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Abstract

Naive Bayes classifiers provide an efficient and scalable approach to supervised classification
problems. When some entries in the training set are missing, methods exist to learn these classifiers
under some assumptions about the pattern of missing data. Unfortunately, reliable information about
the pattern of missing data may be not readily available and recent experimental results show that
the enforcement of an incorrect assumption about the pattern of missing data produces a dramatic
decrease in accuracy of the classifier. This paper introduces aRobust Bayes Classifier(RBC) able
to handle incomplete databases with no assumption about the pattern of missing data. In order to
avoid assumptions, theRBC bounds all the possible probability estimates within intervals using a
specialized estimation method. These intervals are then used to classify new cases by computing
intervals on the posterior probability distributions over the classes given a new case and by ranking
the intervals according to some criteria. We provide two scoring methods to rank intervals and a
decision theoretic approach to trade off the risk of an erroneous classification and the choice of not
classifying unequivocally a case. This decision theoretic approach can also be used to assess the
opportunity of adopting assumptions about the pattern of missing data. The proposed approach is
evaluated on twenty publicly available databases. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Supervised classification is the task of assigning aclass label to unclassifiedcases
described as a set ofattribute values. This task is typically performed by first training
a classifier on a set of classified cases and then using it to label unclassified cases. The
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supervisory component of this classifier resides in the training signal, which provides the
classifier with a way to assess a dependency measure between attributes and classes. Naive
Bayes classifiers (NBCs) [4,11] have been among the first supervised classification methods
and, during the past few years, they have enjoyed a renewed interest and consideration [6].
The training step for aNBC consists of estimating the conditional probability distributions
of each attribute given the class from a training data set. Once trained, theNBC classifies
a case by computing the posterior probability distribution over the classes via Bayes’
Theorem and assigning the case to the class with the highest posterior probability.
NBCs assumes that the attributes are conditionally independent given the class and this
assumption renders very efficient both training and classification. Unfortunately, when the
training set is incomplete, that is, some attribute values or the class itself are reported
as unknown, both efficiency and accuracy of the classifier can be lost. Simple solutions
to handle missing data are either to ignore the cases including unknown entries or to
ascribe these entries to anad hocdummy state of the respective variables [15]. Both these
solutions are known to introduce potentially dangerous biases in the estimates, see [9] for a
discussion. In order to overcome this problem, Friedman et al. [6] suggest the use of theEM

algorithm [3], gradient descent [20] or, we add, Gibbs sampling [7]. All these methods rely
on the assumption that data areMissing at Random(MAR) [13], that is, the database is left
with enough information to infer the missing entries from the recorded ones. Unfortunately,
there is no way to verify that data are actuallyMAR in a particular database and, when this
assumption is violated, these estimation methods suffer of a dramatic decrease in accuracy
with the consequence of jeopardizing the performance of the resulting classifier [21].

This paper introduces a new type ofNBC, calledRobust Bayes Classifier(RBC), which
does not rely on any assumption about the missing data mechanism. TheRBC is based on
theRobust Bayes Estimator(RBE) [18], an estimator that returns intervals containing all
the estimates that could be induced from all the possible completions of an incomplete
database. The intuition behind theRBE is that, even with no information about the missing
data mechanism, an incomplete data set can still constrain the set of estimates that can
be induced from all its possible completions. However, in this situation, the estimator can
only bound the posterior probability of the classes. The first contribution of this paper is
to provide a specialized closed-form, interval-based estimation procedure forNBCs, which
takes full advantage of their conditional independence assumptions. Once trained, these
classifiers are used to classify unlabeled cases. Unfortunately, Bayes’ Theorem cannot
be straightforwardly extended from standard point-valued probabilities to interval-valued
probabilities. Nonetheless, the conditional independence assumptions underlying theNBC

allows for a closed-form solution for the classification task, too. The second contribution
of this paper is a new propagation algorithm to compute posterior probability intervals
containing all the class posterior probabilities that could be obtained from the exact
computation of all possible completions of the training set. These intervals are then ranked
according to a score and a new case is assigned to the class associated with the highest
ranked interval. We provide two scoring methods: the first, based on the strong dominance
criterion [10], assigns a case to the class whose minimum posterior probability is higher
than the maximum posterior probability for all other classes. This criterion preserves the
robustness of the classifier but may leave some cases unclassified and hence we provide a
weaker criterion to improve the coverage. We also introduce a general decision-theoretic
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framework to select the most appropriate criterion by trading off accuracy and coverage.
As a by-product, this decision-theoretic approach provides a principled way to asses the
viability of the MAR assumption for a given training set. We also show that, when the
database is complete, theRBC estimates reduce to the standard Bayesian estimates and
therefore theRBC subsumes the standardNBC as a special case. This approach is evaluated
on twenty publicly available databases.

2. Naive Bayes classifiers

An NBC is better understood if we regard them attributes and the set ofq mutually
exclusive and exhaustive classes as discrete stochastic variables. In this way, we can
depict aNBC as a Bayesian network [6]—a directed acyclic graph where nodes represent
stochastic variables and arcs represent dependency relationships between variables—
as shown in Fig. 1. In this network, the root node represents the setC of mutually
exclusive and exhaustive classes and each attribute is achild nodeAi . Each valuecj
of the variableC is a class and each attributeAi bears a set ofsi valuesAi = ak. As
shorthand, we will denoteC = cj by cj andAi = ak by aik. The graphical structure of the
Bayesian network representing theNBC encodes the assumption that each attributeAi is
conditionally independent of the other attributes given the class. The classifier, therefore,
is defined by the marginal probability distribution{p(cj )} of the variableC and by a set
of conditional probability distributions{p(aik = cj )} of each attributeAi given each class
cj . A consequence of the independence assumption is that all these distributions can be
estimated from a training setD, independently from each other, as follows.

Let n(aik, cj ) be the frequency of cases in the training setD in which the attributeAi
appears with valueaik and the class iscj and letn(cj ) be the frequency of cases in the
training set with classcj . When the training setD is complete, the Bayesian estimates of
p(aik | cj ) andp(cj ) are

p(aik | cj )= αijk + n(aik, cj )∑
h[αijh + n(aih, cj )]

and p(cj )= αj + n(cj )∑
l[αl + n(cl)]

, (1)

respectively. The quantitiesαijk andαj can be regarded as frequencies of pairaik, cj and of
the classcj , respectively, in an imaginary sample, representing the prior information about
the distributions of the attributes and the classes. The sizeα of this imaginary sample
is called globalprior precision. Further details are in [17]. Once the classifier has been

Fig. 1. A Bayesian network representing anNBC with attributesA1, . . . ,A9 and a setC of classes.
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trained, we can use it for the classification of new cases. If we represent a case as a set
of attribute valuese= {a1k, . . . , amk}, Bayes’ theorem yields the posterior probability of a
classcj givene as

p(cj | e)= p(cj )
∏m
i=1p(aik | cj )∑q

h=1p(ch)
∏m
i=1p(aik | ch)

(2)

and the case is assigned to the class with the highest posterior probability.
From the computational point of view, the training of the classifier reduces to

summarizing the whole databaseD into m contingency tablesTi of dimension(q × si ),
each cell(j, k) of the tableTi collecting the frequency of the pair(aik, cj ). In this way

(i) the estimation of theq probability distributions of each attributeAi conditional on
the classesc1, . . . , cq can be done locally using the frequenciesn(aik, cj ) in the
tableTi , as the frequenciesn(ahk, cj ) in all other tablesTh are irrelevant;

(ii) the estimation of each probability distribution of the attributeAi conditional on the
classcj can be done independently of the other classes, by using the frequencies
n(aik, cj ) in the rowj , and

(iii) the estimation of the marginal distribution of the classes can be done in any one of
the tablesTi , by using its row totalsn(cj ).

In other words, the estimation procedure can be performed table by table and, within each
table, row by row. These properties were termedglobalandlocal parameter independence
by [22] and they are the source of the computational efficiency of the training process.

When some entries in the training setD are missing, both accuracy and efficiency
of the NBC are under threat. The reasons for this situation become clear if we regard
the incomplete database as the result of a deletion process occurred on a complete
(yet unknown) database. The received view on missing data [13] is based on the
characterization of the deletion process. According to this approach, data areMissing
Completely at Random(MCAR), if the probability that an entry is missing is independent
of both observed and unobserved values. They areMissing at Random(MAR), if this
probability is at most a function of the observed values in the database. In all other cases,
data areInformatively Missing. Under the assumption that data are eitherMAR or MCAR,
the values of the unknown entries can be estimated from the observed ones and the deletion
process is calledignorable. This property guarantees that the available data are sufficient
to train the classifier but, unfortunately, it does not enjoy any longer the properties of
global and local parameter independence. Indeed, unknown entries induce three types of
incomplete cases:

(i) cases in which the attributeAi is observed and the class is missing;
(ii) cases in which the classcj is observed and the value of the attributeAi is missing;
(iii) cases in which both the value of the attributeAi and the class are missing.

We denote the frequency of these cases byn(aik,?), n(?, cj ) and n(?,?), respectively.
Suppose now we had some estimation method able to compute the estimates in Eq. (1) by
assigning a proportion of the frequenciesn(aik,?), n(?, cj ) andn(?,?) to the cell(j, k) in
each contingency tableTi . As the reconstructed marginal frequency of each class needs to
be equal in all tables, the estimation cannot be done locally any longer, and the properties
of local and global parameter independence are lost. One exception arises when the class
is observed in all cases.
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Theorem 1. Suppose that the class is observed in all cases of the training setD, and that
the entries areMAR. Then, the estimates in Eq.(1), with n(aik, cj ) being the frequency of
fully observed pairsaik, cj and n(cj ) being the class frequency, are the exact Bayesian
estimates.

The proof appears in [22]. When also some classes are missing, we can use one of the
approximate methods mentioned in the Introduction to compute the estimates in Eq. (1).
However, these methods require the deletion process to be ignorable. When data are
informatively missing, the available entries are no longer sufficient to train the classifier.
Furthermore, there is no way, yet, to check whether the deletion process responsible for the
missing data is actually ignorable. These are the motivations behind the introduction of the
Robust Bayesian Estimator (RBE) [18] and its application, in this paper, to the development
of a robust version of theNBC.

3. Robust estimation

Recall that aNBC is trained by estimating the conditional probability distributions
{p(aik | cj )} and{p(cj )} from an databaseD. This section describes how to perform this
task when the databaseD is incomplete. We need the following definitions.

Definition 1 (Consistency). LetD be an incomplete data set and letp(x) be a probability
that we wish to estimate fromD.

(1) A consistent completionof D is any complete data setDc from whichD is obtained
via some deletion process.

(2) A consistent estimateof p(x) is an estimate computed in a consistent completion of
D.

(3) A consistent probability intervalfor p(x) is an interval[pinf (x),psup(x)] containing
all consistent estimates. A consistent interval isnon-trivial if pinf (x) > 0 and
psup(x) < 1.

(4) A consistent probability interval istight when it is the smallest consistent probability
interval[p(x),p(x)] for p(x).

The difference between a consistent and a tight consistent probability interval is that, in
the former, the interval extreme points are lower and upper bounds for the set of consistent
estimates, while in the latter, the extreme points are reached in some consistent completion
of the database. The rest of this section is devoted to the construction of tight, consistent
probability intervals for the quantitiesp(aik | cj ) andp(cj ) defining anNBC.

In order to estimate the conditional probabilityp(aik | cj ) from an incomplete training
setD, theRBE collects the frequenciesn(aik,?), n(?, cj ) andn(?,?) of incomplete cases
into thevirtual frequenciesn(aik, cj ) andn(aik, cj ). These frequencies are then used to
compute the extreme points of the tight consistent probability interval forp(aik | cj ).
The quantityn(aik, cj ) is the maximum number of incomplete cases(Ai,C) that can be
completed as(aik, cj ) and it is given by

n(aik, cj )= n(?, cj )+ n(aik,?)+ n(?,?). (3)
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On the other hand, the virtual frequencyn(aik, cj ) is the maximum number of incomplete
cases(Ai,C) that can be ascribed tocj without increasing the frequencyn(aik, cj ) and it
is

n(aik, cj )= n(?, cj )+
∑
h6=k

n(aih,?)+ n(?,?). (4)

The virtual frequencies are used to compute the valuesp(aik | cj ) andp(aik | cj ) that are,
respectively, the minimum and the maximum estimate ofp(aik | cj ) that can be found in
the consistent completions ofD and they are

p(aik | cj )= αijk + n(aik, cj )∑
h[αjh + n(aih, cj )] + n(aik, cj )

,

p(aik | cj )= αijk + n(aik, cj )+ n(aik, cj )∑
h[αijh + n(aih, cj )] + n(aik, cj )

.

(5)

It has been shown [18] that the interval[p(aik | cj ),p(aik | cj )] is tight and consistent.
We now consider the estimation ofp(cj ) and note that the virtual frequenciesn(cj ) and
n(cj ) are both equal to the numbern(?) of cases inD in which the class is not observed.
We obtain tight consistent probability intervals forp(cj ) by setting:

p(cj )= αj + n(cj )∑
l[αl + n(cl)] + n(?)

,

p(cj )= αj + n(cj )+ n(?)∑
l[αl + n(cl)] + n(?)

.

(6)

When the training set is complete, Eqs. (5) and (6) reduce to Eq. (1). Each set given by the
maximum probability for the classcj and the minimum probabilities of the other classes,
say{p(cj ),p(ch), h 6= j } defines a probability distribution

p(cj )+
∑
h6=j

p(ch)= 1 for all j , (7)

so that the probability intervals[p(cj ),p(cj )] are reachable, as defined by [2]. By
definition, if the probabilityp(aik | cj ) is at its maximum valuep(aik | cj ), then the virtual
countern(aik, cj ) absorbs the frequenciesn(aik,?) and n(?,?) so thatp(cj ) = p(cj )
and, for any other classch, we have thatp(aik | ch) < p(aik | ch) andp(ch) = p(cj ).
Similarly, if the probabilityp(aik | cj ) is at its minimum valuep(aik | cj ), then for any
other classch, we have thatp(aik | ch) > p(aik | ch). However, if the class is always
observed, the virtual frequenciesn(aik, cj ) and n(aik, cj ) are both equal ton(?, cj ),
becausen(aik,?)= n(?,?)= 0, for all i andk. In this case, the probabilitiesp(aik | cj ) can
vary independently and maxima and minima can be reached at the same time, for different
classescj .

4. Robust classification

Once trained, the classifier can be used to label unclassified cases. Given a new case, an
NBC performs this task in two steps: first it computes the posterior probability of each class
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given the attribute values, and then it assigns the case to the class with the highest posterior
probability. In this section, we first show how to compute posterior probability intervals of
each class and then how to rank these intervals to classify new cases.

4.1. Posterior probability intervals

Let e = {a1k, . . . , amk} be attribute values of a casee that we wish to classify. With
point-valued probabilities, the expression of the posterior probability of a classcj , givene,
is given in Eq. (2). The next Theorem identifies non-trivial consistent probability intervals
for the classes. The result generalizes the solution provided by [18] for Boolean classes. We
then show that, when the training setD reports always the class, these consistent intervals
are also tight.

Theorem 2. LetD be an incomplete data set. Then, the probability interval[pinf (cj | e),
psup(cj | e)] with

psup(cj | e)= p(cj )
∏m
i=1p(aik | cj )

p(cj )
∏m
i=1p(aik | cj )+

∑
h6=j p(ch)

∏m
i=1p(aik | ch)

(8)

and

pinf (cj | e)=
p(cj )

∏m
i=1p(aik | cj )

p(cj )
∏m
i=1p(aik | cj )+max{fg, g 6= j } , (9)

where the set{fg, g 6= j } contains theq − 1 quantities

p(cg)

m∏
i=1

p(aik | cg)+
∑
l 6=j,g

p(cl)

m∏
i=1

p(aik | cl)

for g 6= j = 1, . . . , q , is non-trivially consistent.

Proof. To prove the theorem, we need to show that the interval[pinf (cj | e),psup(cj | e)]
contains all the posterior probabilitiesp(cj | e) that can be derived from the possible
completions of the training set and thatpinf (cj | e) > 0 andpsup(cj | e) < 1. The last
two inequalities are a simple consequence of the property 0<p(aik | cj )6 p(aik | cj ) < 1
and 0<p(cj )6 p(cj ) < 1 enjoyed by the robust estimates. Hence, it is sufficient to show
that, for eachj , pinf (cj | e) 6 p(cj | e) 6 psup(cj | e), the quantityp(cj | e) being any
class posterior probability that can be computed from the consistent completions of the
training setD. From Eq. (2), we can writep(cj | e) as

f (xj , yj )= yjxj

yjxj +∑h6=j yhxh
, (10)

where yj = p(cj ) and xj = ∏m
i=1p(aik | cj ). For fixed yj , the functionf (xj , yj )

is concave, increasing inxj and decreasing inxh for h 6= j . From standard convex
analysis [19], it follows that, if the variablesxj are constrained to vary in a hyper-rectangle,
maxima and minima of the function are obtained in the extreme points of the constrained
region. In particular, the functionf (xj , yj ) is maximized by maximizingxj and by
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minimizing
∑
h6=j xh, and it is minimized by minimizingxj and by maximizing

∑
h6=j xh.

This argument grounds the intuition of the proof: we will find maxima and minima of the
functionf (xj , yj ) in a hyper-rectangle containing the region of definition of the variables
xj , for yj fixed, and these maxima and minima induce upper and lower bounds for the
functionf (xj , yj ). We then maximize and minimize these bounds with respect toyj . The
first step is to find this hyper-rectangle.

If the probabilitiesp(aik | cj ) could vary independently within the intervals[p(aik | cj ),
p(aik | cj )], then the variablesxj would vary independently in the Cartesian productC of
the intervals

[xj xj ] =
[

m∏
i=1

p(aik | cj )
m∏
i=1

p(aik | cj )
]
.

Thus, settingxj =∏m
i=1p(aik | cj ) andxh =∏m

i=1p(aik | ch) yields the maximum of the
functionf (xj , yj ) in the hyper-rectangleC, for yj fixed. However, as noted in Section 3,
the probabilitiesp(aik | cj ) cannot vary independently so that the functionf (xj , yj ) is
defined in a subset ofC and the quantity

f1(yj )= yj
∏m
i=1p(aik | cj )

yj
∏m
i=1p(aik | cj )+

∑
h6=j yh

∏m
i=1p(aik | ch)

is only an upper bound. Now we maximize the functionf1(yj ) with respect toyj , subject
to the constraint

∑
j yj = 1 that is imposed by the fact that the probability intervals

[p(cj ),p(cj )] are reachable, as shown in Eq. (7). This maximization yields the upper
bound in Eq. (8). The minimum of the functionf (yj , xj ) in the hyper-rectangleC, for
yj fixed, is given by settingxj =∏m

i=1p(aik | cj ) and by maximizing
∑
h6=j xh. The latter

quantities is
∑
h6=j

∏m
i=1p(aik | ch) and it is maximized by

∑
h6=j

∏m
i=1p(aik | ch), so that

f2(yj )=
yj
∏m
i=1p(aik | cj )

yj
∏m
i=1p(aik | cj )+

∑
h6=j yh

∏m
i=1p(aik | ch)

is a lower bound forf (yj , xj ). We minimize the functionf2(yj ) with respect toyj ,
and the minimum is given by settingyj = p(cj ) and by maximizing the functionf3 =∑
h6=j p(ch)

∏m
i=1p(aik | ch), subject to the constraintp(cg) +∑l p(cl) = 1− p(cj ).

The functionf3 is linear in the probabilitiesp(ch) and hence its maximum is found by
evaluating it in the extreme points of the constrained region, from which lower bound in
Eq. (9) follows. 2

When the training set is complete, theRBE intervals reduce to the point estimates given
in Section 2, and the quantities in Eqs. (8) and (9) become identical to the posterior
probability in Eq. (2). The interval[pinf (cj | e),psup(cj | e)] is consistent, as it contains
all posterior probabilitiesp(cj | e) that we would obtain by applying Bayes’ Theorem
to all consistent estimatesp(aik | cj ) and p(cj ). The proof of Theorem 2 uses the
constraints imposed by the class probability intervals[p(cj ),p(cj )] and mixes maximum
and minimum probabilities coherently. However, the probabilitiesp(aik | cj ), for varying
j , are minimized and maximized independently and, in general, this may produce loose
bounds. Still, when the class is observed in all cases, we can prove the tightness of these
bounds.
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Theorem 3. If the classcj is reported for every casee, the probability intervals defined
by

p(cj | e)= p(cj )
∏m
i=1p(aik | cj )

p(cj )
∏m
i=1p(aik | cj )+

∑
l 6=j p(cl)

∏m
i=1p(aik | cl)

(11)

and by

p(cj | e)=
p(cj )

∏m
i=1p(aik | cj )

p(cj )
∏m
i=1p(aik | cj )+

∑
h6=j p(ch)

∏m
i=1p(aik | ch)

(12)

are tight and consistent.

Proof. If the class is always observed, we have thatp(cj )= p(cj )= p(cj ) and, as noted
in Section 3, the probabilitiesp(aik | cj ) can vary independently asj varies, so that the
upper and lower bounds in Eqs. (8) and (9) are the maximum and minimum values of the
function in Eq. (10). Note further that Eqs. (8) and (9) reduce to Eqs. (11) and (12).2
4.2. Ranking intervals

The previous section has shown how to compute consistent posterior probability
intervals for the classes given a sete of attribute values. We can now use these intervals
to assign a case to a class, by associating each interval to a score and using the following
classification rule.

Definition 2 (Interval-based classification rule). Let e be a set of attribute values and let
s(cj | e) be scores associated with the probability intervals[pinf (cj | e),psup(cj | e)]. Each
case with attribute valuese is assigned to the class associated with the largest score.

The interval-based classification rule is based on the intuition that the scores(cj | e)
associated with the probability intervals[pinf (cj | e),psup(cj | e)] is a “meaningful”
summary of the global information contained in the probability intervals. However, this
is not the unique requirement. Since the standardNBC classifies cases on the basis of
the posterior probabilities of the classes given the attribute values, we require that the
set of scores associated with the probability intervals[pinf (cj | e),psup(cj | e)] defines a
probability distribution, and hence

s(cj | e)> 0 for all j,
∑
j

s(cj | e)= 1. (13)

Theorem 2 ensures that the interval[pinf (cj | e),psup(cj | e)] contains all possible
conditional probabilitiesp(cj | e) that can be computed from the consistent completions
of the training setD, and the variability within the intervals is due to the uncertainty about
the missing data mechanism. A conservative score derived from thestrong dominance
criterion [10] provides a classification rule that does not require any assumption about the
missing data mechanism.
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Definition 3 (Strong dominance score). Given a set ofq consistent posterior probability
intervals[pinf (cj | e),psup(cj | e)], we define thestrong dominance scoreas:

sd (cj | e)=
1 if pinf (cj | e) > psup(ch | e) for all h 6= j,

0 if pinf (cj | e)6 psup(ch | e) for someh 6= j.

The interval-based classification rule induced by the strong dominance score classifies
a new case ascj if and only if the probabilitypinf (cj | e) is larger than the probability
psup(ch | e), for any h 6= j . Strong dominance is a safe criterion since it returns the
classification that we would obtain from all consistent completions of the training setD.
However, when the probability intervals are overlapping, the strong dominance score is
not defined and we face a situation of undecidability. Moreover, the strong dominance
score is too conservative because the conditionpinf (cj | e) > psup(ch | e), for all h 6= j ,
is sufficient to yield the classification we would obtain, the complete training set being
known, but it is not necessary. In order to increase the coverage of the classifier, we can
weaken this criterion by making the minimal assumption that all missing data mechanisms
are equally possible, thus making all values within the intervals[pinf (cj | e),psup(cj | e)]
equally likely. In this way, we summarize the interval into an average point by defining the
score

su(cj | e) = psup(cj | e)− k
(
psup(cj | e)− pinf (cj | e)

)
= (1− k)psup(cj | e)+ kpinf (cj | e),

wherek is chosen so that the scores{su(cj | e)} satisfy the properties of Eq. (13). Hence,

k = 1−∑h pinf (ch | e)∑
h(psup(ch | e)− pinf (ch | e)) .

A consequence of the consistency of the probability intervals[pinf (cj | e),psup(cj | e)]
is that the extreme probabilitiespinf (cj | e) and psup(cj | e) and the probability
p(cj | e) that we would compute, from a complete training setD, are in the relationship
pinf (cj | e)6 p(cj | e)6 psup(cj | e). It follows that

∑
j pinf (cj | e)6 16

∑
j psup(cj | e)

and, hence, that the quantityk is in the open interval(0,1). This last finding guarantees
that the scoresu(cj | e) is in the interior of the interval[pinf (cj | e),psup(cj | e)] and,
consequently, that it cannot produce a classification rule that does not correspond to any
E-admissibleclassification rule compatible with the intervals[pinf (cj | e),psup(cj | e)]
[12]. Note that the Hurwicz’s Optimism–Pessimism criterion—the usual solution for these
circumstances [14,16]—does not guarantee this property. As the scoresu(cj | e) always
leads to a decision, we term it acomplete-admissible score.

Definition 4 (Complete-admissible score). Given a set ofq consistent posterior probability
intervals[pinf (cj | e),psup(cj | e)], we define the quantity

su(cj | e)= psup(cj | e)− (psup(cj | e)− pinf (cj | e))(1−∑h pinf (ch | e))∑
h(psup(ch | e)− pinf (ch | e))

acomplete-admissible score.
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It is worth noting that the classification based on the complete-admissible score sub-
sumes the one based on the strong dominance score because ifpinf (cj | e) > psup(ch | e),
for all h 6= j , thensu(cj | e) > su(ch | e) for all h 6= j . When the condition to apply the
strong dominance score does not hold, the complete-admissible score lets us classify the
cases left unclassified by the strong dominance score. This strategy may result in an in-
creased classification coverage at the price of a lower accuracy.

4.3. Which score?

Both the strong dominance and the complete-admissible score provide a sensible basis
for robust classification. Strong dominance is safe at the price of leaving cases unclassified
while the complete-admissible score increases the classification coverage by loosing
robustness. The choice of an interval-scoring method depends on the features of the
problem at hand and, in this section, we provide a principled way to choose the best
interval-based classification strategy.

A classification system is typically evaluated on the basis of its classification accuracyθ

and its coverageγ . The former is the probability of correctly classifying a case while the
latter is the probability of classifying one case. Letθd andγd be respectively the accuracy
and the coverage of anRBC with the strong dominance score (RBCd ). The accuracyθd is
independent of the missing data mechanism. Similarly, letθu be the accuracy of theRBC

with the complete-admissible score, sayRBCu. The accuracyθu of the RBCu is given by
two components. The first component is the probability of correctly classifying one case
when we can use the strong dominance score and, hence, it is weighted by the coverageγd .
The second component is the probability of correctly classifying one case when we cannot
use the strong dominance score and, therefore, it is weighted by 1− γd . Thus,

θu = θdγd + θul(1− γd), (14)

whereθul is the classification accuracy of theRBCu on the cases left unclassified by the
RBCd and we term itresidual accuracy. Residual accuracy provides a measure of the
gain/loss of classification accuracy achieved by theRBCu when one relaxes the strong
dominance criterion to increase coverage.

The decomposition in Eq. (14) provides a first basis to choose the scoring method. For
example, a simple rule could be to adopt the complete-admissible score ifθul is greater
than 1/q , so that the cases left unclassified by the strong dominance score are classified
by the complete-admissible score better than at random. The intuition behind this rule is
that accuracy is more valuable than coverage and, hence, we would not prefer a method
that classifies randomly just because it always classifies a case. The rationale is that we
expect the consequence of a wrong classification to be worse than the inability to classify
one case. This argument can be used formally to choose between the strong dominance or
the complete-admissible score by introducing mis-classification costs and costs incurred
for the inability to classify one case. Suppose that the cost incurred for not being able
to classify a case with attribute valuese is a quantityCi , while the cost for a wrong
classification isCw . Since the former event occurs with probability 1− γd and the latter
occurs with probability(1− θd)γd , the expected cost incurred on using theRBCd is

C(RBCd )= Cw(1− θd)γd +Ci(1− γd)
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if correct classification yields no cost. On the other hand, the expected cost incurred by an
RBCu achieving 100% coverage with accuracyθu is

C(RBCu)= Cw(1− θu).
In order to minimize the cost,RBCd is to be preferred toRBCu whenC(RBCd)6 C(RBCu).
This is true if and only ifθu− θdγd = θul(1− γd)6 (1− γd)(1−Ci/Cw) and it yields the
decision rule given in the next theorem.

Theorem 4. LetCi andCw denote respectively the cost of a wrong classification and the
cost of not being able to classify a case. The interval based classification rule which uses
the strong dominance score yields minimum expected cost if and only if:

θul 6 (1−Ci/Cw)
whereθul is the accuracy of theRBCu on the cases left unclassified by theRBCd .

For example, ifCi = Cw, the best decision is to choose theRBCd wheneverθul > 0.
Compared to the simpler rule described above, the decision now takes into account the
trade-off between accuracy and coverage. In practical applications, the quantitiesθd , θu
andγd can be estimated from the available data using cross validation, as shown in the
next section. Suppose now the quantityθa is the accuracy of any otherNBCa trained
on an incomplete data set under some assumption about the missing data mechanism.
For example,θa could be the accuracy of anNBC trained on an incomplete data set
under the assumption that data areMAR. We can use the same decision rule to help
one decide whether theRBC with the strong dominance or the complete-admissible score
yields minimum expected costs. As a by-product, the decision rule can be interpreted as
an evaluation of the consequences of enforcing theMAR assumption. The comparison
between the accuracy measuresθa andθu is cost-independent, as we compareC(RBCu)=
Cw(1 − θu) andC(NBCa) = Cw(1 − θa) and the minimum expected cost is achieved
by the system having the highest accuracy. If we now compare the expected costs of
the RBCd and theNBCa , and apply the decision rule in Theorem 4, we have that the
NBCa is to be preferred to theRBCd wheneverθul > (1 − Ci/Cw) and the quantity
(1− γd)[θul − (1− Ci/Cw)] is the cost incurred in enforcing the assumption about the
missing data mechanism. This solution can be easily extended to cases in which mis-
classification costs vary with the classes.

5. Evaluation

This section reports the results of an experimental evaluation of theRBC on twenty
incomplete data sets. The aim of the evaluation is to compare the performance of the
RBC with that of twoNBCs, using the most common solutions to handle missing data [6,
15]: remove the missing entries (NBCm) and assign the missing entries to a dummy state
(NBC∗). Since all data sets always report the classes for every case, by Theorem 1NBCm is
a faithful implementation of theMAR assumption.NBC∗, on the other hand, assumes some
knowledge on the missing data mechanism since the missing data are treated as a category
“other”, not reported in the observed data.
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5.1. Materials and methods

The experimental evaluation was conducted on the twenty databases reported in Table 1,
available from the UCI Machine Learning repository [1]. The databaseKDD99 consists of
4704 cases on 31 variables selected from the database used for the 1999 KDD cup. These
databases offer a variety of different data types: all attributes of the databaseVoting record
(Vote) are binary, all attributes inBreast Cancer Wisconsin (B.Cancer) andLung Cancer
(L.Cancer) andBridge are nominal, all attributes inHepatitis andMushrooms are discrete,
while for exampleAnnealing, Credit, Cylinder, Horse Colic, andSick offer a good mixture
of continuous, discrete and nominal attributes. The size of these databases ranges from the
32 case on 56 attributes ofLung Cancer to the 48842 cases on 14 variables inMushrooms.
Continuous attributes were discretized by dividing the observed range into four bins with
the same proportion of entries.

Following current practice [8], we compared the accuracy of classifiers by running, on
each data setD, 5 replicates of a 5-fold cross validation experiment. On each database,
we ran four tests: one training theNBC on a database with the missing entries removed
(NBCm), one assigning the missing entries to a dummy state (NBC∗), one using the strong
dominance score (RBCd ) and one using the complete-admissible score (RBCu). In all cases,
we computed the estimates using a uniformly distributed global prior precisionα = 1. For
each test, we report two values:accuracy—estimated as the average number of cases that
were correctly classified in the test sets—andcoverage—given by the ratio between the
number of cases classified and the total number of cases in the data set. The 95% confidence
limits are based on a Normal approximation of a proportion estimator [8].

5.2. Results and discussion

Table 1 reports the results. The accuracy ofRBCd is overall the highest, with a gain
ranging from 0.02% (Breast Cancer), in which there are only 6 missing entries in a data
set of 699 cases, to 16.77% (Horse Colic), in which data are heavily missing. Except for
Audiology, Breast Cancer, andLung Cancer, the accuracy gain ofRBCd is statistically
significant in all cases, as shown by the non overlapping confidence intervals. This gain
of accuracy is counter-balanced by a loss of coverage that can be as small as 6.51% in
Horse Colic. The complete-admissible score increases the coverage to 100% at the price of
reducing the accuracy, so that inAudiology, Breast Cancer, andCredit it is out-performed
by the standardNBC. However, the difference in accuracy is within the sampling variability,
as the associated confidence limits are roughly the same, and probably data areMAR in
these data sets. On the other hand, the accuracy gain ofRBCu over NBCm and NBC∗ is
significant in all the other data sets, and reaches 10.19% in theAnnealing data set, thus
confirming the potential danger of wrongfully enforcing theMAR assumption.

As noted in Section 4.3, the strong dominance score partitions the data into two parts.
One part comprises the cases on which there is no classification ambiguity and the
accuracy is only model-dependent. The remaining part comprises those cases that cannot
be classified without some assumption about the missing data mechanism. Using the
notation of Section 4.3, the accuracy on these cases of the other systems achieving 100%
coverage is given by the quantity



222 M. Ramoni, P. Sebastiani / Artificial Intelligence 125 (2001) 209–226

Table 1
Accuracy ofNBCm, NBC∗, RBCd , RBCu. Maximum values are reported in boldface

Database NBCm NBC∗ RBCd RBCu

Accuracy Accuracy Accuracy Coverage Accuracy

1 Adult 81.74± 0.23 81.22± 0.22 86.51± 0.21 81.72± 0.18 82.50± 0.20

2 Annealing 86.54± 2.88 80.88± 3.32 97.53± 1.51 49.12± 4.87 96.73± 1.24

3 Arythmia 64.40± 2.25 61.05± 2.76 76.09± 3.25 39.82± 2.30 66.19± 2.33

4 Audiology 58.34± 3.49 55.50± 3.51 63.41± 5.32 34.78± 3.48 55.50± 3.51

5 Automobile 60.48± 3.41 58.05± 3.45 68.49± 3.84 71.22± 3.16 61.96± 3.39

6 B.Cancer 97.42± 0.66 97.42± 0.66 97.49± 0.67 99.65± 5.23 97.23± 0.67

7 Bridge 67.62± 4.57 64.76± 4.66 80.00± 4.78 66.67± 4.60 69.52± 4.49

8 Credit 84.88± 1.30 84.88± 1.30 87.48± 1.72 95.40± 5.21 84.70± 1.31

9 Cylinder 73.70± 3.71 73.00± 3.74 91.71± 4.14 31.30± 6.97 74.26± 0.67

10 Echocardiogram 87.23± 2.94 88.54± 2.78 93.58± 2.35 83.21± 3.27 88.54± 2.78

11 Heart-C 54.13± 2.86 53.80± 2.86 58.97± 2.89 95.71± 1.16 58.07± 2.83

12 Heart-H 83.33± 2.00 81.29± 2.27 85.88± 2.11 86.73± 1.98 83.67± 2.11

13 Heart-S 38.29± 4.38 36.59± 4.34 47.37± 11.45 15.44± 3.26 42.28± 4.45

14 Hepatitis 85.03± 2.09 85.16± 2.08 90.50± 2.84 76.45± 9.73 85.55± 2.08

15 Horse Colic 75.79± 1.62 75.79± 1.63 92.56± 0.59 6.51± 2.05 77.73± 1.61

16 KDD99 84.68± 0.52 84.80± 0.50 89.22± 0.67 45.42± 0.70 84.85± 0.52

17 L.Cancer 43.75± 17.88 43.75± 17.88 46.67± 17.85 93.75± 8.66 43.75± 17.88

18 Mushrooms 98.53± 0.12 98.40± 0.12 99.04± 0.15 98.88± 1.53 98.70± 0.11

19 Sick 91.60± 0.51 90.87± 0.53 97.53± 0.34 86.30± 2.29 92.46± 0.49

20 Vote 90.02± 1.05 90.21± 1.04 92.05± 1.75 94.94± 6.47 90.21± 1.04

θal = θ̂a − θ̂d γ̂d
1− γ̂d ,

where θ̂a is the (estimated) accuracy ofNBCm, NBC∗ or RBCu, while θ̂d and γ̂d are
the estimated accuracy and coverage ofRBCd . Table 2 reports these accuracy values for
NBCm, NBC∗, andRBCu in the data sets used in this experiment. The sixth column reports
the maximum cost ratioCi/Cw to makeRBCd the best classification system in terms of
minimum expected costs and, for reference, the last two columns note the proportion of
cases left unclassified byRBCd and size of the database. If the cost ratio is higher than
the reported value, then the best system is the one with the highest accuracyθal , and it is
reported in bold face in the table.

In the data setsB.Cancer and Credit, RBCd is the best choice ifCw > 4.44Ci and
Cw > 1.45Ci , respectively. If these conditions are not satisfied, thenNBCm or, equivalently,
NBC∗, are the best systems. In theB.Cancer data set, the complete-admissible score
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Table 2
Residual accuracy ofNBCm, NBC∗ and RBCu. The sixth column reports the maximum value on the cost ratio
Ci/Cw that makesRBCd the classification system with minimum expected cost. If the cost ratioCi/Cw is
superior to this value, then the system corresponding to the bold-faced accuracy is the best choice. The last two
columns report the percentage of cases left unclassified byRBCd and the database size

Database θml θ∗l θul Ci/Cw (1− γd )100 Size

1 Adult 0.6040 0.5757 0.6457 0.3543 18.28 48842

2 Annealing 0.7593 0.6481 0.9596 0.0404 50.88 798

3 Arythmia 0.5666 0.5100 0.5964 0.4036 60.18 452

4 Audiology 0.5564 0.5128 0.5128 0.4436 65.22 200

5 Automobile 0.4066 0.3221 0.4580 0.5420 28.78 205

6 B.Cancer 0.7749 0.7749 0.2320 0.2251 0.35 699

7 Bridge 0.4286 0.3428 0.4856 0.5144 33.33 105

8 Credit 0.3096 0.3096 0.2705 0.6904 4.60 598

9 Cylinder 0.6448 0.6549 0.6631 0.3369 68.70 512

10 Echocardiogram 0.5576 0.6356 0.6356 0.3644 16.79 131

11 Heart-C 0.0000 0.0000 0.3799 0.6201 4.29 303

12 Heart-H 0.6667 0.5129 0.6923 0.3077 13.27 294

13 Heart-S 0.3663 0.3462 0.4135 0.5865 84.56 123

14 Hepatitis 0.6782 0.6727 0.6948 0.3052 23.55 155

15 Horse Colic 0.7462 0.7462 0.7670 0.2330 93.49 368

16 L.Cancer 0.0000 0.0000 0.0000 1.0005 6.25 32

17 KDD99 0.8090 0.8112 0.8121 0.1878 54.58 4704

18 Mushrooms 0.4190 0.5350 0.6868 0.3132 1.22 8124

19 Sick 0.4892 0.5424 0.6052 0.3948 15.70 2800

20 Vote 0.5569 0.5193 0.5569 0.4431 5.06 435

performs very poorly on the cases left unclassified by the strong dominance score, while
the enforcement of theMAR assumption allows the standardNBC to exploit the information
provided by the available data and reaches an accuracy of 77.49%. This data set has,
however, only 6 cases with missing entries. In theCredit data set,NBCm, NBC∗ andRBCu
achieve an accuracy lower than 50% so that, if the the mis-classification cost is lower
than 1.45Ci , a random assignment of the cases left unclassified byRBCd is preferable. In
Audiology, RBCd is the minimum expected cost system ifCw > 2.25Ci . When the condition
on the cost ratio is not satisfied, thatNBCm is the classification system to adopt. In the data
setL.Cancer, the accuracyθal is null for all systems, and hence the choice ofRBCd is never
under discussion. This is also confirmed by the fact that the maximum value on the cost
ratioCi/Cw, which makesRBCd the system with minimum expected cost, is 1.005. Hence,
RBCd is the best wheneverCw > 0.995Ci . As this data set is of medical nature, one can
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hardly imagine a situation in which not making an automatic analysis is less costly than
making the wrong one. In the remaining data sets,RBCu is always the second best choice,
if the cost ratioCi/Cw is superior to the value reported in the last column of the table. In
the data setAnnealing, for example, if the cost for not classifying a case is smaller than 25
times—given by 1/0.0404—the cost for a wrong classification,RBCu is the best choice and
achieves an accuracy 0.9596 on the cases left unclassified byRBCd . This is a gain of about
20% compared toNBCm. Again this result confirms that theMAR assumption on this data
set has a negative effect on the accuracy. A similar result is shown in theMushroom data
set, in which either assigning the missing entries to a dummy value or enforcing theMAR

assumption yields essentially a random classification of the cases left unclassified byRBCd ,
while the use of the complete-admissible score rises the residual accuracy to 68.68%. The
Sick data set reports a similar result, while the accuracy ofRBCu is only slightly superior
to theNBC∗ in the data setsAutomobile, Cylinder, Hepatitis, andHorse Colic, and is none
in theVote data set.

These results suggest that theRBC based on the strong dominance criterion delivers the
highest accuracy, at risk of a decreased coverage. The use of the complete-admissible score
improves coverage by decreasing accuracy, and it appears to achieve better results than
standard solutions, except when the proportion of missing data is small. However, there
does not seem to be a consistently superior classifier and the solution to adopt needs to
take into account features of the data at hand. Nonetheless, our decision theoretic approach
provides a principled way to choose the most appropriate solution.

6. Conclusions

This paper introduced theRBC: a generalization of the standardNBC which is robust
with respect to the missing data mechanism. TheRBC performs the training step from
an incomplete data set resulting in a classification system quantified by tight consistent
probability intervals. Then, theRBC classifies new cases by reasoning with probability
intervals. We provided an interval propagation algorithm to identify bounds on the set
of the classes posterior probabilities that can be computed from all possible completions
of the data, and two scoring methods for interval-based classification. The choice of the
scoring methods that best suits the problem at hand is based on a decision-theoretic rule
that takes into account costs of mis-classification and cost incurred for not being able to
classify a case, and can be extended to make a cost-analysis of the implications of theMAR

assumption on the classification accuracy. The experimental evaluations showed the gain
of accuracy that can be achieved by theRBC compared to standard solutions. However, the
results also showed that there is no uniformly better classification strategy when the data
are incomplete, and we expect that the principled way to choose the solution that best suits
the problem at hand will become common practice in real applications.

Although the robust solution that we presented in this paper is limited to theNBC, it
is straightforward to extend it to tree-structured classification systems in which attributes
are binary and the classification problem is to choose between two classes. This can be
done by training the classifier with theRBE and by computing bounds on the posterior
probability of the classes using the 2U algorithm of [5]. The classification can be done by
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choosing one of the interval-based classification rules that we presented here, in the same
principled way. The extension to more general classification models is the real challenge
and essentially requires the development of interval propagation algorithms that returns not
too loose bounds on the class posterior probability. The methods described in this paper
have been implemented in the computer program1 distributed, to date, in over 2000 copies.
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