Research article

Analysis of multi-factor coupling effect on hydraulic fracture network in shale reservoirs

Liu Yuzhang, Xiu Nailing, Ding Yunhong, Wang Xin, Lu Yongjun, Dou Jingjing, Yan Yuzhong, Liang Tiancheng

Received 13 August 2014; accepted 20 January 2015
Available online 12 August 2015

Abstract

Based on the research results of lab triaxial hydraulic fracturing simulation experiments, field fracturing practice, and theory analysis, the factors affecting the growth of hydraulic fracture network in shale reservoirs, including brittleness, difference of horizontal stress, distribution and mechanical characteristics of natural fractures, fluid viscosity and fracturing parameters, etc are analyzed in this study. The results show that the growth of fracture network in shale reservoirs is affected by geological factors and engineering factors jointly. From the perspective of reservoir geological factors, the higher the rock brittleness, the more developed the natural fractures, and the poorer the natural fracture consolidation, the more likely hydraulic fracture network will be formed. From the perspective of fracturing engineering factors, lower fluid viscosity and larger fracturing scale will be more helpful to the formation of extensive fracture network. On the basis of the analysis of single factors, a multi-factor coupling index has been established to characterize the growth degree of hydraulic fracture network and evaluate the complexity of hydraulic fractures after the fracturing of shale reservoirs.

Keywords: Shale; Fracture network; Brittleness; Stress difference; Viscosity; Natural fracture; Fracturing (rock); Evaluation

According to the estimation of U.S. Energy Information Administration (EIA), shale gas in China is huge in recoverable reserves, and broad in development prospect [1,2]. Due to low porosity and super-low permeability, shale gas reservoirs must be stimulated by hydraulic fracturing to gain economic production [3]. Study on the factors affecting fracture network extension in shale gas reservoirs and the proper characterization of network fracture extension, are of great significance to fracturing design optimization and stimulation effect improvement. At present, foreign researchers use brittleness index [4] to characterize fracture network forming capacity of shale reservoirs by hydraulic fracturing. However, the brittleness index alone cannot reflect the actual difficulty of reservoir fracturing. Yuan Junliang [2] proposed the fracturing index \(F_{\text{rac}} \) to describe the complexity of reservoir fracturing based on the brittleness index and fracture toughness of shale gas reservoirs, taking no consideration of the influence of engineering factors on hydraulic fracture extension. Zhao Jinzhong et al. [5,6] analyzed geological and engineering factors affecting the growth of fracture network in shale reservoirs, but didn't consider the coupling effect of these factors.

In 2008, Cipolla et al. [7] initiated to use fracture complex index which equals the ratio of width to length of the fracture network to characterize the complexity of hydraulic fracture network in shale reservoirs. The width and length of fracture network are commonly calculated from the width and length of event point “cloud” obtained from micro-seismic monitoring.
Since the accuracy of micro-seismic monitoring is not clear and the relationship between seismic events and fracture extension is quite uncertain, the fracture complex index itself has a high uncertainty. Moreover, this parameter, which can only be used to evaluate fracture network complexity after hydraulic fracturing operation with micro seismic monitoring, lacks the predicting significance for fracturing design improvement and optimization. In actual fracturing treatment, the complexity of fracture network extension is quite different due to different reservoir properties and fracturing technical processes. Therefore, study on the factors affecting hydraulic fracture network extension in reservoirs and the proper methods for characterizing network fracture extension complexity are of great significance to fracturing design optimization and reservoir stimulation effect improvement. The effects of geological and engineering factors on shale reservoir hydraulic fracture network extension were explored, and a fracture network extension index based on multi-factor coupling effect was proposed to characterize and evaluate the complexity of shale reservoir hydraulic fracture network in this study, which has major guiding significance to the optimization of hydraulic fracturing technologies for shale reservoirs.

1. Analysis of factors affecting hydraulic fracture network growth in shale gas reservoirs

1.1. Geological factors

Geological factors affecting hydraulic fracture network growth in shale gas reservoirs include reservoir rock properties, horizontal stress field and the direction, the development degree and the consolidation of natural fractures, etc [8].

1.1.1. Effect of rock brittleness

Extensive theoretical and experimental work was conducted on the evaluation of mechanical properties of shale reservoirs [9–11]. According to the experience of shale reservoir stimulation evaluation abroad, the complexity of fracture network induced by hydraulic-fracturing treatment is in positive correlation with rock brittleness. Therefore, the dimensionless brittleness index B has become an important parameter used to select high-quality shale gas reservoirs. Rickman et al. [11] presented a mathematical equation to calculate B with Young’s modulus and Poisson’s ratio, based on the practical hydraulic-fracturing experience in North America, and advanced the relationship between rock brittleness and fracture pattern. A number of studies show that the higher the rock brittleness index, the more complex the fracture network pattern in shale reservoirs will be. The rock brittleness index B is calculated by the equation below:

$$
B = 0.5 \left(\frac{E - E_{min}}{E_{max} - E_{min}} - \frac{\mu - \mu_{max}}{\mu_{max} - \mu_{min}} \right) \tag{1}
$$

where E, E_{max} and E_{min} are the Young’s modulus, the maximum value of Young’s modulus and the minimum value of Young’s modulus of shale reservoirs respectively (MPa). μ, μ_{max} and μ_{min} are the Poisson’s ratio, the maximum value of Poisson’s ratio and the minimum value of Poisson’s ratio of shale reservoir respectively.

1.1.2. Effect of horizontal stress and natural fractures

Assuming that the overburden stress is the maximum principal stress, according to the classic hydraulic fracturing theory, hydraulic fractures propagate along the direction of the maximum horizontal principal stress in the far-field. When a hydraulic fracture encounters a natural fracture, the hydraulic fracture may cross the natural fracture and propagate on, or cause shear or opening of the natural fracture, forming fracture network, which will increase the contact area between fractures and reservoir, and improve the effect of reservoir stimulation.

Whether a hydraulic fracture diverts or not when intersecting a natural fracture depends on the horizontal principal stress, intersection angle and mechanical properties of the natural fracture. As is shown in Fig. 1, suppose that the natural fractures are vertical, and natural fractures with a consistent dip angle are referred to as a natural fracture group. There are m (dimensionless) natural fracture groups, and the intersection angle of ith group is θ_i(º). σ_h and σ_n are the maximum and minimum horizontal principal stress respectively.

The fluid pressure at the intersection point of the hydraulic fracture and ith natural-fracture group is p_{fi}. The normal stress σ_n and shear stress τ_i, acting on the plane of the natural fracture are:

$$
\sigma_n = \frac{\sigma_h + \sigma_n}{2} - \frac{\sigma_h - \sigma_n}{2} \cos(2\theta_i) \tag{2}
$$

$$
\tau_i = \frac{\sigma_h - \sigma_n}{2} \sin(2\theta_i) \tag{3}
$$

Therefore, shear happens to the natural fracture plane of the ith natural fracture group, when the condition in the following equation is satisfied [12]:

$$
|\tau_i| = c_i + f_i \left(\sigma_n - p_{fi}^2 \right), \tag{4}
$$

where, c_i is the cohesion of the ith natural fracture group, MPa; f_i is the frictional coefficient of the ith natural fracture group;
\(p_i^f \) is the extreme value of fluid pressure at the intersection point when shear occurs on the fracture plane of the \(i \)th natural fracture group. Thus, \(p_i^f \) can be obtained after the equation is rearranged (4):

\[
p_i^f = \sigma_{ni} - \frac{|r_i| - c_i}{f_i} .
\]

Similarly, the extreme value of fluid pressure \(p_i^m \) at the intersection point when dilation occurs on the natural fracture plane and the extreme value of fluid pressure \(p_i^m \) at the intersection point when the hydraulic fracture crosses the natural fracture can be expressed as [13]:

\[
p_i^m = \sigma_{m} + T_m
\]

where, \(T_m \) is tensile strength of shale matrix; \(T_{li} \) is the tensile strength of the fracture plane of the \(i \)th natural fracture group.

Define a critical discriminant factor \(k_i \) as:

\[
k_i = \frac{p_i^m}{\min(p_i^f, p_i^e)}
\]

when \(0 < k_i < 1 \), the hydraulic fracture will cross the \(i \)th natural fracture group. Otherwise, \(k_i \geq 1 \) indicates that shear or dilation occurs on the fracture plane of the \(i \)th natural fracture group, which will be more conducive to the formation of fracture network.

Take \(T_m = 3 \) MPa as an example, under the conditions of different intersection angles and different horizontal principal stress differences, the results of failure boundaries of the natural fracture are shown in Fig. 2.

Apparently, if there is no consolidation in a natural fracture (cohesion \(c \) and tensile strength \(T_i \) are zero), shear is most likely to occur on the natural fracture plane. The hydraulic fracture may cross the natural fracture only when the intersection angle is large and a considerable horizontal principal stress difference exists. When the natural fracture is consolidated, anyone of the situations of crossing, shear and dilation is possible to occur: the higher the consolidation is, the less likely shear is to occur; the smaller the intersection angle and horizontal principal stress difference are, the more likely the hydraulic fracture crossing the natural fracture is to occur.

1.2. Engineering factors

Engineering factors affecting hydraulic fracture network growth in shale reservoirs include fracturing pressure, fluid viscosity, and pumping rate.

1.2.1. Net pressure

Renshaw’s [14] study shows that the higher the net fracturing pressure, the more likely the hydraulic fracture diverts or twists on the propagation plane, and thus causing shear or dilation of the natural fracture (Fig. 3).

1.2.2. Fluid viscosity

Fracturing fluid viscosity has a strong effect on fracture complexity in shale reservoirs. Lab experiments show that low viscosity fluid is more likely to create complex fracture patterns, while high viscosity fluid is more likely to produce a straight single fracture [15]. Micro-seismic monitoring results of two hydraulic fracturing treatments in one well in Barnett show that the SRV obtained by slick water was much bigger than that of gelled fluid.

1.2.3. Pumping rate

The increase of pumping rate can lead to the increase of fracture net pressure, which then causes the diversion of the hydraulic fracture and formation of complicated fracture network. Zhang Xu et al. [15] have proved on the large size true triaxial experiment system that the increase of pumping rate would result in more complicated fracture patterns and more severe damage to rocks (Fig. 3).

2. Definition and application of fracture network growth index

According to the above analysis, the growth of hydraulic fracture network in shale reservoirs is affected by geological and engineering factors jointly. To characterize shale reservoir hydraulic fracture network extension ability and evaluate hydraulic fracture complexity, we defined a new parameter called fracture network growth index (FNGI), which is related to both geological and engineering factors.

\[
FNGI = B \cdot \left(\sum_{i=1}^{m} L_{i} \right)^{a} \cdot \left(\frac{p_w - \sigma_{m}}{\mu} \right)^{b} \cdot q^{c} \cdot t^{d}
\]

where, \(B \) is brittleness index; \(L_{i} \) is natural fracture linear density; \(p_w \) is downhole pressure, \(\sigma_{m} \) is minimum horizontal principal stress, MPa; \(\mu \) is fracturing fluid viscosity, mPa·s; \(q \) is pumping rate, m³/min; \(t \) is fracturing time, h; \(a, b, c \) and \(d \) are dimensionless coefficients.

FNGI is a dimensionless parameter, \(a, b, c \) and \(d \) are determined according to the principle of dimensional coordination:

\[
FNGI = B \left(\sum_{i=1}^{m} L_{i} \right) \left(\frac{p_w - \sigma_{m}}{\mu} \right)^{q} t^{d}
\]

The influence of geological factors and engineering factors on FNGI was explored, and variation pattern is shown in Fig. 4.

It can be seen from Fig. 4 that the deeper the red color, the higher the FNGI, which means that the hydraulic fractures are more likely to form a network; the deeper the blue color, the lower the FNGI, which means that the hydraulic fractures are less likely to form a network. According to reservoir and
Fig. 2. Effect of natural fracture parameters and horizontal principal stress difference on hydraulic fracture propagation.

Fig. 3. Result of fracturing at different pumping rates.

Table 1
Geological and fracturing parameters of 4 shale gas wells.

<table>
<thead>
<tr>
<th>Well name</th>
<th>B</th>
<th>Natural fracture linear density</th>
<th>Pumping rate (m³/min)</th>
<th>Fluid viscosity (mPa s)</th>
<th>Net pressure (MPa)</th>
<th>Average fluid volume per stage (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH1</td>
<td>0.32</td>
<td>10</td>
<td>15</td>
<td>1.6</td>
<td>18.7</td>
<td>2142</td>
</tr>
<tr>
<td>WH3</td>
<td>0.50</td>
<td>10</td>
<td>10.8</td>
<td>1.93</td>
<td>21.4</td>
<td>1643</td>
</tr>
<tr>
<td>YH1</td>
<td>0.45</td>
<td>8</td>
<td>12.1</td>
<td>2.7</td>
<td>3.45</td>
<td>2161</td>
</tr>
<tr>
<td>NH1</td>
<td>0.60</td>
<td>5</td>
<td>9.1</td>
<td>1.94</td>
<td>30.9</td>
<td>1975</td>
</tr>
</tbody>
</table>

Fig. 4. Variation pattern of fracture network growth index of shale gas reservoir.
factors on the fracture network extension. This index can help evaluate the fracture network extension in shale reservoirs, but also the influence of engineering factors on hydraulic fracture network complexity.

3. Conclusions

1) Based on the analysis of the influence of main geological and engineering factors on hydraulic fracture network extension in shale reservoirs, FNGI was advanced to characterize the fracture network extension ability and the effect of engineering factors on fracture network extension. This index can help evaluate the complexity of fracture network after hydraulic fracturing. The FNGI model can be used to compare not only the fracture network extension ability of different shale reservoirs, but also the influence of engineering factors on the fracture network extension.

2) Analysis shows that the average FNGI and the average gas production per section of four horizontal shale gas wells have a good correlation. There is a good positive correlation between the average gas production per section and the average FNGI and pressure coefficient per section.

3) We suggest that lab true triaxial hydraulic fracturing simulation experiments and monitoring results at oil fields be combined in future to explore the complexity and distribution pattern of the fracture network, and further verify the factors affecting fracture network growth and improve the characterization methods of hydraulic fracture network complexity.

References

Table 2
Fracture network growth index of 4 shale wells.

<table>
<thead>
<tr>
<th>Well name</th>
<th>Average SRV per stage (10⁴ m³)</th>
<th>Average FNGI per stage</th>
<th>Pressure coefficient</th>
<th>Average production per stage (10⁴ m³/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH1</td>
<td>362</td>
<td>293</td>
<td>0.92</td>
<td>0.12</td>
</tr>
<tr>
<td>WH3</td>
<td>747</td>
<td>424</td>
<td>1.02</td>
<td>0.47</td>
</tr>
<tr>
<td>YH1</td>
<td>483</td>
<td>45</td>
<td>1</td>
<td>0.09</td>
</tr>
<tr>
<td>NH1</td>
<td>800</td>
<td>554</td>
<td>2.03</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Fig. 5. Relationship between gas output and product of FNGI and pressure coefficient of each well section.