can show that \(N(f|f_A) = |L(f)| - \sum_j |L(f_j)| \) (same argument as in the proof of Theorem 2.4 of [11]) and hence by (3) of Theorem 2.3, we have

Theorem 2.4. Let \(f : (X,A) \to (X,A) \) be as in Theorem 2.3 such that \(i^{\text{FPC}} \) is injective. If \(\text{int} A = \emptyset \) and \(L(f) \cdot \prod_j L(f_j) \neq 0 \) then \(N(f|f_A) = N(f;X - A) = |L(f)| - \sum_j |L(f_j)| \).

(Compare [11, Theorem 2.4].)

The assumptions in Theorem 2.3 may not be relaxed as we illustrate in the following examples.

Example 2.5. Let \(X = S^1 \times S^1 \times S^1 \) be the three-dimensional torus and \(A \) be the circle imbedded as the first component of \(X \). Take \(f = f_A \times f_1 \times f_2 \) where \(f_A, f_1 \) and \(f_2 \) are maps of degree \(-1, 2 \) and \(0 \) respectively. It is easy to see that \(f \) has two essential
Nielsen classes which lie in \(A \) so that \(N(f; \overline{X-A}) = 2; L(f) = -2; L(f_A) = 2 \) and thus \(|L(f, f_A)| = 4\). Note that \(N(f; X, A) = |L(f)| = 2 \) and \(N(f; X - A) = |L(f)| - |L(f_A)| = 0 \). Here, (1) and (3) of Theorem 2.3 hold but (2) does not.

Example 2.6. Let \(X = D^2 \times S^1 \) be the three-dimensional solid torus and \(A = \partial D^2 \times \{1\} \) be a meridian on the boundary of \(X \). Consider \(f = f_1 \times f_2 : D^2 \times S^1 \rightarrow D^2 \times S^1 \) where \(f_1(re^{i\theta}) = re^{-i\theta} \) and \(f_2(z) = \bar{z} \), the complex conjugate of \(z \in S^1 \subset \mathbb{C} \). Then \(L(f) = 2, L(f_A) = 2 \) and thus \(L(f) \cdot L(f_A) > 0 \) but \(f^{\text{FPC}} \) is not injective. It is easy to see that \(N(f; X, A) = 3 > |L(f)| = 2; N(f; X - A) = 2 > |L(f, f_A)| = 0 \) and \(N(f; X - A) = 1 > |L(f)| - |L(f_A)| = 0 \). Here (1)-(3) of Theorem 2.3 fail to hold.

Example 2.7. This is Example 2.5 of [11]. Consider the 4-torus \(X = T^4 = S^1 \times S^1 \times S^1 \times S^1 \) and \(A = \{(z_1, z_2, z_3, z_4) \mid z_1 = z_2 = z_3 = z_4\} \approx S^1 \). Let \(f : (X, A) \rightarrow (X, A) \) be given by \(f(z_1, z_2, z_3, z_4) = (\bar{z}_4, \bar{z}_1, \bar{z}_2, \bar{z}_3) \). It follows that

\[
L(f_A) = 2 = N(f_A)
\]

and

\[
\text{Fix } f = \{(z, \varphi(z), \varphi^2(z), \varphi^3(z)) \mid z \in \text{Fix } \varphi^4\}
= \{(z, \bar{z}, z, \bar{z}) \mid z \in S^1\}
\]

where \(\varphi : S^1 \rightarrow S^1 \) is given by \(\varphi(z) = \bar{z} \). Since \(L(f) = L(\varphi^4) = L(\text{identity}) = 0 \), it follows from definition that \(N(f; X, A) = N(f_A) = 2 \) and \(N(f; X - A) = 0 \). Moreover Fix \(f \) is connected so that \(N(f; \overline{X-A}) \leq 1 < 2 = |L(f, f_A)| \). In this example, \(L(f) \cdot L(f_A) = 0 \) and \(f^{\text{FPC}} \) is not injective.

Remark 2.8. The invariant \(N(f; \overline{X-A}) \) is a lower bound for the number of fixed points in the closure of \(X - A \), which coincides with \(X \) when \(\text{int } A = \emptyset \) in which case the number coincides with the ordinary Nielsen number of \(f \). In light of this, the subspace \(A \) in all of the above examples may be thickened by taking a tubular neighborhood in \(X \).

3. Periodic points

Relative Nielsen theory can be employed [12] to study periodic points. In this section, we will apply our results from Section 2 to estimate and to compute the Nielsen type invariants \(N\Phi_n(f) \) (or \(NF_n(f) \) in [5]) and \(NF_n(f) \). Recall that \(NF_n(f) \) is defined to be \(n \) times the number of \(f \)-orbits of irreducible (i.e., not containing any fixed point class of \(f^m \) for \(m|n \) essential fixed point classes of \(f^m \). The number \(N\Phi_n(f) \) is defined to be \(\min\{h(S)\} \) where \(S \) is \(f \)-invariant and every essential fixed point class of \(f^m \) with \(m|n \) contains at least one class from \(S \) and \(h(S) \) is the sum of the periods of the \(f \)-orbits of \(S \) (see [5, p.69], [3] or [4]). We compute these invariants for selfmaps on a compact nilmanifold with period \(n = p^r \) where \(p \) is prime and \(r \) a positive integer.
We first recall the setup in [12]. Let M be a compact connected nilmanifold and $n = p'$. Denote by $Y_n = M \times \cdots \times M$ the n-fold product of M. For any $f : M \to M$, we define $g_f : Y_n \to Y_n$ by $g_f(x_1, \ldots, x_n) = (f(x_1), f(x_2), \ldots, f(x_{n-1}))$. The cyclic group \mathbb{Z}_n of order n acts on Y_n via $(x_1, \ldots, x_n) \mapsto (x_n, x_1, \ldots, x_{n-1})$. If $Y_n = \{ y \in Y_n \mid \text{stab}(y) \neq 1 \}$ where \(\text{stab}(y) \) is the stabilizer of y in \mathbb{Z}_n, then $g_f : (Y_n, \bar{Y}_n) \to (Y_n, \bar{Y}_n)$ is a map of a pair. Moreover, \bar{Y}_n is homeomorphic to the p'^{-1}-fold product of M, i.e., $\bar{Y}_n \cong Y_{n/p}$, and thus g_f is a map of a pair of compact nilmanifolds. More generally, for any $m = p^k$, $k \leq r$,

$$Y_n^z = \{ y \in Y_n \mid \sigma y = y, \forall \sigma \in \mathbb{Z}_m \subset \mathbb{Z}_n \} \cong Y_{n/m}$$

and $g_f^z = g_f|Y_n^z : Y_n^z \to Y_n^z$. We therefore have a well-defined function $i_{l,m} : \Gamma \text{PC}_n(g_f^z) \to \Gamma \text{PC}_0(g_f^z)$ for every $l|m$. Since the fixed point classes of g_f^z are in one to one correspondence with those of $f^{m/n}$ [12, Theorem 2.1], $i_{l,m}$ can be thought of as the function which sends an n/l periodic point class to the unique n/m periodic point class containing it.

Theorem 3.1. Let $n = p'$ and $m = p'^{-1}$. Suppose that $i_{m,n}$ is injective. If $L(f^n) \cdot L(f^m) \neq 0$, then

$$|L(f^n)| - |L(f^m)| \leq NP_n(f) \leq n \cdot (|L(f^n)| - |L(f^m)|).$$

Proof. It follows from Theorem 3.1 of [12] that $N(g_f; Y_n - \bar{Y}_n) \leq NP_n(f) \leq n \cdot N(g_f; Y_n - \bar{Y}_n)$. By (3) of Theorem 2.3, $N(g_f; Y_n - \bar{Y}_n) = |L(g_f)| - |L(g_f|\bar{Y}_n)| = N(g_f) - N(g_f^{Z^m})$. The assertion follows from the fact that $N(g_f^{Z^m}) = N(f^{m/k})$ ([12, Theorem 2.1]).

In Theorem 3.7 of [3], $NP_n(f)$ is computed using Möbius inversion in terms of \(\{ N(f^{m}) \} \) under some conditions among which is the n-toral condition. Recall that a map $f : X \to X$ is n-toral if (i) for every $m|n$ and every fixed point class F of f^n, the depth of F (the smallest integer d such that F contains a fixed point class of f^d) is equal to the length of F (the number of elements in the f-orbit of F), and (ii) for every $m|n$, no two fixed point classes of f^m belong to the same fixed point class of f^n (see [3]).

Theorem 3.2. Suppose that $n = p'$ and $L(f^n) \neq 0$ for all m with $m|n$. If $i_{m,n}$ is injective, then

$$|L(f^n)| \leq NP_n(f) \leq n \cdot |L(f^n)|.$$

If, further, f is n-toral, then

$$NP_n(f) = |L(f^n)| - |L(f^{n/p})|$$

and

$$NP_n(f) = |L(f^n)|.$$
Proof. Since $L(f^m) \neq 0$ for all $m|n$, all Nielsen classes of f^m are essential and by Theorem 4.2 of [4], we have

\[N\Phi_n(f) = \sum_{m|n} NP_m(f). \]

The first assertion follows immediately from the inequality in Theorem 3.1. Suppose that f is n-toral. Thus f is also m-toral for $m|n$ and $i_{m,n}$ is injective. It follows from the proof of [12, Theorem 4.2] that $N(g_{f^m}; Y - Y_m) = NP_m(f)$. Applying Theorem 2.3(3), we obtain $NP_m(f) = |L(f^m)| - |L(f^{m/p})|$ and so the second assertion follows with $m = n$. Hence

\[N\Phi_n(f) = \sum_{m|n} NP_m(f) = \sum_{m|n} (|L(f^m)| - |L(f^{m/p})|) = |L(f^n)|. \]

\[\square \]

Remark 3.3. In Theorem 3.2, f is not required to be eventually commutative or to satisfy the Jiang condition, $J(f) = \pi$. Compare the similar results obtained in [4] (see Corollaries 4.4, 4.11 and 4.12 of [4]).

Acknowledgement

I would like to thank Professor Helga Schirmer for helpful suggestions and comments concerning this paper.

References