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In the past decade a lot of work has been done on the subject of multivariate Pad6 
approximation theory and so it would be interesting to compare some different definitions. Let 
us first take a look at the univariate case. It is well known that univariate Pad6 approximants can 
be obtained in several equivalent ways and that they satisfy some typical properties. We will 
briefly repeat the definition together with these characteristic properties and indicate some of the 
methods to calculate them. 

Consider a real-valued function f of one real variable x given by its Taylor series expansion at 
the origin 

f(x) = E CiXi. (1) 
i-0 

The Pad6 approximation problem of order (m, n) then consists in finding polynomials 

p(x) = 2 UiXi 
i-0 

and 

q(x) = i biXi, 
i-0 

such that in the power series (f - q -p)(x) the first IYI + n + 1 terms disappear: 

(f*q-p)(x)= c &xi. 
izm+n 

(2) 

We can introduce the notion of interpolationset E in N to reformulate (2) as 

(f.q-p)(i)(O)=O for GEE= (0, l,...,m+n}. 

Since (2) results in a homogeneous system of m + n + 1 linear equations for the m + n + 2 
unknowns cli and bi we know that a nontrivial solution of (2) is always possible. 

Also it is easy to prove that for fixed m and n and given f different solutions pl, q1 and pz, 
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q2 of (2) are equivalent meaning that 

So they all have the same irreducible form which we shall denote by ri!j(x). This irreducible 
rational function rj$( ) x is now called the (m, n) Pad6 approximant to f and we immediately 
have our first theorem. 

Theorem 1. For all m and n in N and for every series (1) the (m, n) Pad6 approximant exists and 
is unique. 

Next consider the following problem. Suppose we have some operator 9 transforming the 
function f into the function +f, is it then possible to calculate the PadC approximants to $f from 
the knowledge of the Pad6 approximants to f? Yes, in some cases it is possible and the next 
theorem describes these co-uariance properties. 

Theorem 2. (a) For +f = l/f and r$(x) = p(x)/q(x) we haoe rJ,$)(x) = q(x)/p(x). 
(W For +f = (af + bV(cf + d) 

r(*ff)( x) = (up + bq)/( cp + dq). 
with a, b, c, d in IT4 and r,‘,<)(x) = p( x)/q(x) we have 

“‘:c) For (+f)(x)=f(ax/(l +bx)) and r$(x)=p(x)/q(x) we have r,‘$‘(x)=p(ax/(l + 
bx))/q(Qx/(l+ bx)). 

Remark that the second and third covariance properties are only valid for diagonal approxi- 
mants, i.e. m = n. Let us now turn to the question of how to compute an (m, n) Pad6 
approximant to f. The defining equations (2) can be split up into a linear system of equations 
determining the numerator coefficients ai and a homogeneous linear system of equations 
completely determining the denominator coefficients bi 

with bi=Oif i>n. 

C 

i: 

,,,+l-bO+ --. +cm+l__-b,,=O, 

with ci = 0 if i < 0. 

C ,+;b,+ .-- +c;b,,=O, 

In fact one only has to solve the homogeneous system for then the ai can be obtained by 
substitution of the bi in the left hand side of the nonhomogeneous system. What’s more the 
coefficient matrix of the homogeneous system is a Toeplitz matrix. Consequently these equations 
can be solved in 0(n2) operations instead of O(n3) operations for an arbitrary system of n linear 
equations. So computing a solution of (3) already solves the “coefficient” problem by which we 
mean the calculation of the ai and bi. 

Now there are more interesting ways to solve the “value” problem which consists in 
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computing $1 (x) for some particular x. To this end we introduce the epsilon-algorithm. Put 

CO 
‘-I)=() 

p=o . . . 

c(O) = 0 C-1) 
-I Cl 

CO 
CO)= c C-1) 

0 c2 . . . 

zI';=o (0) 
Cl 

EL"' co + c*x . . . 

c(_'),=o . . . 

cf'= co + c,x + c*x* 

and compute 

@i = &;i) + I/( ,;j+i) - ei”), 

i=o,1,2 )..., j= -ii/21 -1, -[i/2],.... 

In [l] is shown that the value 
(4) 

Clearly (4) is a recursive way to compute Pad6 approximants. A third method is based on a 
continued fraction representation of rational functions. 

Consider a continued fraction of the form 

co + * . * +C,_,Xm-n + 
C,_“+,Xm-n+’ 

I 1 
41 (m-n+l)xI eyn+l?yl qyn+‘)xl e:“-“+l)xI - 
) 1 -1 1 -/ 1 -/ 1 .*** (9 

If the coefficients q!m-n+l) and etm-“+‘) are computed using the following rhombus rules then 
r;‘;(x) appears to be the (2n)th convergent of (5): 

f$ = 0 

41 (l)= c*/c* 

ef'= () (1) 
=I 

qj2’ = cJc* qf ’ 
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The q-values are calculated such that the indicated products are equal and the e-values such that 
the indicated sums are equal. This results in: 

q!” = q!j;“( e#V;‘)/e;l\), 1 i = 2, 3,. . . , j = 1, 2,. . . , 

,!A = @;l) + qji+l) _ &), i=l,2 ,..., j=l,2 ,.... 

In view of the fact that mainly three methods exist for the computation of univariate Pad6 
approximants, we can consider three main types of generalizations for multivariate functions: a 
class of definitions based on the notion of interpolationset, some definitions using different 
continued fraction representations of multivariate functions, and a multivariate generalization of 
the epsilon-algorithm. Each author of a multivariate definition of course tries to preserve some of 
the interesting covariance properties and to add a projection property and a symmetry property 
which are more or less obvious to expect for your multivariate PadC approximant. The projection 
property enables you to equate one of the variables to zero both in the function and the 
approximant without disturbing the order of approximation and the symmetry property tells you 
which approximants will be symmetric in case your work with a symmetric function. 

In order to avoid notational difficulties we will restrict ourselves to the case of a bivariate 
function; the generalization to more than two variables is straightforward. 

The first type of generalization we will consider is the group of definitions based on the idea to 
set up a system of defining equations for the multivariate approximant such that it copies some 
of the univariate properties. We will describe this way of working in a very general setting that 
covers the definitions introduced by Chisholm and his group in Canterbury [2,9], by Lutterodt 
[12,13], by Karlsson and Wallin [lo] and by Levin [ll]. 

If we define bivariate polynomials by choosing index sets in N * N, then the bivariate Padt 
approximation problem to 

f(X, Y) = ~ CijXiyj, 

i.J’=-0 

consists in finding polynomials 

P(X, Y)’ c a. .x’x’ 
(i,j)ENGN*N ” 

( N from ‘numerator’), 

4(x, U)’ c bijxiyj (D from ‘denominator’), 
(i,j)EDGN*N 

and a bivariate interpolationset E such that 

(f?I-?)(x, r)= c dijxiyj (E from ‘equations’), 
(i,j)EN*N\E 

with 

NcE, 

#(E\N)= #D-l. 

A typical situation would be the one given in Fig. 1. 

(6) 

(74 
(7b) 
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Fig. 1. 

Clearly the equations (6) can be rewritten as 

p+iy f. 4 _p) 

axis y’ 
=0 for (i, j) in E 

VW 

and this clarifies the terminology of interpolationset. 
Condition (7a) allows you to split up the system of defining equations in a nonhomogeneous 

part completely determining the coefficients aij and a homogeneous part for the b,,, while (7b) 
guarantees the existence of a nontrivial solution. In general unicity of the Pade approximant is 
not guaranteed unless E\N supplies a homogeneous system of linearly independent equations. 
The structure of the homogeneous system of equations depends on the choice of E. Users 
interested in obtaining a system that can be solved in a fairly easy way, such as the Toeplitz 
system in the univariate case, are referred to the prong structure for the Canterbury approximants 
[8] and the Lutterodt approximants of type Bl [13]. 

If we want our covariance properties to hold then E must satisfy the rectangle rule: 

if (i, j) E E then for 0 < k ( i and 0 Q 1 <j also (k, 1) E E. 

The necessity of this can be seen as follows. If f(0, 0) = cc,,-, is nonzero then l/f can be 
constructed: 

with 

(l/f)(x, Y) = E e&y’ 
(i.j)=O 

e, = l/c,. 

Now take a look at 

Cx, Y)= [(-1/f)e(fe4-P)l(x7 Y>= E gijxiYi 
i,j-0 

with 

gij = - i fl dklei-k,j-l* 
k=OI=O 

A coefficient g,, will certainly disappear if all the d,, with 0 < k < i and 0 < 1 Q’ vanish. If we 
want the projection property to hold then E must certainly contain the univariate interpolation- 
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sets 

In order for symmetry to hold the index sets N and D and the interpolationset E must be 
symmetric configurations in N *N. As a conclusion we can say that the properties that are valid 
for the bivariate approximant depend very much on the choice of the numerator, denominator 
and the set of equations. For the Canterbury approximants the choice of N, D and E is 
described in a very precise way while Karlsson and Wallin, Lutterodt and Levin only set up some 
general requirements. It is important to emphasize that in none of the cases there is a clear link 
with continued fraction theory nor is an easy recursive scheme such as the epsilon-algorithm 
valid. 

A second important type of definitions are those who generalize the idea to represent the 
considered function as a continued fraction and consider convergents of that continued fraction. 
For bivariate functions one can use branched continued fractions 

where the bi are infinite expressions themselves and are called the branches of the continued 
fraction. Siemaszko [15] uses a representation of f (x, y) of the form 

fb9 Y)=Kob*Y)+ f 
six I 

+E 
biY I 

i-1 IKi(x’Y) i=l ILiCx’Y) 
(8) 

with 

O” djxYl 
Kobv)=do+,~l , 1 > 

m aj’)x .yl 

&(x-y) = 1+ c i_1 , 1 , i=l,2,..., 

= b,!“xyl 
L,(x*y)=l+ c - i_1 , 1 , i=l,L... 

The branches Ki(x - y) are constructed using univariate Viskovatov algorithms so that Ki( x -y) 
is a corresponding continued fraction to the univariate series 

5 ci+k,k~i+kyk, i = 0, l,..., 
k-0 

while the Li( x - y) will be corresponding continued fractions to the series 

E ck,i+kXkyi+k, i= 1, 2,.... 
k-0 

So the series 

f(X, Y)' C CijXiYj 

(i.j)EN*N 
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is rewritten as a sum of univariate power series 

f CkkXkYk + E f C;+k.kXi+kyk 
k-0 i=l i k=O i i 

+ 2 E Ck.r+kXky‘+k 

i=l k=O 

which is illustrated in Fig. 2. As a result of this convergents of (8) will correspond to some partial 
sum 

c CiiXiYi 
(i.j)EIGN*N 

of A-% Y). 
Murphy and O’Donohoe [14] used branched continued fractions of the form 

I I jtxy y, = 11 + Go(; + H,(y) + i:l 11 + G;&: H;(y) (9) 

where 

@a g$)x 1 
G,(x)=,Gl /1, i=O, 1,2 ,..., 

Again the branches 1 + Gi(x) + Hi(y) are computed using univariate techniques. In fact the 
power series 

f(x, y) = c ciix;yi 
(i.j)EN*N 

has been split up here as 
?o I 00 00 > 

c ( c;;&‘+ c ‘-i+k.ixi+kyi + 1 ci.j+kxiyick 1 
/=o I k=l 

just as indicated in Fig. 3. 

k=l I 

Existence of the branched continued fractions (8) and (9) depends on the coefficients of the 
given power series f(x, y) and usually conditions for the existence involve the nontriviality of 
some determinants. If they exist then the representations (8) and (9) are unique. Bivariate Pad6 
approximants constructed from the use of branched continued fractions have the pojection 
property and the symmetry property if the convergents are defined in a symmetric way with 
respect to x and y, but they don’t satisfy any of the covariance properties. 

If we reformulate the continued fraction approach using the index sets N and D, which 

I N L L K K K 
2 1 a 1 2 

L&T_. 
Fig. 2. 
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I / C /( l+G +tl ) 
33 3 3 

c /( l+G +tt ) 
22 2 2 

C /( 1+c +t1 ) 
11 1 1 

c /(l+G +H ) 
00 0 0 

Fig. 3. 

indicate the degree of the numerator and denominator, and using the interpolationset E then we 
remark that N and D blow up very rapidly while E does not satisfy the conditions (7) anymore. 
For instance consider the convergent 

Pk Y> = d, + d,xy + %X 

dx, Y) 1 + a,(“Xy + a,x/(l + u3x) 

+ blY 

1 + b’,“xy + b,y/(l + b,y) 

of (8). Then it’s easy to check that 

p(xV Y)= C aijx'vj3 q(X, _Y)= C bijxiYj, 

(i.j)EN (i.j)ED 

a’+‘(f*q-p) 

i3x’ay’ 
=0 for (i, j) in E 

VW) 

with N, D and E as given in Fig. 4. If we do the same for the convergent 

Pk Y) = e0 

dx9 Y) 1 + gjO’x + q”‘y 
+ em 

1 + g$“X + h$l’y 

1 + g$O’x 
1 + g$O’x 

1 + GO’Y 
1 + h’P’y 

of (9) then the sets N, D, and E can be found in Fig. 5. So there is no point in rewriting the 
definition of bivariate Pad6 approximants using continued fractions in order to obtain an 
equivalent definition using a linear system of equations. 

A third way to define multivariate Pad6 approximants is to set up a recursive scheme. To this 
end we will let the epsilon-algorithm inspire us, or more precisely we will exploit the fact that a 

pTN. LEN bD. 
Fig. 4. 
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N 

N h_ N 

Fig. 5. 

value in the epsilon-table is a quotient of two determinants. Solving the system of equations (3) 
explicitly it is easy to see that 

. . . iFD ‘ix’ 

c xm+l c,xm C 
m+l-n 

m+l . . . m+l-n X 

. . . 1 
_po 

q(x) 
c xm+l c,xm C X 

m+l-n 
m+l . . . mfl--n 

. * . 

c m+n Xm+n C,+,_lXm+n-l . . . c,xm 

and since rA;f,! = c$:-“), this determinant representation can be used to define multivariate PadC 
approximants in a recursive way. We replace the partial sums Cf_,,cixi of f(x) by partial sums 
C~+(+i_ociixiyi of f(x, y) and the terms clxl of degree 1 in the univariate series by the group of 
terms Ci+i_lciixiyi of degree 1 in the bivariate series. In this way we obtain 

PC% Y> = 

4(x9 Y) 

i+5 cijxiYj . . . 

i cijx5j C c. .xiyj 
‘J 

i+j-m+l i+j=m 

. 

1 . . . 1 

C cijxiyj C c. .xiyj 
‘J 

ii-j-m+1 i+j=m 
. 

i+j~+nCijXiYj ... ' C CijXiYj 

i+j=m 

If we develop the determinants by their first row, we can prove that p(x, y) and q(x, y) are of 
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the form 
mfl+t?l mll+ll 

p(x, Y> = c a;,xlu’, q(-G Y) = c b,,X’Yi 
i+j=mn i+J=mn 

and that they satisfy [3] 

(r*q-P)(x, Y)= c d; jxiyi. 
i+j>mn+m+n 

(10) 

In fact we can see that what we have done is shifted all the degrees in the univariate Pad6 
approximation problem of order (m, n) over mn. We also emphasize that condition (10) can be 
used as the defining set of equations for these multivariate Pad6 approximants and that it defines 
them uniquely in that sense that different solutions of (10) supply equivalent rational functions 
and consequently the same irreducible form. What’s more the system of equations (10) turns out 
to have a near-Toeplitz structure so that it can be solved in 0( a&*) operations where (Y is the 
displacement rank of the coefficient matrix and N, is the number of equations [4]. Because of the 
great analogy with the univariate case one can now also immediately prove the covariance 
properties listed in Theorem 2, as well as a projection property and a symmetry property. Even 
the qd-algorithm as given in (5) remains valid if the factors x are included in the 41” and e!j) 
coefficients. Let us first rewrite the univariate version in this way. We consider a fraction of the 
form 

* + Cm_,Xm-n + 
cm-,+1x 

c,+ ** 

m-n+ll elm-n+l)l E:m-n+l)l 

1 1 --I 1 -1 1 -**’ 

where 

#)=o, i=o,1,2 )..., 

Q,“)= c~+~x~+~/c~x~, i = 1,2, 3,.. ., 

Q!j) = Q;~;“E,‘i‘;“/Ef~” 
I , 1, i= 2,3,..., j=l,2 ,***9 

Ei”‘= E,‘i’;i) + QI”” - Q,“‘, i=l,2 ,***, j=l,2 ).... 

If we redefine 

E,ji)=O, i=l,2,3 ,..., 

Q,‘i’= c cj,xjyk/ C cjkxjyk, i = 1,2, 3 ,..., 
j+k=i+l j+k=i 

Q!j’ = Q;i;“E,‘i‘; “/E,(i) 
I I 19 i= 2,3,..., j= 1,2,..., 

,$” = Eji; 1) + Qfj’l) _ Qf”, 
I i= 1,2,..., j=l,2 ,***9 

then ( p/q)(x, y) satisfying (10) is the (2n)th convergent of the continued fraction 

c i k 
CjkX Y 

c,+.*.+ c CjkX’r” + 
j+k-m-n+1 

_ Ql(m--n+l)j E:“-“+I)1 

j+k=m--n I 1 1 1 -1 1 -*** 
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Before we proceed let us give a review of the properties satisfied by the different types of 
approximants. 

Property 

Unicity 

Covariance 

Special 
structure of 
system of eqs. 

Epsilon- 
algorithm 

qd-algorithm 
or Viskovatov 

Projection 
property 

Symmetry 
property 

Interpolationset 

Under certain conditions 

on f(x. v) = C clix’y’ 
(i.j) 

Yes if E satisfies the 
rectangle rule 

Yes for Chisholm approx. 
and Lutterodt approx. of 
type Bl 

No 

No 

Type of approximant 

Continued fraction 

Under certain conditions 

on f(x. Y)= C C,,X’Y 
(i.J) 

No 

No 

No 

Yes 

Recursion 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes if E contains univa- 
riate interpolationsets 

Yes if E is symmetric 

Yes 

Yes 

Yes 

Yes 

Now that the development of the theory of multivariate Pade approximants during the past ten 
years is somewhat more clear we can indicate some possibilities for the generalization of the 
concept of rational interpolant to the multivariate case. Here the interpolation conditions will be 
spread over several points instead of having all the approximation conditions in the origin. 

Rational interpolants associated with index sets in N * N and defined by setting up a system of 
linear equations are introduced in [6] while Thiele type branched continued fractions and their 
convergents are discussed in [7] and [16]. Very recently an attempt has also been made to define 
rational interpolants by means of a multivariate version of Claessens’ generalized epsilon-al- 
gorithm; this approach would then be based on a recursive scheme. 
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