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Abstract

If the arrow→ stands for classical relevant implication, Aristotle’s Thesis¬(A → ¬A) is in-
consistent with the Law of Simplification(A ∧ B) → B accepted by relevantists, but yields
inconsistent non-trivial extension of the system of entailmentE. Such paraconsistent extensions
relevant logics have been studied by R. Routley, C. Mortensen and R. Brady. After examin
semantics associated to such systems, it is stressed that there are nonclassical treatments of
which do not support Simplification. The paper aims at showing that Aristotle’s Thesis may re
a sense if the arrow is defined as strict implication endowed with the proviso that the clau
the conditional have the same modal status, i.e. the same position in the Aristotelian square
grasped, in different form, the basic idea of relevant logic that the clauses of a true conditional
have something in common. It is proved that thanks to such definition of the arrow Aristotle’s T
subjoined to the minimal normal systemK yields a system equivalent to the deontic systemKD.
 2004 Elsevier B.V. All rights reserved.
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1. Aristotle’s Thesis is the cornerstone of the logics belonging to the family o
called connexive logics worked out by Angell and McCall in the Sixties.1 If → is the
symbol of some non-truthfunctional notion of implication, Aristotle’s Thesis is symbol
by

(AT) ¬(A → ¬A).2
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1 See[3,4,10,11].
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If → is transitive, reflexive and contrapositive, and we have Modus Ponens for⊃, Aris-
totle’s Thesis is interdeducible with so-calledBoethius’ Rule

(BR) A → B � ¬(A → ¬B).3

Two variants of such a rule are what we shall call hereBoethius’ Thesis

(BT) (A → B) ⊃ ¬(A → ¬B)4

andStrong Boethius’ Thesis

(SBT) (A → B) → ¬(A → ¬B).5

It is clear that if→ is ⊃, Aristotle’s Thesis is inconsistent with the standard Prop
tional CalculusPC since inPC ¬(A ⊃ ¬A) is equivalent toA ∧ A andA. Furthermore,
if → is strict implication(—3), ¬(A —3 ¬A) equals♦A, from which in any Lewis’ sys-
tem of strict implication we would have the absurdity♦⊥6 as a theorem. It is also cle
that any logic closed under Uniform Substitution containing Simplification in the fo
(A ∧ B) → A and(A ∧ B) → B cannot contain Boethius’ Rule. In fact(A ∧ ¬A) → A

and(A∧¬A) → ¬A are both instances of Simplification, and they are jointly a counte
ample to Boethius’ Rule, their logical form beingB → A andB → ¬A, respectively.

In connexive systems in which having Simplification(A ∧ B) → A as a theorem is
equivalent to having AdditionA → (A∨B) as a theorem the proof that excludes Aristotl
Thesis is even more simple. In fact(A ∧ ¬A) → A coinjoined withA → (A ∨ ¬A) leads
to (A∧¬A) → (A∨¬A), so to⊥ → ¬⊥, which is a counterexample to Aristotle’s The
¬(A → ¬A).

In classical logical negation-inconsistency and triviality (i.e. having every wffA as a
theorem) are coincident, while it is well known that such identification is not obviou
some of the systems which are known asnon-Scotian, i.e. systems which do not conta
the classical lawP → (¬P → Q). Relevant logics in the Anderson–Belnap tradition
this paper we shall call themclassical relevant logics) are non-Scotian logics whose k
principle, as is well known, is that antecedent and consequent of a valid implication s
share a common variable.7

2 In a passage ofPrior Analytics (ii 4.57b3) Aristotle uses in a proof the principle¬(¬A → A), which is
equivalent to AT in any system containing Double Negation.

3 In fact, a substitution instance of (BR) isA → A � ¬(A → ¬A) and thanks to�A → A, ¬(A → ¬A)

becomes a theorem by Modus Ponens. In the reverse direction, from the instance of transitivity which is((A →
B) ∧ (B → ¬A)) ⊃ (A → ¬A) we have¬(A → ¬A) ⊃ ¬((A → B) ∧ (B → ¬A)) and, given� ¬(A → ¬A),
by Modus Ponens we have as a theorem� ¬((A → B) ∧ (B → ¬A)), i.e. �(A → B) ⊃ ¬(B → ¬A), so the
derived ruleA → B � ¬(B → ¬A). But if → is contrapositive¬(B → ¬A) implies¬(A → ¬B). For the name
“Boethius’ Rule” see[8, p. 53].

4 In the literature the wff¬((A → B) ∧ (A → ¬B)) has received the name of Strawson’s Thesis. (BT)
Strawson’s Thesis are obviously equivalent if the reference system is the standard propositional calculus

5 Strong Boethius’ Thesis is currently qualified asBoethius’ Thesis in the original Angell’s and McCall’s
papers of the Sixties.

6 Here and afterwards,⊥ stands forA ∧ ¬A and� stands forA ∨ ¬A.
7 The literature on this topic is immensely wide. For a bibliography see[1,2]. See also[24].
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What is now interesting is the fact that the addition of Aristotle’s Thesis to diffe
systems of relevant logics such asB,E,R gives rise to different results studied by Ch
Mortensen[14].

We recall thatB is the system which is so axiomatized:

(A1) A → A.
(A2) (A ∧ B) → A.
(A3) (A ∧ B) → B.
(A4) ((A ∧ B) ∧ (A ∧ C)) → (A → (B ∧ C)).
(A5) A → (A ∨ B).
(A6) B → (A ∨ B).
(A7) ((A → C) ∧ (B → C)) → ((A ∨ B) → C).
(A8) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)).
(A9) ¬¬A → A.

Rules:

R1: A,A → B/B.
R2: A,B/A ∧ B.
R3: A → B,C → D/(B → C) → (A → D).
R4: A → ¬B/B → ¬A.

The systemE of entailment amounts toB with the addition of

(A10) (A → B) → ((B → C) → (A → C)).
(A11) (A → B) → ((C → A) → (C → B)).
(A12) (A → (A → B)) → (A → B).
(A13) (A → ¬A) → ¬A.
(A14) (A → ¬B) → (B → ¬A)

along with the following rule

R5: A/(A → B) → B.

R is the strongest system and is obtained by adding toE:

(A15) A → ((A → B) → B).

Note that, thanks to the definition of the box as�A=Df (A → A) → A, (A15) yields
A → ((A → A) → A), soA → �A. Rule R5 grants deriving fromA → �A andA → A

the wff �A → A, so R contains the collapse-equivalence�A � A and is not modally
meaningful.
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E contains the law(A → B) → �(A → B) stating that every implication is necessa
It is well known that the modal fragment ofE is S4,8 so�(A → B) → (A → B) is also a
thesis and such is the equivalence(A → B) � �(A → B).

The results which are obtained by extending such systems with Aristotle’s Thesis
follows (see[14, p. 109]).

(1) B + AT is negation-inconsistent but not trivial.
(2) R + AT is trivial, i.e. it containsB, for everyB.
(3) E + AT contains♦B, where of course♦B is ¬((¬B → ¬B) → ¬B).

Given the equivalence betweenA → B and♦(A → B) which is provable inE, we have as
theorems¬(A → B) � ♦¬(A → B) and♦¬(A → B), so by Modus Ponens also¬(A →
B). AT is the special case of¬(A → B) in whichB is just¬A, and the absurdity¬(A →
A) is the special case in whichB is A. Since they are both provable,E + AT is then
negation-inconsistent, but it may be proved that is not trivial.

A suggestion which is natural to entertain given the preceding remarks is thatE + AT
may be treated as a paraconsistent system. It is interesting however to grasp the s
whichE + AT may be classified as a paraconsistent logic. There are at least three se
which a logic may be qualified as paraconsistent. The first sense is weak: a paraco
logic is a non-trivial inconsistent theory. The second is strong: there is at least one inc
tent true proposition. The third is very strong: there is at least one inconsistent propo
which is logically true. This is the case ofE + AT andB + AT.

It follows that we may treat such extended systems asE + AT as paraconsistent sy
tems. The first attempt in this direction has been made by Routley[23]. The key-idea is
to introduce models for connexive logics as extended models for relevant logics
can be sketched in the following way. A basic modelM for connexive logic is a 8-ple
〈T ,O,K,R,S, * ,G, v〉 where

(1) O andK are sets of set-ups such thatO ⊆ K .
(2) T is an element ofO (intuitively, the “real” set-up).
(3) R andS are three-place relations onK in the Routley–Meyer style.9

(4) * is one-place involution onK (intuitively, *a is a weakened image ofa, i.e. a set-up
where the propositions which are negated ina are not true).

(5) G is a relation between wffs and worlds.
(6) v is a function from couples of wffs and set-ups to the set{0,1}.

The novelty with respect to standard relevant models is given by the existenc
second access relationsS beyondR, and by the relationG. The role ofS is to evaluate
conjunction (which thus turns out to be an intensional connective), while the role ofG is
to grant a special relation between formulas and set-ups. The conditions which defi
interpretation functionv are as follows:

8 See for instance[8, p. 244].
9 See for instance[8, pp. 306 ff].
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Writing a � b in place of∃x ∈ O such thatRxbc.10

(I) If v(P,a) = 1 anda � b thenv(P,b) = 1, for everyP .
(II) v(B → C,a) = 1 iff, for everyb andc such thatRabc, if v(B,b) = 1 thenv(C, c) =

1.
(III) v(B ∧ C,a) iff, for someb andc such thatSbca, v(B,b) = 1 andv(C, c) = 1.
(IV) v(¬A,a) = 1 iff v(A,a∗) �= 1.
(V) If AGb thenv(A,b) = 1.

A formula A is true in a connexive model M if v(A,T ) = 1 whereT belongs to theO
in M . A formulaA is valid iff it is true in all connexive modelsM .

The intuitive meaning ofG in AGb is “A generates set-upb”, which means that every
thing that holds in set-upb is implied byA. Routley proves that every systemCB + x is
sound and complete for the given semantics, whereCB + x is CB extended with one o
more connexively accepted principlex. Each one of thex has a semantics counterpart
terms of some condition on the model. For instance Aristotle’s ThesisAT is mirrored by
the condition

(CAT) ∃y(RT ∗yy∗ ∧ AGy) for every wffA.

Recovering the subject in 1984, Mortensen found that Routley’s semantic cond
“are not particularly intuitively enlightening” and reserved his attention to the cond
(V), which Routley himself qualified as “non entirely desirable since it is not inducti
defined”[23, p. 399]. Furthermore, the generation relation is a relation between a po
a frame and a formula, so it is a restriction on the evaluation relation (i.e. on the m
not on the frame.

Mortensen concentrated his attention on the inconsistent non-trivialE+AT and found a
simple modeling for it by employing the notion of a non-normal world. In reminiscenc
Kripke semantics for non-normal modal systems, a non-normal set-up is a set-up in
no implicative formula is true:

(DNN) ¬Na iff for every A,B, v(A → B,a) �= 1.

SinceAT is a substitution instance of¬(A → B), we introduce the condition that th
opposite of the “real set-up” is a non-normal one

(CNN) ¬NT ∗.

This claim amounts to the claim that the denial of every implicative proposition is
at the “real” set-upT , so that inT we have¬(A → B), and in particular¬(A → ¬A).
Soundness and Completeness ofE + AT are easily proved thanks to the mentioned
mantic restriction. The disadvantage of this condition is that it is too generous: Arist
Thesis turns out to be valid simply since every negated conditional turns out to be va

10 The axiomatic properties of� are:a = a∗∗; a � a; if a < d andRdbd, thenRabc; a � b only if b∗ � a∗;
a � b ∧ Scda ⊃ Scdb.
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Mortensen showed that a different device which amounts to the same result is to r
the condition

(MC) C(A,M) �= ∅,

whereC(A,M) is the set of set-upsx wherex is an element of the modelM such that
v(A,x) = 1 andv(¬A,x) �= 1. But we have again to consider that this condition is, s
speak, semantically spurious since the condition of non normality is again not a con
via a restriction on frames but a condition on the class of modelsvia a restriction on the
assignment function.

2. Ross Brady in[6] tried to correct the defects of the preceding approaches by
posing to the models what he calls a “regulatory structure”. Technically speaking, Br
idea is to distinguish between propositions and set of set-ups by introducing a fu
connecting the two sets.

Let us callBrady frame a 10-ple〈T ,O,K,F,I , * ,R,−,∩,⇒〉 whereT ,O,K, * ,R

are as in Mortensen’s model structures,F is a set of propositions,−,∩,⇒ are operations
onF , I is a function from the set of propositionsF to the power setΠ(K) of K .

We have of course thata ∈ I (−f ) iff a∗ /∈ I (f ), a ∈ I (f ∩ g) iff a ∈ I (f ) and
a ∈ I (g), and furthermore that

(i) a ∈ I (f ⇒ g) iff for every b, c, in K , if Rabc andb ∈ I (f ) thenc ∈ I (g),
(ii) if a � b anda ∈ I (f ) thenb ∈ I (f ).

We distinguish here between interpretation functions and evaluation functions. Th
tion of interpretationI is defined by puttingI (p) ∈ F andI (¬A) = −I (A), I (A ∧ B) =
I (A) ∧ I (B), I (A → B) = I (A) ⇒ I (B). The evaluation functionv is then defined for
atomic wffs by

v(p,a) = 1 iff a ∈ I (Ip),

an equivalence which is recursively extended to arbitrary propositions. The definit
validity is standard.

It is straightforward to prove by induction an Interpretation Lemma which Brady s
as follows:

IL. For any Brady frame F and each interpretation I on F , v(A,a) = 1 iff a ∈ I (I (a))

for any formula A and any set-up a.

The mentioned semantics is associated to the basic systemB. Different connexive for-
mulas are mirrored by different conditions on the models. The condition which m
Aristotle’s Thesis is the following:

(cAT) If a ∈ O then∃x, y ∈ I (f ) suchRa∗xy∗, for anyf in F.
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The way in which such a condition is specular toAT is shown by the following sound
ness result.

(TAT) AT is valid in all Brady’s frames.

(The proof may be sketched as follows. LetA be a formula andI an interpretation
on a Brady frame. Letf be I (A) and then, by the Interpretation Lemma,v(A,x) = 1
andv(A,y) = 1 for thex andy mentioned in(cAT). HenceRT ∗xy∗, v(A,x) = 1 and
v(¬A,y∗) = 0 and sov(A → ¬A,T ∗) = 0. Thenv(¬(A → ¬A,T )) = 1, as required.)

Brady’s inquiries show that after all it is possible to give an unequivocal semantic
a paraconsistent logic including both relevant logic and Aristotle’s Thesis. However,
is something perplexing in this construction even from the viewpoint of philosophers
have a positive attitude towards paraconsistent logics. The point is that in this se
framework negation is treated in a semantically uniform way, while classical releva
deny that connexive negation has the same meaning as relevant negation.

In fact, in an important essay written by chief exponents of classical relevantism11 it
is argued that connexivism is committed to a particular theory of negation which the
“cancellation theory of negation”. According to the cancellation theory of negation, d
Strawson, to deny something means to cancel it from the logical space. Now we may
thatA impliesB iff the content ofA includes the content ofB. Since¬A cancels outA,
the content ofA ∧ ¬A is zero, so the content ofA ∧ ¬A is less than the content ofA and
less than the content of¬A; so it cannot be true that its content includes the content ofA or
the content of¬A. This aspect turns out to be important in evaluating the different atti
of relevantists and connexivists toward Simplification. A connexivist can argue in fac
the content ofA ∧ B is not in general greater than the content ofA and the content ofB.

However, in looking more deeply to the notion of relevance, we realize that cla
relevantists have not a monopoly on the notion of relevance, and that there are d
notions of relevance known in the literature according to which Simplification is inval12

The main reference in this connection is to the Körner–Weingartner–Schurtz the
relevance.13 In this perspective what is relevant or not relevant, strictly speaking, ar
formulas but sentential variables inside a formula. According to Körner’s original prop
a relevance criterion could be stated as follows. If in a classical theorem a variap

may besingularly (i.e. not uniformly) replaced by its negation¬p without destroying the
validity of the formula, the variablep can be considered not to be relevant. A parad
example is just given by Simplification(p∧q) ⊃ p. q may be replaced by¬q and the resul

(p ∧ ¬q) ⊃ p is also valid, soq is not a relevant variable.14 Schurz generalizes Körner
criterion by proposing that if a component can be singularly substituted by any for
salva validitate, it is irrelevant. He distinguishes then between conclusion-irrelevance

11 See[24, p. 89 ff].
12 Notice that in most systems having Simplification as a theorem is equivalent to having Addition as a th

and the refusal or the acceptance of one goes hand in hand with the refusal or the acceptance of the other.
there are systems such as Parry’s analytic implication which admit Simplification but not Addition (see[16]).

13 See[9,25,27]. We will call it KWS-relevantism.
14 Here and afterwards the underlined wffs are the wffs which are irrelevant in the defined sense.
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premise-irrelevance. In the sequentp ∧ q � p, the variableq gives an example of premise
irrelevance, while inp � p ∨ q q gives an example of conclusion-irrelevance.

In this perspective the aim is not to work out an axiomatic system, but simply to ide
the classical truths which are relevant and the ones which are irrelevant and, bein
cannot be used in reasoning. The key slogan of the KWS-relevantism is then: Reaso=
Logic+ Relevance.

The authors have not completely firm intuitions about more complex cases. The
proposal in[25] is that the irrelevance in premises concerns components which are s
larly replaceable unless there are inconsistent disjuncts. So the following are instan
premise-irrelevance:

(q ∧ ¬q),p ⊃ r � r; p ∨ q,p ∨ ¬q � p.

However, there are odd consequences in Schurz’s original proposal. The most
is that the following are cases ofc-irrelevant conclusions:p ∨ ¬p � p ∨ ¬p; p ∨ ¬p �
q ∨ ¬q; p ∧ ¬p � q ∧ ¬q. Here we are clearly out of ordinary intuitions, since the wffs
the left and the ones at the right are equivalent and transmit the same informations
in the case of tautologies is no information at all).

Interestingly enough, it turns out that while irrelevance is closed under Uniform
stitution, KSW-relevance is not (just for this reason it is impossible to build a sy
axiomatizing relevance). Suffice it to remark that Disjunctive Syllogism is relevant i
form ¬p, p ∨ q � q but its substitution instance¬p, p ∨ p � p is not such since¬p is an
irrelevant formula. (Incidentally, this is an advantage of this theory with respect to cla
relevantism, in which Disjunctive Syllogism is invalid.)

KWS-relevantism is not the only kind of relevantism which rises doubts about Sim
fication. We neglect here considering various other notion of relevantism which mig
seen as implying a partial or total refusal of Simplification. Bolzano’s notion of co
quence for instance might be viewed as an anticipation of relevantism inasmuch it
drawing consequences only from consistent sets of premises.15

What it turns out from this short overview is that there are reasons to refuse Sim
cation which have nothing to do with the cancellation theory of negation. As a mat
fact, the basic intuitions which are at the ground of connexivism are not concerned
negation but with implication, which according to connexivist has to describe some c
quential nexus between the clauses. In this perspective, simplification is indeed a so
puzzlement. As Thompson remarked in[26], a reason to reject Simplification which co
nexivists might endorse is that, in(A ∧ B) → A, B may stand for the negation of the ve
principle which sets a bridge fromA to A, i.e.A → A. The wff (A ∧ ¬(A → A)) → A is
indeed intuitively astonishing, and we have no reason to say that¬(A → A) cancelsA.

On the other hand, we may agree that classical relevantists have strong justificat
some points and specifically the following:

(1) Angell’s and McCall’s connexive systems worked out in the Sixties are seriousl
fective (suffice it to remark that in them(p ∧ p) → p is not a theorem simply becau

15 See for instance[7].
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(p ∧ q) → p is not such). Such faults have been carefully identified by Montgom
and Routley[13].

(2) The idea of requiring that the antecedent and the consequent should have som
in common in order to grant an interconnection between them is a sound prin
which however classical relevantists have forced into the rigid syntactical criteri
variable-sharing.

(3) (Related to 2) Any appropriate logic of implication should be non-Scotian, i.e. sh
avoid such formulas as⊥ → ¬⊥ or (q ∧¬q) → p in which the clauses lack a commo
element either from a semantic or syntactical viewpoint.

It is difficult to imagine a formula which expresses a minimal condition for the
of a relevance relation between the clauses of a conditional better than Aristotle’s
does. The interest which classical relevantists have always shown for it may be unde
only because it has a strong relevantist flavor, even if no positive condition which cla
relevantists put on relevance is able to grasp. However, as we saw, on the one
appears that only in a paraconsistent framework Aristotle’s Thesis may be subjoi
relevant systems—and, on the other hand, being a non-classical thesis it cannot be
as a relevant formula in the KWS-construction.

Which is then the sense in which Aristotle’s Thesis expresses an intuition abou
vance? A suggestion which may be developed is that the required characterization
be found not by looking to subsystems of classical logics but to extensions of it, and m
to modal extension of the standard calculus. Let us recall that the four modal stat
scribed in the Aristotelian square of oppositions are formalized as proposition-for
monadic operators symbolized by�, �¬, ♦, ♦¬. An equivalent description of the squa
granted by the� − ♦ interchange is of course given by the wffs�, ¬♦, ♦, ¬�. Note in
particular that�A and�¬A are contraries, which means that a basic thesis for the
of such operators is¬(�A ∧ �¬A), i.e. �A ⊃ ♦A, where�A ⊃ ♦A is the well-known
deontic axiomD.

If we require that an Aristotelian modal logic should be represented by a normal m
system, i.e. should contain at leastK (�(A ⊃ B) ⊃ (�A ⊃ �B)) and closed under Nece
sitation (�A only if ��A) then no logical system representing Aristotelian logic could
weaker than the minimal deontic logicKD.

Now the modal status of a proposition is a function of the meaning of the propo
itself. If we require that the two clauses of a true conditional have some connect
meaning, then, they cannot have incompatible meaning, so they cannot have incom
modal status. A minimal condition for relevance, which in the new context we could
consequential relevance, is then as follows:

(CR) The antecedent and the consequent of a true conditional cannot have incompatible
modal status.

As is well known, the incompatible modal status are located at the extremities
two diagonals of the square and are represented by the two couples{�,¬�} and{♦,¬♦}.
So we may ask that a conditionalA → B is true whenever
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(1) A strictly impliesB (A ⊃ B is necessarily true).
(2) It is false thatA andB have incompatible modal status, or in other words we have

(a) ¬(�A ∧ ¬�B), i.e.,�A ⊃ �B.
(b) ¬(♦A ∧ ¬♦B), i.e.,♦A ⊃ ♦B.
(c) ¬(¬�A ∧ �B), i.e.,¬�A ⊃ ¬�B.
(d) ¬(¬♦A ∧ ♦B), i.e.,¬♦A ⊃ ¬♦B.

Since (a) and (b) follow from�(A ⊃ B) by the normality ofK, a simple definition of the
arrow is the following:

(Def→) A → B =Df A − 3B ∧ (�B ⊃ �A) ∧ (♦B ⊃ ♦A).

And it is easy to check that(Def→) is equivalent to the following:

(Def→′) A → B =Df A − 3B ∧ (�A ≡ �B) ∧ (♦A ≡ ♦B)

∧ (¬�A ≡ ¬�B) ∧ (¬♦A ≡ ¬♦B).

(Def →′) asserts, as a matter of fact, thatA impliesB and that the modal status ofA and
B is coincident.

Thus a synthetic way to express the same idea is by introducing a variableΞ for modal
status and write

(Def→′′) A → B =Df for everyΞ, A − 3B ∧ (ΞA ≡ ΞB).

So the basic idea that the modal status of the clauses cannot be incompatible l
an apparently stronger claim:antecedent and consequent of a true conditional must have
the same modal status. The two assertions are indeed equivalent. So modal logic al
a simple rendering of the idea that the clauses should have something in common:
this something in common is not a variable, as classical relevant logic claims, but e
the modal status.

Given the minimal normal systemK the definition yields the following theorems:

(⊥ → p) ⊃ (p → ⊥),

(p → �) ⊃ (� → p).16

In other words, if a contradiction (or a tautology) implies consequentially a wffA, it is
equivalent to it. Such a peculiarity is enough to grant the non-Scotian character of th
of logic.

Now let us recall that any Aristotelian logic should be as strong as deontic logic,
other words it should include the deontic law�A ⊃ ♦A. Let us now suppose by Reduct
A → ¬A. By the definition(Def→) this means to suppose by Reductio

(1) �(A ⊃ ¬A) ∧ (�¬A ⊃ �A) ∧ (♦¬A ⊃ ♦A).

But �(A ⊃ ¬A) equals�¬A, andvia the conditional(�¬A ⊃ �A) this implies�A.
So our supposition implies�¬A ∧ �A, which is the negation of¬(�A ∧ �¬A), i.e. the

16 Suffice it to say that⊥ → p implies the equivalence between♦p and♦⊥. But ¬♦⊥ is a K-theorem, so
¬♦p is such. This means that�¬p is a theorem, so by definition� → ¬p andp → ⊥ are such.
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negation ofD. Then in presence ofD the given supposition leads to an inconsistency, wh
means to establish inKD the negation of the supposition, i.e.¬(A → ¬A).17

Aristotle’s Thesis is then a theorem ofKD if we define the arrow in the mentione
sense.

On the other hand, let us presuppose as a background system the simpleK and add as
an axiom Aristotle’s Thesis¬(A → ¬A), where→ is defined as before. In other wor
we subjoin toK the axiom

(2) ¬(�(A ⊃ ¬A) ∧ (�¬A ⊃ �A) ∧ (♦¬A ⊃ ♦A)).

Now a substitution instance of (2) is

(3) ¬(�(� ⊃ ¬�) ∧ (�¬� ⊃ ��) ∧ (♦¬� ⊃ ♦�))

or in other words

(4) ♦� ∨ (�¬� ∧ ¬��) ∨ (¬�� ∧ ¬♦�).

Now since¬�� is the negation of theK-thesis��, from (4) we have♦� as a theorem
But ♦� this is equivalent, as is well known, to the axiomD, i.e. to�A ⊃ ♦A.

Thus subjoining toK Aristotle’s Thesis along with the mentioned definition of the arr
is the same as extendingK with the deontic axiomD. Of course, since havingAT as a
theorem is the same as having Boethius’ Thesis(A → B) ⊃ ¬(A → ¬B),18 the same
result holds when subjoining Boethius’ Thesis toK in place of Aristotle’s Thesis.

It may be of some interest to remark thatK is sometimes called in the literature “Ari
totle’s law”. In a sense it describes a feature of implication which is embodied in M
Ponens: IfA logically impliesB (soA ⊃ B is logically necessary) andA is necessary,B
is also necessary. So axiomsK andAT (and the equivalentD are both basic expressions
features of Aristotelian logic.19

It may be proved that→ is transitive and contrapositive,20 so we may endorse th
proof given in note 3 which shows the equivalence between Boethius’ Thesis(A → B) ⊃
¬(A → ¬B) and Aristotle’s Thesis. Boethius’ Thesis is then also equivalent toD.

The preceding remarks are simply the background for more complex results. In fa
may build one or more systems in which the arrow→ for consequential implication is
primitive symbol. Such systems may be endowed with the definition of modal operat
introducing the definition

(Def �) �A=Df � → A.

The minimal system of consequential implication containing Aristotle’s Thesis is c
CI in [20] and is proved to be definitionally equivalent toKD. This paper shows that fo
every normal modal system we may find a consequential system which is its conseq

17 This informal proof presupposes conditionalization, but might be reconstructed without this rule.
18 This result is granted by the fact that→ may be proved to be reflexive, transitive and contrapositive

footnote 3).
19 See[15] for a careful investigation of the historical roots of connexive and consequential implication.
20 For such proofs we may make use of the tableaux procedures for normal system (see[17]).
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translation. The central system of consequential implication, namedCI.0, is CI + (A →
B) ⊃ (A ⊃ B) and is analyzed in[17].

As reminded at the beginning, Aristotle’s Thesis is the characteristic axiom of conn
logics. This does not mean that every thesis belonging to original connexive syst
valid once the arrow is interpreted as consequential implication. The “Factor Law”(A →
B) ⊃ (A ∧ R → B ∧ R) for instance is connexively valid but not consequentially va
even if it is consistent with consequential systems. It may be shown that the addit
such a formula to a modal-consequential system asCI.0 yields the collapse of modalities.21

The same could be said of Strong Boethius’ Thesis,(A → B) → ¬(A → ¬B), which in
consequential systems turns out to be equivalent toA → B ≡ ¬(A → ¬B).22 In such a
way the arrow collapses to the dual relation of cotenability. Thanks to the relation� →
A ≡ �A this equivalence yields the collapse of possibility to necessity�A ≡ ♦A, and
in presence of(A → B) ⊃ (A ⊃ B) it yields the collapse�B ≡ B and the equivalenc
A → B ≡ (A ≡ B).

We mention here that the arrow→ is not the only relation modally definable whic
satisfies Aristotle’s Thesis. Other two implicative relations can be defined as follows

(Def⇒) A ⇒ B =Df �(A ⊃ B) ∧ (♦B ⊃ ♦A),

(Def>) A > B =Df �(∗A ⊃ B) ∧ (♦B ⊃ ♦∗A),

where * is a “circumstantial operator” in Åqvist’s sense.23

In such weaker implicative relations, however, it is more difficult to characterize the
ment which is in common between the two clauses and which allows to treat conseq
relations as special relations of relevance.

A final remark concerns the open question of the relation between the conseq
operators and the relations axiomatized in relevant logics. We have tried to stress tw
ferent points: (1) if→ stands for relevant implication, the addition of Aristotle’s The
yields systems of implication which are not necessarily trivial, (2) If→ is translated into a
particular modal statement Aristotle’s Thesis is not inconsistent with classical calcul
is a translation of a simple modal thesis.

This couple of remarks suggests that any system of relevant logic which allows u
definition of a normal system of modal logic can also include Aristotle’s Thesis, provid
is modally defined in the sense outlined in the preceding sections. For instance, we a
know that the systemE of entailment allows the definition of the box as�A=Df (A →
A) → A and that the modal fragment ofE is exactlyS4. Thus, in defining an operator→
in the consequentialist fashion Aristotle’s Thesis¬(A → ¬A) becomes a thesis ofE since
it is equivalent to♦�.

Of course the arrow which is the primitive axiomatized inE is not coincident with the
consequentialist arrow, but the latter is construed in terms of the former and rece
sense in terms of it. The study of the interrelations between such implicative relation

21 See[22]. The Factor law is an axiom of McCall’s systemCFL (see[10, p. 442 ff]), which has received a
modal analysis by Meyer in[12].

22 See[19].
23 See[5]. For the logic of⇒ see[21] and for the logic of> see[18].
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be an interesting exercise for classical or non-classical relevantists, since it may a
grasp the differences and the kinships between different intuitions about relevance.
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