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Abstract 

Clustering is a way of classifying a multi-dimensional dataset by the similarities of its dimensions. The results from clustering 
must be analyzed to test the accuracy of the algorithm and its implementation. This analysis is sometimes done by a visual 
representation of the clustered dataset. However, it is impossible to visually represent a dataset with more than four dimensions.
Statistical analysis makes this feasible. The analysis performed on the output calculates the centroid of each cluster and the 
cluster's relation to that centroid. We have investigated two modes of hierarchical clustering and spectral clustering. The standard 
deviation of each dimension from the centroid, the maximum Euclidean distance from the centroid, and the dimensions that 
elements of each cluster have in common are also computed. The performed experiments demonstrate which clustering algorithm 
presents most accurate results under certain circumstances through the use of a synthesis of visual representation and the 
statistical analysis proposed above. 
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1. Introduction 

Clustering is an important form of data mining today and it is required to be as efficient as possible. Many 
different algorithms are continually improved or created to increase effectiveness. The question remains: How do we 
measure effectiveness on data for which we do not have category labels? Using statistical analysis we propose that 
clustering algorithms can be defined by mathematical accuracies of each dimension. Statistically analyzing each 
dimension we continue to see how accurate a cluster is beyond the 3 visual dimensions (assuming we do not utilize 
Einstein’s space-time as a fourth). If we can provide analysis of which clustering algorithms are effective and under 
what conditions, we have a better chance at accurate results. Also, if we know which algorithms are more effective 
then future work can be placed into these to increase accuracy. Standard deviations allow us to create a cut-off to 
determine whether a dimension of a cluster is similar or dissimilar. In our previous work with clustering [3], we 
developed a clustering algorithm, which depends on basic self-organization. With this work, we are investigating the 
best self-organization, unsupervised method to serve our purposes. While there is a multitude of clustering 
algorithms, we have excluded the basic k-means and nearest neighbor due to the simplicity of the cluster shapes they 
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create [4]. We have also excluded very complex algorithms, such as DENCLUE [5] or K-Means+ [6]. The goal of 
this work is to compare the capabilities of hierarchical and spectral clustering and analyze statistically the 
performance and the reasons for it in the algorithms. Based on this work, the RADDACL [3] algorithm can be 
further refined and statistically tested. First, we discuss each algorithm’s implementation and the datasets used 
during clustering. Next, we discuss in detail the math used and how it is implemented. Finally, the results will be 
presented both visually and statistically for maximum coverage. 

2. Algorithm Implementation 

All three clustering algorithms start with an I/O portion. In this initialization phase, data is first imported into a 
list readable to that language. Utilizing the Java frame work the data is inserted in an ArrayList<ArrayList<Tuple>,
where a Tuple is a class representing a single multi-dimensional element. Once the data has been imported an 
adjacency matrix is created, where each index is simply the Euclidean distance between two corresponding 
elements. The Euclidean formula that I used for the matrix is as follows:  

��� = ���� ������� + ��� ������� + � + ��n �� � �n��

After the import functions have completed, an output.txt file is created, so that as each algorithm completes the 
clustering the results are immediately sent to this file in a secure location. The act of clustering done by the three 
algorithms can be quite similar and dissimilar at the same time. Single-Link and Complete-Link essentially work the 
same way except for the distance that is selected, which I will go into detail soon. However, Spectral clustering 
varies from these two substantially. 

2.1. Single-Link Clustering 

Single-Link Clustering (SLC) initializes with zero clusters and creates them sequentially as the algorithm 
progresses through the data set. Starting at the beginning of the ArrayList, a series of nested loops begin to check the 
values of the adjacency matrix. If possible, it can be effective to skip the diagonal of this matrix as the values are all 
0.0. The main feature of SLC is that, as the algorithm scans the adjacency matrix, the minimum distance between 
the two clusters under consideration is evaluated against the threshold. If it is within the threshold, the two 
corresponding elements are merged into a single cluster. At this point the ArrayList containing the Tuples is updated 
and then the next iteration of merging begins. SLC will continue to run until no merges are made during one 
iteration, and at this point the output file is closed. 

2.2. Complete-Link Clustering 

Complete-Link Clustering (CLC) initializes each element as a separate cluster, rather than starting with zero 
clusters. This cluster initialization allows merging at each iteration to reduce the number of clusters by one. CLC 
operates similarly to SLC except for the cluster merging. Where the SLC algorithm evaluates the minimum distance 
between two clusters, CLC evaluates the maximum distance against the threshold. After no merges are made, the 
program completes the same way that SLC does. 

2.3. Spectral Clustering 

Spectral Clustering (SPC) operates very differently from SLC and CLC. SPC is centered on matrix manipulation 
and eigenvector mathematics. The SPC that I used was built upon the research done in [1]. The first operation of this 
algorithm is to generate an affinity (similarity) matrix. This is very similar to the Euclidean distance matrix 
mentioned above except that once we calculate the distance the affinity matrix uses a different equation that utilizes 
the use of an exponential equation to force all distance approach 1. 

Affinity��� � � �
����������
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��������������������������
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Next, a degree matrix is formed where each index of the diagonal is the sum of the corresponding row in the affinity 
matrix.  The purpose of this is that in the next step we need to normalize the affinity matrix. The result is called the 
Normalized Laplacian Matrix where: 

Once the Laplacian matrix is compiled, we then perform Eigen value decomposition on it so that we can select a 
user specified number of largest Eigen vectors to construct the final normalized matrix ‘U’. Essentially ‘U’ 
renormalizes the data to have the number of dimensions equal to the number of Eigen vectors selected previously. 
Finally, we have a matrix representing the similarities that each element shares with other elements features. With 
this new matrix, we perform K-means clustering and “assign” a number to each element that represents which 
cluster it belongs to. So that we can later analyze the results, SPC required one additional step forming the output.txt
file. There are many available algorithms for spectral clustering with “minor changes” [2], but all seem to function 
based off these principles. 

2.4. Datasets 

The data that was used for the clustering analysis were generated beforehand. The purpose of this step was so 
that we can create two-dimensional datasets in which we know what the clustering results should be in an optimal 
situation. Since they are two-dimensional, we can easily map them using the Cartesian coordinates, and differentiate 
clusters by colors and symbols for a visual representation of cluster analysis, in addition to the statistical analysis 
that to be discussed next. Figure 1 presents the datasets generated for our cluster analysis. 

Figure 1 Three data sets used in the experiments 

3. Cluster Analysis 

Cluster analysis was implemented in its own java class allowing for modularity amongst all three algorithms.  
Since the data located in the output file is formatted in layers we can analyze each cluster individually. First, the 
centroid, a.k.a. geometric center, of each cluster is found. Once we find the centroid of each cluster we can then find 
the standard deviation of each cluster’s dimensions by substituting the average with the centroid’s dimensional 
values. This is essentially how we determine how similar the cluster’s elements are per each dimension. We assume 
that if 65% of the cluster elements were within the standard deviation of centroid, then the cluster exhibited similar 
features. Since the results can vary drastically by changing the threshold for SLC and CLC, in talking about them we 
discuss the optimal scenario. 

3.1. Single-Link analysis 
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With SLC, all elements “next” to each other are classified into the same cluster. Visually, in Figure 2 the results 
are presented, without looking at the statistical information. The third  

Figure 2 Single-link clustering results 

dataset is classified as a single cluster since SLC cannot associate difference between Gaussian distributions, due to 
the overlapping elements, as seen in Figure 1. The mathematical analysis of SLC is less effective on 2D data sets 
due to merging of points when their Cartesian coordinates are close by. The only clusters that show dissimilarity in 
SLC seem to be the sinusoidal wave and the rectangle, because they span a great range in one dimension. Both of 
these shapes have around 50% similarity therefore classifying them as dissimilar.  

3.2. Complete-Link analysis 

Figure 3 Complete link results 

The subtle differences between SLC and CLC are in the sinusoid and the three overlapping Gaussians. Since the 
maximum distance between clusters is tested and each element starts in its own cluster, we see a random association 
between the two shapes depending on the order of their analysis. Statistically, the sinusoidal wave has similar results 
to SLC, except that CLC presents two clusters within the wave. The CLC determines the bottom part of the wave to 
be a separate cluster because the farthest distance exceeds the threshold. While the threshold is modeled after the 
data set, in our future work we are developing a genetic algorithm to automate the process. A step up for CLC is that 
it can determine the dissimilarities between the overlapping Gaussian distributions. While we do not have complete 
separation of the three clusters, CLC is able to distinguish them as being present. Also, mathematically, all three 
clusters prove to be similar over the span of the two dimensions.  

3.3. Spectral analysis 
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SPC proves, visually and statistically, to be the most efficient algorithm of the three. The results are presented in 
Figure 4. 

Figure 4 Spectral clustering results 

Figure 4 clearly shows that SPC handled the Gaussian distributions without any issues, but there is a problem 
with the circles. The reason for this is in the shapes in the first dataset being too similar, thus making clustering 
much more difficult. One considerable benefit of SPC is that the clusters that are similar are much more statistically 
similar than in previous algorithms, most of which exhibit nearly 100% similarity.  

4. Discussion 

Using statistics to analyze clustering is something that is increasingly vital as the number of dimensions 
increases. One thing to remember is that the similarities between the two-dimensional datasets are so high because 
the Cartesian system takes over for the dimensions. Anything over three dimensions, possibly four, is nearly 
impossible to visualize and this is where the statistics come into play. By demonstrating that they are in fact an 
effective way to test results of clustering smaller dimensioned datasets, then we can assume that the statistics will 
scale to the larger ones since the math does not need to adapt to the dimensions. Using math to analyze remains to 
be one of the most effective tools we have and this is demonstrated via spectral clustering, which is almost solely 
based on math. For future work we will be looking to optimize spectral clustering using different computer science 
techniques for maximum efficiency, and then testing the algorithms on 10+ dimensioned data. In this research we 
will see the statistical analysis prove most effective.  

Starting with SLC we see in Figure 2 that any non-complex shape of elements is correctly classified. Any 
complex shape, however, demonstrates the limitations of this algorithm. One such shape is the Gaussian 
distributions because the overlapping elements make it impossible to distinguish the three shapes. CLC proves to be 
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just as effective with the simple shapes as SLC, but a difference can be seen in the complex ones. Figure 3 illustrates 
the sinusoidal wave is correctly classified into two distinct clusters. While SLC would classify them as a single 
cluster based on Euclidean distance, CLC is able to distinguish them because the farthest elements of the two 
clusters, when analyzed in order, extend longer then the threshold. The best results are with SPC. Most importantly, 
a predetermined threshold does not limit the SPC algorithm in the merging of clusters. Having this threshold 
removes the unsupervised elements of the algorithm, since for optimal results, the threshold must be tailored to the 
dataset. Figure 4 demonstrates that SPC is able to correctly classify the most complex shape used, i.e. the Gaussian 
distributions. By selecting the k-largest eigen vectors and the performing k-means clustering on the normalized 
Laplacian matrix, SPC is able to use the density of similar dimensions to classify elements into correct clusters. The 
first dataset in Figure 4, however, does show the limitations of SPC. While SPC can correctly classify most complex 
shapes independently,  making shapes too similar within a single dataset will throw off the effectiveness of the 
clustering process as evidenced in Figure 4 first set with sinusoid and circles. 

Using statistics to analyze clustering is something that is increasingly vital as the number of dimensions 
increases. Mathematical similarities between two-dimensional datasets are high because the Cartesian system takes 
over for the dimensions. Anything over three dimensions is nearly impossible to represent visually and this is where 
the statistics of each cluster become effective means of analysis. By demonstrating that this is an effective way to 
test the results of clustering with smaller dimensioned data, we can assume that the effectiveness will scale to a 
larger scale of dimensionality. For future work with improvements on the algorithms we will be using this statistical 
analysis to demonstrate the effectiveness of the algorithm on more dimensional data. 
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