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We discuss the uncertainty on processes computed using next-to-next-to leading order (NNLO) parton
distributions (PDFs) due to the neglect of higher order perturbative corrections in the PDF determination,
in the specific case of Higgs production in gluon fusion. By studying the behavior of the perturbative
series for this process, we show that this uncertainty is negligible in comparison to the theoretical
uncertainty on the matrix element. We then take this as a case study for the use of the Cacciari–Houdeau
method for the estimate of theoretical uncertainties, and show that the method provides an effective way
of treating theoretical uncertainties on the matrix element and the PDF on the same footing. We briefly
discuss the possible generalization of these results to other processes, and in particular top production.

© 2014 The Authors. Published by Elsevier B.V. Funded by SCOAP3.Open access under CC BY license.
Gluon fusion, the dominant Higgs production channel at the
LHC, has a slowly convergent expansion in perturbative QCD: the
inclusive cross section is currently known up to next-to-next-to-
leading order (NNLO) [1–3], and a recent approximate determi-
nation of the N3LO result has been presented [4], while rapid
progress on the exact computation has been reported [5].

With N3LO results around the corner, it is natural to ask
whether these will be of any use, given that fully consistent N3LO
parton distributions (PDFs) are not likely to be available any time
soon, essentially because the determination of N3LO anomalous di-
mensions would require a fourth-order computation, for instance
of deep-inelastic structure functions, or Wilson coefficients. Clearly,
this question is related to the more general issue of theoretical
uncertainties on PDFs: current PDF uncertainties [6] only repro-
duce the uncertainty in the underlying data, and of the procedure
used to propagate it onto PDFs, but not that related to missing
higher-order corrections in the theory used for PDF determination.
Henceforth in this Letter we will call ‘theoretical uncertainty’ the
uncertainty due to the fixed-order truncation of the perturbative
expansion, sometimes [7] also called missing higher-order uncer-
tainty, or MHOU.

Here we address this set of issues in the specific context of
Higgs production in gluon fusion. We use the dependence on the
perturbative order of the prediction for this process as either the
PDF or the matrix element are taken at different orders as an es-
timate the theoretical uncertainty on either. We then address the
more general issue of how one may estimate theoretical uncer-
tainties on PDFs and matrix elements, specifically by using the
approach of Cacciari and Houdeau [8].
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We first compute the cross-section using the ggHiggs code [4,
9], with default settings.1 Results are shown in Fig. 1, where we
show the cross section evaluated at increasingly high perturbative
order (henceforth loosely referred to as the “order of the matrix
element”), also including the approximate N3LO from Ref. [4], us-
ing in each case LO, NLO or NNLO PDFs (henceforth referred to
as the “order of the PDF”). We use NNPDF2.3 PDFs [12] (with
NNPDF2.1 LO [13] as LO set [14]). What is shown here is the to-
tal cross-section at the hadronic level, obtained summing over all
parton subchannels, except at N3LO, where only the gluon–gluon
channel is included in the estimate of Ref. [4].

We assume αS (M Z ) = 0.119 in all cases, as we are interested in
studying the behavior of the perturbative series for a fixed value
of the coupling constant. The uncertainty bars in Fig. 1 are all ob-
tained by varying the renormalization scale in the range mH/2 �
μR � 2mH (the choice μR = mH/2 as central scale is sometimes
advocated instead [10], as it leads to faster convergence of the
perturbative expansion: this choice would not change our conclu-
sions). The variation of the renormalization scale should provide
an estimate of the missing higher-order corrections to the matrix
element when the PDF is kept fixed,2 though, as well known, for
this process it substantially underestimates them.

1 We have checked that similar results are obtained using ihixs [10] version
1.3.3. Note that previous versions of this code instead disagreed with ggHiggs,
because of bugs affecting the top mass dependence at NLO and the factorization
scale. Minor differences persist in the top mass dependence, but ggHiggs fully
agrees with the non-public code of Ref. [11].

2 For this process, the dependence of results on the factorization scale is entirely
negligible even at LO [4].
 Funded by SCOAP3.
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Fig. 1. The cross section for Higgs production in gluon fusion, computed varying the
perturbative order of the matrix element. The label on the x-axis denotes the order
of the matrix element, while in each case the three points from left to right are
obtained respectively using LO, NLO, and NNLO PDFs. The uncertainties are obtained
varying the renormalization scale by a factor 2 about μR = mH . The N3LO result is
the approximation of Ref. [4].

Be that as it may, it is clear that the dependence of the result
on the order of the matrix element is much stronger than the de-
pendence on the order of the PDF: on the scale of the variation of
the matrix element, results obtained when the order of the PDF is
varied are almost identical (especially beyond LO). Hence we could
conclude here our brief investigation, having answered in the neg-
ative the question which is asked in the title: at least as far as
Higgs in gluon fusion is concerned, based on the behavior of the
perturbative expansion at known orders, it is very likely that using
NNLO PDFs in the N3LO computation would lead to results which
are essentially indistinguishable from those consistently obtained
using N3LO PDFs at N3LO.

However, it is worth elaborating a little more on our result.
Specifically, it would be desirable to be able to provide a quantita-
tive estimate of the theoretical uncertainty on the PDF, as well as
of the combined theoretical uncertainty on the hadron-level pro-
cess due to both the matrix element and the PDF. In principle, it
is possible to use scale variation in order to determine the un-
certainty on the PDF, too: it is, however, quite cumbersome in
practice as it requires keeping track of the scale variation dur-
ing the PDF fitting [15]. Indeed, to the best of our knowledge, it
has never been done for any of the available PDF sets. Also, cor-
relations between the behavior of different processes upon scale
variation would have to be kept into account: correlations between
processes used for PDF determination among each other would be
needed in order to determine the uncertainty on the PDF, and cor-
relations between them and the processes for which a prediction
is sought would be required in order to be able to combine uncer-
tainties on the PDF and the matrix element.

On the other hand, it is clear by looking at Fig. 1 that a good
deal of information is contained in the behavior of the perturbative
expansion itself: it is then natural to try to systematically provide
a determination of the uncertainty bar based on previous orders,
rather than on scale variation. This has the further advantage that
the theoretical uncertainty due to the matrix element and the PDF
could then be treated on the same footing, and easily combined.

A methodology to do so has been suggested Ref. [8] (Cacciari–
Houdeau method, henceforth), based on assuming a prior distribu-
tion for the coefficients of the perturbative expansion, and then us-
ing Bayesian arguments to determine a confidence interval for the
unknown coefficients based on the behavior of the known ones.
In Fig. 2 we compare the theoretical uncertainty on the matrix
element computed by scale variation, already shown in Fig. 1 (cor-
Fig. 2. The cross section for Higgs production in gluon fusion computed with NNLO
PDFs at increasing perturbative orders. At each order the uncertainty is shown as
determined (from left to right) using scale variation (red circles, same as Fig. 1), the
Cacciari–Houdeau method (blue crosses), and the same method but with rescaled
parameter (see text, green squares); at N3LO the Passarino–David uncertainty is also
shown (see text, purple diamonds).

responding to points shown in the plot as red circles) to that ob-
tained using the Cacciari–Houdeau method, i.e. essentially Eq. (85)
of Ref. [8] (shown as blue crosses). In all cases, the PDF is kept
fixed to the NNLO set. It should be noticed that this is a very
simple-minded application of the ideas of Ref. [8]: in particular, we
do not distinguish between different partonic subchannels, which
could be in principle characterized by different perturbative expan-
sion, and we study the perturbative behavior of the total hadronic
cross section rather than, for instance, the perturbative behavior of
the differential partonic cross-section.

The result of Fig. 2 is clearly not very satisfactory: at each or-
der, the uncertainty bar, rather than being of the same order as
the shift when going to the next order, is much smaller than it,
and also rather smaller than the scale uncertainty, which already
underestimated this shift. This could of course be due to the crude
approximations we are making, as discussed above.

However, there is a more fundamental consideration. Namely,
the approach of Ref. [8] is based on the assumption that the per-
turbative expansion coefficients whose behavior is being studied
are roughly all of the same order — at least at low orders, well
below the point where the perturbative series, which is at best
asymptotic, starts diverging. The result shown in Fig. 2 has been
obtained by writing the cross-section as a series

σ = α2
S

(
σ0 + αSσ1 + α2

Sσ2 + α3
Sσ3 + · · ·) (1)

and identifying the expansion coefficients σi with the coefficients
ci as given in Eq. (85) of Ref. [8]. However, it turns out that the
coefficients σn thus defined rapidly grow with the perturbative or-
der. On the other hand, it is clear that (as already pointed out in
Ref. [8]) another choice of expansion parameter would generally
lead to a different behavior. Indeed, the natural expansion param-
eter, even in the simplest cases, usually differs by the strong cou-
pling by a (possibly large) factor: it might be given, for instance,
by αS

4π or C AαS .
Lacking an analytic knowledge which may motivate a choice of

the expansion parameter (especially in view of our very simple-
minded approach), we rewrite Eq. (1) by rescaling αS by a real
parameter λ:

σ = α2
Sσ0

(
1 + ᾱS cλ

1 + ᾱ2
S cλ

2 + ᾱ3
S cλ

3 + · · ·) (2)

ᾱS ≡ λαS . (3)
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The approach of Ref. [8]) is then applicable if there exists a value
of λ such that the rescaled coefficients cλ

i are all of comparable
order.

We then simultaneously test for the applicability of the method,
and determine the optimal value of λ, by letting cλ

n = κ and then
performing a two-parameter fit of λ and κ to the three known co-
efficients (including the approximate N3LO result of Ref. [4]). We
get an almost perfect fit (χ2 below 1%), and a best-fit value of
λ = 5.6, with NNLO PDFs and μR = mH . The good quality of the fit
means that the rescaled coefficients are indeed all of the same or-
der, thus justifying the use of the method, but the large rescaling
which is required explains the failure of the method before rescal-
ing. Note that the rescaled expansion parameter is large, but still
smaller than one, as one expects for a slowly convergent series.

We have checked that the best-fit λ is quite stable upon vari-
ations of the procedure. In particular it varies by a few percent
if we change the order of the PDF, or if we decide to also in-
clude the leading-order coefficient in the fit (i.e. if we fit directly
the coefficients σn of Eq. (1) as σn = κλn): this latter choice leads
to a significantly worse χ2, but with essentially the same λ. If
we change the renormalization scale to μR = mH/2 the optimal
λ decreases by about 20%, to λ = 4.3, while the fit quality dete-
riorates to χ2 ∼ 1.1, still justifying the use of the method, given
that the equality of the coefficients is only expected to be ap-
proximate.3 The fact that the rescaling is somewhat smaller is an
interesting feature of the method: it shows that the perturbative
expansion converges somewhat faster with this choice of renor-
malization scale, as it is known to be in fact the case.

Armed with the knowledge of the necessary rescaling λ =
5.6, we recompute the Cacciari–Houdeau uncertainty using the
rescaled parameter ᾱs . The result is also shown in Fig. 2 (green
squares). It is clear that now the result provides a rather reason-
able estimate of the theoretical uncertainty, which, up to NNLO,
turns out to be of the same order as the observed perturbative
shift at each order, and thus in particular it reflects the theoretical
uncertainty better than scale variation. At N3LO, scale variation and
Cacciari–Houdeau lead to similar answers. For comparison, in Fig. 2
we also show (purple diamonds) the uncertainty on the N3LO
result estimated according to the method of Ref. [7]. In this ref-
erence, the theoretical uncertainty is determined by assuming that
the perturbative series is an asymptotic series which is summed
using various techniques (such as Borel summation). For a same-
sign series the uncertainty band is taken to be at any given order
as the interval between the known result up to that order, and
the upper (more in general, the extreme) all-order asymptotic sum
— so the lower edge of the band coincides with the N3LO cen-
tral value, by construction. Interestingly, the size of the uncertainty
band on the N3LO result found using the method of Ref. [7] is very
close to that from Cacciari–Houdeau (which, at this order, is also
similar to scale variation as already mentioned).

We now finally turn to a determination of the theoretical un-
certainty due to either the PDF, or the matrix element, or both.
Results are shown in Fig. 3, for the hadronic cross-section com-
puted at each order using consistently PDFs at the corresponding
order (LO matrix element with LO PDFs and so on). All uncer-
tainties are now computed using the Cacciari–Houdeau method.
In order to determine the uncertainty on the matrix element as
the PDF is kept fixed, we have used the rescaled method as dis-
cussed above, with the PDF kept fixed either to its LO, NLO, or

3 It is amusing to note that if one studies the fit quality as a function of μR , the
optimal fit turns out to have a very sharp minimum at μR = mH , where the fit is
almost perfect (χ2 of order of 10−3). Otherwise stated, imposing equality of the
coefficients cλ

i would determine μR
mH

= 1 ± 0.1. Note however that this (presumably

accidental) result relies on the approximate N3LO value of c3 of Ref. [4].
Fig. 3. Comparison of the theoretical uncertainty due to the matrix element (green
squares), to the PDF (red crosses), or both (violet triangles). The cross section is
computed at each order using consistently the corresponding PDFs. All uncertainties
are determined using the Cacciari–Houdeau method (see text for details).

Fig. 4. Same as Fig. 1, but for top production. The uncertainty bars are obtained by
scale variation (see text).

NNLO value: we then show at LO the uncertainty on the matrix
element when the PDF is kept fixed at LO, at NLO the uncertainty
when it is kept fixed at NLO and so on. In order to determine the
uncertainty due to the PDF, no rescaling turns out to be neces-
sary, so we use the method with αS taken as expansion parame-
ter. Finally, the combined uncertainty is determined applying the
rescaled Cacciari–Houdeau method to the series at the hadronic
level in which the order of the PDF and the matrix element are
varied simultaneously (with the NNLO PDF used also at N3LO);
the same rescaling is used as for the uncertainty on the matrix
element only (indeed, inclusion of the PDF changes the best-fit
rescaling by an amount which is essentially irrelevant).

Comparing Fig. 3 with Fig. 1 shows again that the Cacciari–
Houdeau method, with rescaling when necessary, provides an es-
timate of the theoretical uncertainty which is in reasonable agree-
ment with the behavior of the perturbative expansion at the
known orders. This supports its use in order to estimate theoret-
ical uncertainties at the highest order at which they are known
exactly (NNLO) or approximately (N3LO). Fig. 3 confirms the con-
clusion we already reached by inspection of Fig. 1, namely, that
the dependence of results for Higgs production in gluon fusion on
the perturbative order of the PDF is much weaker than that on the
perturbative order of the matrix element — which, as well known,
is unusually large. We conclude that an exact determination of the
N3LO perturbative correction to the matrix element will lead to
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Fig. 5. Percentage shift in gluon luminosity when going from NLO to NNLO (solid blue curve), compared to the correlation of the NNLO gluon luminosity to the Higgs

production cross section of Fig. 1 (red, short-dashed), and to the top production cross-section of Fig. 4 (red, long-dashed).
a substantial reduction of the theoretical uncertainty on the cross
section for Higgs production in gluon fusion, even without knowl-
edge of N3LO parton distributions.

While in the specific case of Higgs in gluon fusion the negli-
gible impact of N3LO corrections to PDFs follows almost trivially
from the huge hierarchy between the uncertainty on the PDF and
that on the matrix element, one may ask whether this is true in
general.

To see this, we have also considered the case of top pair pro-
duction. The analogue of the plot of Fig. 1 for the total top pair
production cross-section is shown in Fig. 4. Results are obtained
using TOP++2.0 [16], including the recent full NNLO result of
Ref. [17]. Here too we take αs(M Z ) = 0.119, and we use NNPDF2.3
PDFs (in the version with maximum number of flavors N f = 5,
as this is what TOP++2.0 requires). Uncertainty bars are now ob-
tained by varying both the renormalization and factorization scales
by a factor two about the central value μR = μF = mt , with the ra-
tio of the two scales constrained not to exceed two [18].

It is clear that, while the dependence on the order of the ma-
trix element is still somewhat stronger than that on the order of
the PDF, now the two are comparable, so that the dependence of
the cross section on the perturbative order with fixed PDF differs
by a non-negligible amount from that found when the order of
the PDF is consistently varied along with that of the matrix ele-
ment. In fact, because the dependence on the order of the matrix
element and that on the order of the PDF are anti-correlated, the
dependence of the physical (hadron-level) cross-section on the per-
turbative order is somewhat weaker than found if the order of the
matrix element is varied while the PDF is kept fixed.

This example is sufficient to conclude that what is true for
Higgs in gluon fusion is not true in general: for other processes
N3LO corrections to PDFs might well be relevant. Also, the example
raises two interesting questions. The first is the reason for this dif-
ference between Higgs and top. The question can be answered by
studying the perturbative behavior of the gluon luminosity, from
which the dominant contribution to both processes originates, and
comparing it to the correlation (defined as in Section 4 of [19])
between the gluon luminosity itself and the cross-sections which
are being computed, see Fig. 5. It is clear that the correlation of
the Higgs cross section to the gluon luminosity is rather strongly
peaked in a region in which the gluon luminosity depends very
weakly on the perturbative order, while the correlation of the top
cross section is large in a significantly broader kinematical range
(because even at LO the invariant mass of the final state is not
fixed), including a region in which the perturbative dependence of
the luminosity is sizable. This implies that, whereas the general
behavior of the cross-section may be easily understood in terms of
the features of the relevant physical processes and of the parton
luminosity (which in turn depends on the processes used for PDF
determination), whether the perturbative dependence of the PDF
is or not important has to be determined by a dedicated analysis
of each process. In particular, this requires a systematic correlation
analysis, such as that performed for several Higgs signal and back-
ground processes in Section 3.2 of Ref. [20]; along with a study of
the perturbative dependence of parton luminosities.

The second question is how to best determine and use theo-
retical uncertainties on PDFs. The perturbative behavior of the top
cross section of Fig. 4 suggests that the theoretical uncertainty on
the top cross-section would be overestimated if the uncertainty on
the PDF were not included, i.e. that the latter actually reduces the
uncertainty of the physical cross section. Hence, in this case, in or-
der to properly include the theoretical PDF uncertainty one must
keep into account its (anti)correlation with the theoretical uncer-
tainty on the matrix element. It appears that this would be very
difficult to do if theoretical PDF uncertainties were determined by
scale variation. In this respect, a method such as Cacciari–Houdeau,
based on the analysis of the perturbative behavior appears rather
more promising.

A systematic investigation of both these issues will be left for
further studies
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