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SUMMARY

Human skin copes with harmful environmental fac-
tors that are circadian in nature, yet how circadian
rhythms modulate the function of human epidermal
stem cells is mostly unknown. Here we show that in
human epidermal stem cells and their differentiated
counterparts, core clock genes peak in a successive
and phased manner, establishing distinct temporal
intervals during the 24 hr day period. Each of
these successive clock waves is associated with
a peak in the expression of subsets of transcripts
that temporally segregate the predisposition of
epidermal stem cells to respond to cues that regulate
their proliferation or differentiation, such as TGFb
and calcium. Accordingly, circadian arrhythmia pro-
foundly affects stem cell function in culture and
in vivo. We hypothesize that this intricate mecha-
nism ensures homeostasis by providing epidermal
stem cells with environmentally relevant temporal
functional cues during the course of the day and
that its perturbation may contribute to aging and
carcinogenesis.

INTRODUCTION

Stem cells and their differentiated progeny must cope with daily

variations in a number of factors that can affect their function.

The nature of these elements will vary from tissue to tissue, but

knowing how andwhen to react to them is essential to the overall

fitness of tissues. For instance, while the liver must metabolize

potentially harmful substances ingested during each round of

feeding, the skin copes with UV radiation and pathogens in a

circadian manner. Our tissues have evolved means to adapt to

these changes, and most cells in our body possess an inherent

and specific self-sustained clock that allows them to anticipate

their behavior according to these daily fluctuations (Dibner
Cell
et al., 2010). This anticipatory clock mechanism therefore con-

fers a functional advantage to the tissue, and decreasing its

robustness reduces the overall fitness of the organism (Dibner

et al., 2010). In this sense, whole-body circadian arrhythmia in

mice causes premature aging and reduces their life span (Bunger

et al., 2000).

Although recent studies have shown that the behavior of

some types of stem cells is circadian, we are still far from under-

standing how circadian rhythmicity contributes to their function.

For instance, hematopoietic stem cells (HSCs) egress from their

niche and enter into circulation in a circadian manner (Lucas

et al., 2008; Méndez-Ferrer et al., 2008). Yet whether the circa-

dian clock affects the proliferation and differentiation of HSCs

is not known. The keratinocyte compartment of the skin also

behaves according to a circadian pattern, and whole-body

arrhythmic Bmal1 knockout mice show a delay in the growth

phase of hair follicles (Lin et al., 2009; Geyfman and Andersen,

2010). Circadian oscillations in the expression of signaling path-

ways, including Wnt and TGFb, predispose different popula-

tions of hair follicle stem cells to remain dormant or to respond

to activating cues (Janich et al., 2011). Perturbation of this

mechanism causes a progressive change in the number of

dormant hair follicle stem cells as well as age-related hair follicle

cycling defects (Janich et al., 2011). However, epidermal-spe-

cific arrhythmic mice do not show changes in the first wave of

postnatal hair growth, suggesting that changes in the oscillation

of systemic or niche-derived cues are likely responsible for the

delay in hair follicle growth observed in complete Bmal1

knockout mice (Lin et al., 2009; Janich et al., 2011; Geyfman

et al., 2012).

Murine interfollicular epidermis is also under circadian control.

For instance, proliferation of mouse basal epidermal cells peaks

at night, whereas accumulation of ROS is antiphasic to it (Geyf-

man et al., 2012). Interestingly, mouse epidermis is more sus-

ceptible to UVB radiation during the night when its cells are

more proliferative, and mice significantly develop more squa-

mous tumors when exposed to UVB in the night than during

the day (Geyfman et al., 2012; Gaddameedhi et al., 2011).

By separating proliferation from the response to UVB and

ROS metabolism, circadian rhythms likely protect keratinocytes
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Figure 1. Core Clock Genes Peak in a Successive and Phased Manner in Human Epidermal SCs

(A) Relative mRNA levels of Involucrin (INV) in undifferentiated and calcium-differentiated PHKs normalized to time point 0 hr.

(B) PHKs were synchronized and gene expression wasmeasured at indicated times. The right and left panels show expression of clock genes in cells with and

without prior calcium treatment, respectively, at 0 hr.

(C) Relative mRNA levels of PER2, BMAL1, and DBP in undifferentiated and calcium-differentiated primary human keratinocytes normalized to time point 0 hr.

(D) Superimposition of PER1, PER2, and CRY1 expression profiles. Although the amplitude of expression is different, the phase shifts between the genes remains

highly consistent whether or not differentiation is induced through calcium treatment.

n = 3 in all panels; results are shown as mean ± SEM. See also Table S1.

Cell Stem Cell

Timing of Human Epidermal Stem Cell Function
from the potentially harmful situation of proliferating when

exposed to UVB or when ROS levels are highest. Loss of this

mechanismmight be one of the causes underlying the premature

aging observed in epidermal-specific circadian arrhythmic mice

(Janich et al., 2011).

DNA synthesis and mitosis show circadian fluctuations in

human epidermis (Schell et al., 1981a, 1981b, 1983; Brown,

1991). However, it is unclear whether (and if so, how) human

epidermal stem cells know which is the best time for perform-

ing a specific function during the 24 hr period of the day. We

have addressed this question by combining timed mRNA

expression analysis of primary human keratinocytes with func-

tional data. Our results show that, intriguingly, the expression of

specific core clock genes is phase delayed within 24 hr and

that this establishes successive windows of time in which

epidermal stem cells are more predisposed to perform certain

functions than others. These include proliferation, differentia-

tion, and response to UV, all of which are paramount to ensure

that epidermal stem cells fulfill their basic function to maintain

homeostasis.
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RESULTS

Core Clock Genes Peak in a Successive Manner along a
24 hr Period
We obtained the stepwise global changes in gene expression of

primary human keratinocytes (PHKs), either in their stem cell

state or induced to differentiate with calcium, every 5 hr during

2 consecutive days (Table S1). To synchronize the circadian

rhythms, cells were given a short serum pulse for 2 hr prior to

the time course of RNA collection. Expression of the core clock

genes Bmal1, period1–3 (PER1–3), Nr1d1/2, and cryptochrome

1/2 (CRY1/2) confirmed that the serum pulse properly synchro-

nized the circadian rhythm of stem cell and differentiating kerati-

nocytes (Figures 1A and 1B). As expected, PHKs stimulated with

calcium progressively differentiated, as shown by the increased

expression of differentiation markers such as involucrin (IVL),

filaggrin (FLG), and Late Cornified Envelope (LCE) genes,

whereas undifferentiated PHKs did not spontaneously differen-

tiate during the time course (Figure 1A, Table S1 available online).

Calcium-induced differentiation did not alter the oscillation
c.
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period of core clock genes but increased the amplitude of oscil-

lation of PER1–3 and DBP, while decreasing that of Bmal1

compared to undifferentiated cells (Figure 1C and Table S1).

PER1–3 and CRY1/2 are direct transcriptional targets of

BMAL1 and CLOCK. However, intriguingly, when plotted

together, their peaks showed phase delays with respect to

each other. For instance, the expression of PER1 and PER3

peaked approximately 20 hr after the synchronization pulse,

whereas PER2 andCRY2 peaked 5 hr after PER1 and PER3 (Fig-

ure 1B). CRY1 peaked 5 hr later than PER2/CRY2, and NR1D1

and NR1D2 also showed a phase delay with respect to each

other, with peaks of expression between 15 hr and 20 hr post-

synchronization, respectively (Figure 1B). As expected, Bmal1

was predominantly antiphasic with its core clock targets (Fig-

ure 1B). When we plotted all these clock core genes together,

an interesting pattern of concatenated oscillations emerged,

whereby Bmal1 is the first to peak at around 5–10 hr postsynch-

ronization, followed by Nr1d1 and Nr1d2 (15–20 hr), PER1/PER3

(20 hr), and subsequently by PER2/CRY2 (20–25 hr) and CRY1

(25 hr) (Figure 1D; for simplicity only one core clock gene is

shown for each peak). This pattern of expression was unaffected

during differentiation, further indicating that differentiation only

affects the amplitude and not the period of oscillation of the

core clock machinery (Figures 1B and 1D).

The Successive Peaks of Clock Genes Temporally
Segregate Different Epidermal Stem Cell Biological
Functions
Our analysis indicated that the core clock machinery displays

successive oscillations that subdivide the day into at least five

temporal intervals (i.e., those established by the peaks of

NR1D1/NR1D2, PER1/3, PER2/CRY2,CRY1, and Bmal1), which

we refer to as peaks A–E. We next sought to determine whether

each peak defined different functional categories in both stem

cell and differentiating keratinocytes. To do so, we developed

a polynomial curve fitting analysis to identify cohorts of genes

whose expression displayed a pattern of peaks and troughs

similar to each of these clock subsets (Supplemental Informa-

tion; Table S2; Figure S1). In undifferentiated PHKs, the expres-

sion of 2,013 genes correlated with the pattern of oscillation of

core clock genes, distributed more or less equally at each

peak (A, 374 genes; B, 454 genes; C, 695 genes; D, 575 genes;

E, 415 genes; Table S2). Differentiating keratinocytes showed

2,498 genes with a similar distribution to core clock genes (A,

327 genes; B, 566 genes; C, 899 genes; D, 494 genes; E, 832

genes; Table S2) (Figure 2A).

We then performed gene ontology (GO) analyses on the list of

genes for each peak to obtain the biological functions repre-

sented by each (Table S3 and Table S4) (Huang et al., 2009).

Several studies have shown that the mRNAs of PER1 and

PER2 peak early during the morning in human epidermis, which

we used as a reference point to extrapolate the approximate time

of the day corresponding to each peak (Akashi et al., 2010; Spörl

et al., 2012; Watanabe et al., 2012). The most statistically signif-

icant biological categories represented in peak A included pro-

tein localization and regulation of transcription, cytoskeleton,

cAMP metabolism, and collagen metabolic process, among

others (Figure 2B and Table S3). Interestingly, these biological

categories included genes previously shown to be involved in
Cell
keratinocyte differentiation, such as Notch3, KLF9 (a prodiffer-

entiation transcription factor recently shown to be circadian in

human keratinocytes; Spörl et al., 2012), p57, and SPRR1A/B

(Watt et al., 2008). Peak B in turn predominantly consisted of

genes involved in calcium homeostasis, cholesterol metabolism,

RNA modification, amino acid metabolism, response to vitamin

D, and ribosome biogenesis, which has been recently shown

to be circadian in murine liver (Jouffe et al., 2013) (Figure 2B).

Several of these categories, such as calcium homeostasis,

cholesterol metabolism, and response to vitamin D, are directly

related to keratinocyte differentiation (Bikle et al., 2001) (Table

S3). This list also included NSUN2/Misu, a downstream target

of Myc that poises epidermal stem cells for differentiation, and

CAV1, which regulates the formation of the lamellar granules

required for keratinocyte cornification (Blanco et al., 2011;

Sando et al., 2003). Although peak C also comprised genes

pertaining to calcium signaling and ribosome biogenesis, it

now included genes involved in response to glucocorticoids,

glucose and lipid metabolism, and (albeit with a lower statistical

significance) cell cycle progression (Figure 2B). Hence, our

results suggest that peaks A–C primarily correspond to a peak

in expression of pathways involved in predisposing human

epidermal stem cells for the onset of differentiation and the

metabolic changes associated with it.

Interestingly, peak D (corresponding approximately to 5–10 hr

after the peaks of PER1-peak B and PER2-peak C) no longer

showed genes related to keratinocyte differentiation, but rather

to those involved in organization of the nuclear lumen,DNA-dam-

age response and repair, ribosome biogenesis, mitochondrial

morphogenesis, cell cycle and DNA replication, and regulation

of the splicing, pigmentation, and ATP metabolism (Figure 2B).

These included genes such as SSRP1, EXO1, SMC6, POLD1,

RAD54B, and APRT, which are involved in the response and

repair of DNA upon UV radiation, and TP63 and HELLS, both of

which are required to kick-start epidermal stem cell proliferation

(Sertic et al., 2011; Santa Maria et al., 2007; Ogi et al., 2010;

Truong et al., 2006; Sen et al., 2010). Lastly, peak E comprised

genes regulating endosome membrane, RNA localization, chro-

matin remodeling, DNA metabolism/stress response, and cell

division/mitotic phase (Figure 2B).

A pattern emerges from this data whereby peaks A–C,

corresponding to late-night to early-morning hours, are mostly

related to pathways predisposing keratinocytes to differentiate,

whereas peaks D and E, representing the afternoon and evening

hours, corresponded to pathways inducing DNA replication,

protection to UV, and, subsequently, cell division. This overall

pattern of successive peaks suggests that human epidermal

stem cells proceed through functional landmarks that segregate

their predisposition to respond to proproliferative and differenti-

ation cues, while providing them with the necessary metabolism

and protection against UV radiation. This pattern of functional

segregation was also present in differentiating keratinocytes

(Table S4), yet each peak was represented by different biological

functions than those observed in the undifferentiated state. For

instance, peaks D and E no longer included genes involved in

DNA replication and mitosis, but contained those related to

keratin filament organization and Runx1, which are required for

human keratinocyte differentiation (Masse et al., 2012) (Fig-

ure S2). In addition, the category of defense response was only
Stem Cell 13, 745–753, December 5, 2013 ª2013 Elsevier Inc. 747
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represented in the GO analysis of differentiating keratinocytes,

consistent with their role in establishing the protective defense

barrier. Interestingly, the fact that UV radiation was also present

in both data sets suggests that epidermal keratinocytes, whether

undifferentiated or differentiated, remain vigilant from this harm-

ful radiation in a circadian manner.

Epidermal Stem Cells Respond to Differentiation Cues
in a Time-of-Day-Dependent Manner
Several pathways involved in epidermal homeostasis were rep-

resented in our analysis, including TGFb, Notch, BMP, Wnt,

and calcium signaling (Figure 3A and Table S2). The expression

of genes important for epidermal stem cell quiescence, prolifer-

ation, and differentiation, such as LRIG1, TP63, and ITGB4, also

peaked at a specific time of the day (Figure 3A). Some members

of the calcium, TGFb, and Notch pathways also showed time-of-

the-day differences in their expression inmurine basal epidermal

keratinocytes, indicating that their daytime-dependent expres-

sion is conserved between mice and human (Figure S3A).

Wenext sought to testwhether the timedchanges in theexpres-

sion of these genes translated into functional differences

regarding the predisposition of PHKs to respond to these cues.

We concentrated on two pathways, calcium and TGFb, as they
748 Cell Stem Cell 13, 745–753, December 5, 2013 ª2013 Elsevier In
constitute two major signals driving PHK differentiation. Our

results predict that undifferentiated PHKs would be more predis-

posed to respond to both cues during peaks B–C, corresponding

to the late night-morning hours (Figures 1D and 2B). To test this,

we synchronized the circadian rhythm of undifferentiated PHKs

and then stimulated themwithTGFbor calciumat 12or 24hrpost-

synchronization, corresponding to the summits of peaks E and

B–C, respectively. We then collected RNA 4 hr after stimulation

toevaluate the responseof thecells toeachstimulusbymeasuring

the expression levels of IVL and transglutaminase 2, known cal-

cium and TGFb target genes (Honma et al., 2006; Ranganathan

et al., 2007). Interestingly, PHKs responded more efficiently to

both cues 24 hr postsynchronization than at 12 hr, coinciding

with the behavior predicted from our peak analysis (Figure 3B).

This enhanced response was also evident by the increased

expression of IVL within the colonies and by the enlarged cell

size associated with differentiation (Figure 3C). Calcium- and

TGFb-induced differentiation of PHKs progressively increased

between the trough and the peak, further demonstrating that

they depend on an oscillatory mechanism (Figure S3B).

We next verified whether increasing and sustaining the

expression of PER1 or PER2 would affect the predisposition

of PHKs to differentiate. For this, we overexpressed PER1 or
c.



Calcium

Calcium

Calcium

Calcium

Calcium

Non-Calcium

Non-Calcium

Non-Calcium

Non-Calcium

Non-Calcium

Stemness
markers

Calcium

Wnt

Notch

TGFβ

***

***

***
**

*

*

hours of calcium treatment
0 4

INV

0

1

2

3

4

5

re
la

tiv
e

m
R

N
A

le
ve

l

hours of TGFβ treatment
0 4

TGM2

0

10

20

30
Peak E
Peak B, C
re

la
tiv

e
m

R
N

A
l e

ve
l

B

A
Non -calcium Calcium

TGF TGFB1 (Peak-B, Peak-C)
TGFBRAP1 (Peak-B, Peak-C)

TGFB1 (Peak-B)
TGFB2 (Peak-C)
TGFB1I1 (Peak-B, Peak-C)
SMAD5 (Peak-B, Peak-C)

Notch NOTCH3 (Peak-A)
HES6 (Peak-B, Peak-C)
LFNG (Peak-B, Peak-C)

NOTCH4 (Peak-D)
HES4 (Peak-B, Peak-C)

Wnt WNT9A (Peak-D)
TCF7 (Peak-B, Peak-C)

WNT10A (Peak-B, Peak-C)
FZD3 (Peak-E)
FZD10 (Peak-E)

Calcium CAMKK1 (Peak-B, Peak-C)
CAMK2B (Peak-C)
HOMER1 (Peak-B, Peak-D)
SLC8A1 (Peak-C)

CAMK1
CAMKK1 (Peak-A)
HOMER1 (Peak-C)
SLC8A1 (Peak-B, Peak-C)
CCDC88C (Peak-B, Peak-C)

Stemness 
markers

TP63 (Peak-E) ITGB4 (Peak-B, Peak-C)
LRIG1 (Peak-B, Peak-C)

Peak EPeak DPeak CPeak BPeak A

Peak E

Peak B, C

Untreated Calcium treated TGFβ treatedC

Involucrin Involucrin

InvolucrinInvolucrinInvolucrin

Involucrin

Figure 3. The Predisposition of Human Epidermal SCs to Respond to Calcium and TGFb Prodifferentiation Cues Segregates during the 24 hr

Period

(A) Diagram showing peak fitting of pathways known to be important for differentiation and pluripotency of epidermal cells. The table lists genes belonging to the

abovementioned pathways with detailed information on their peak fitting (p < 0.05).

(B) Undifferentiated primary human keratinocytes were treated 12 hr or 24 hr after serum synchronization with calcium or TGFb for a period of 4 hr. Graphs show

relative mRNA levels of involucrin (INV, n = 4) and transglutaminase-2 (TGM2, n = 3) after 4 hr of treatment.

(C) Same experiment as (B) showing protein levels of IVL by immunofluorescent staining (green fluorescence; blue fluorescence corresponds to DAPI). Results

are shown as mean ± SEM normalized to the expression levels of INV and TGM2 at 12 or 24 hr postsynchronization (referred to as 0 hr of treatment).

*p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test). See also Figure S3, Table S2, Table S3, and Table S4.

Cell Stem Cell

Timing of Human Epidermal Stem Cell Function
PER2 in undifferentiated PHKs (Figure 4A) and confirmed that

their overexpression perturbed their circadian rhythm (Figures

S4A and S4B). PHKs overexpressing PER1 or PER2 spontane-

ously differentiated as shown by a significantly reduced clono-

genic capacity (Figure 4B) and an increased expression of the

differentiation markers IVL and loricrin (Figure 4C). We also per-

formed an in vivo competition assay based on an orthotopic

method of transplantation of PHKs in immunodeficient mice.

Three different transplants were established: (1) a 1:1 mixture
Cell
of PHKs tagged either with mCherry or GFP; (2) a 1:1 mixture

of control mCherry cells and PER1-overexpressing GFP cells;

and (3) a 1:1 mixture of control mCherry cells and PER2-overex-

pressing GFP cells (Figure 4D). In each instance, control cells

contributed to the basal layer in a stable manner, and columns

of tagged basal and suprabasal cells were visible throughout

the transplants. On the other hand, PHKs overexpressing

PER1 or PER2 only located at the uppermost suprabasal differ-

entiated layers (Figure 4D). Endogenous expression PER2 at the
Stem Cell 13, 745–753, December 5, 2013 ª2013 Elsevier Inc. 749
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Figure 4. Circadian Arrhythmia Induces

Spontaneous Differentiation and Loss of

Self-Renewal of Human Epidermal SCs

(A) Western blot analysis shows the over-

expression of PER1 and PER2 in PER1- or PER2-

infected PHKs compared to empty vector (EV)

control.

(B) Clonogenic assay of PER1- or PER2-over-

expressing PHKs compared to EV-infected cells.

Images are representative for n R 4 independent

infections. Colony size was quantified according

to their diameter and differences in colony number

in PER1- or PER2-infected keratinocytes were

calculated compared to the control (n = 3).

(C) PER1- or PER2-infected PHKs have increased

expression of IVL and loricrin. Left panel: graph

shows relative mRNA levels of INV in PER1- or

PER2-infected keratinocytes compared to the

control (mean ± SEM, n = 3). Right panel: immu-

nofluorescence reveals high expression of IVL

(red) and loricrin (green, arrow) in PER1- or PER2-

infected keratinocytes compared to the control.

Scale bar: 100 mm.

(D) Competitive skin reconstitution assay of EV or

PER1- or PER2-infected PHKs (green) mixed with

equal numbers of mCherry-infected cells (red)

shows the exclusion of PER1- or PER2-infected

keratinocytes from the basal cell layer (dashed

line) and their localization to the outermost differ-

entiated cell layers (n = 3 mice per infection). Left

panel: graph shows percentage of mCherry and

GFP-positive cells in the basal layer of EV or PER1-

or PER2-overexpressing transplants. Right panel:

direct fluorescence of mCherry or GFP. Scale bar:

75 mm.

(E)mRNA levels of endogenousCRY1 andCRY2 in

PHKs stably expressing shRNAs specific to each

protein (n = 3 independent infections).

(F) mRNA and protein levels of endogenous PER2

in CRY1 and CRY2 knockdown cells (n = 3).

(G) PHKs with reduced levels of CRY1 and CRY2

show a differentiated morphology and reduced

clonogenic potential (n = 3 independent in-

fections).

(H) Elevated levels of IVL (protein and transcript) in

PHKs with reduced levels of CRY1 or CRY2 (n = 3

independent infections).

In all panels, *p < 0.05, **p < 0.01, and ***p < 0.001

(Student’s t test), and data are represented as

mean ± SEM. See also Figure S4.
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mRNA and protein level increases upon knockdown of CRY1

andCRY2 (Figures 4E and 4F; Dibner et al., 2010). Consequently,

PHKs with lower levels of CRY1 and CRY2 spontaneously differ-
750 Cell Stem Cell 13, 745–753, December 5, 2013 ª2013 Elsevier Inc.
entiated, determined by their cellular

morphology, decreased clonogenic po-

tential, and higher expression of IVL

than control cells (Figures 4G and 4H).

DISCUSSION

Our results indicate that the oscillation of

the core clock transcriptional machinery
consists of successive waves along the 24 hr of the day. Intrigu-

ingly, these phase shifts of 4–5 hr define a continuum of func-

tional landmarks that segregate vital functions of keratinocytes.
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They predispose undifferentiated keratinocytes to respond to

differentiation cues between the late-night and morning transi-

tion. Subsequently, during the hours of exposure to light, two

different and consecutive cohorts of genes predominantly

involved in protection fromUV and in inducing proliferation reach

their zenith. Thus, human keratinocytes anticipate their protec-

tion against UV at the timewhen they aremore prone to duplicate

their DNA and more susceptible to radiation-induced DNA

damage. During the evening-night transition, keratinocytes

then become predisposed to undergo mitosis, but also start to

express genes involved in the onset of differentiation, thereby

establishing the beginning of a new cycle.

Calcium-induced differentiation of keratinocytes maintained

the period of the oscillations of core clock genes, although the

amplitude of the negative limb of the clock was increased. The

molecular and functional reasons underlying this change in

amplitude are currently unknown, but previous works have

shown that activation of calcium signaling directly increases

the expression of PER1 and PER2 in brain cells (Nomura et al.,

2003, 2006; Akiyama et al., 2001). Functionally, since the peak

of PER1 and PER2 correlates with the predisposition of PHKs

to differentiate, we hypothesize that the increase in their ampli-

tude of oscillation confers a more deterministic propensity

toward differentiation (i.e., once a cell has committed to differen-

tiate, it is advantageous that it does so in an irreversible manner).

Conversely, a lower oscillating amplitude might endow stem

cells with the necessary plasticity to adapt and respond to the

changing conditions of the tissue. It is important to underscore

that very few biological categories defined by each intradiurnal

peak overlap between the undifferentiated and differentiated

states, indicating that even within the same lineage (i.e.,

epidermal keratinocytes) the circadian transcriptome is highly

cell specific. However, the biological functions shared in both

cellular states relate to basic cellular functions, such as the

protection against UV, metabolism, and ribosome biogenesis.

On the other hand, only differentiated keratinocytes show time-

dependent changes in the expression of genes involved in the

formation of an impermeable barrier and defense against patho-

gens, both of which are essential in the epidermis. Intriguingly,

plant cells also show a circadian immune protection against

pathogens that display circadian rhythms in their infectivity

(Wang et al., 2011).

Our understanding of how these successive peaks of expres-

sion are established and maintained is still poor. A recent

rigorous study describing how the basic transcriptional clock

machinery works in vivo in the murine liver indicates that the

core clock repressors Per1, Per2, Cry1, and Cry2 bind to their

respective genomic sites at different times of the day, indicating

that the transcriptional regulation of the clock is far more com-

plex than previously anticipated (Koike et al., 2012). The tran-

scription-independent and universal circadian clock based on

the oxidation state of peroxiredoxins might also modulate these

oscillations (Edgar et al., 2012; O’Neill and Reddy, 2011; O’Neill

et al., 2011). Using the available circadian transcriptome of other

tissues reported by others, we have observed the same pattern

of oscillations or core clock genes as in human epidermal stem

cells, suggesting that this mechanism might be relevant for

modulating the function of adult stem cells and their differenti-

ated counterparts (Storch et al., 2002) (Figures S4C and S4D).
Cell
EXPERIMENTAL PROCEDURES

PHK Culture

PHKs were isolated from neonatal foreskin samples and cultured with a feeder

layer of fibroblasts (J2-3T3) as described previously (Gandarillas and Watt,

1997). Keratinocytes were infected with retroviral supernatants produced

from Phoenix A or lentiviral supernatants produced by 293T cells transfected

with the mentioned plasmids. Cells in clonogenic assays were grown for 8–

10 days and then fixed in 4% paraformaldehyde and stained with 0.1% crystal

violet/0.1% rhodanile blue (Sigma-Aldrich). For calcium-induced differentia-

tion and non-calcium treated control experiments, keratinocytes were grown

in Keratinocyte Serum-Free Medium with supplements (KSFM; GIBCO). After

reaching 70% confluence KSFM was exchanged for EMEM (Lonza) supple-

mented with 8% chelated FBS, EGF (10 ng/ml), 1% penicillin/streptomycin,

and 0.05 mM CaCl2. After 12 hr time point 0h was collected, and the residual

keratinocytes were synchronized for 2 hr with EMEM containing 20% chelated

FBS, EGF (10 ng/ml), 1% penicillin/streptomycin, and 0.05 mM CaCl2. After

synchronization cells were washed once with PBS and cultured in EMEM, sup-

plemented with 8% chelated FBS, EGF (10 ng/ml), 1% penicillin/streptomycin,

and either 0.05 mM or 1.2 mM CaCl2, corresponding to non-calcium and

calcium treatment, respectively. PHKs were treated with either 2 ng/ml

TGFb1 (PreproTech) or 1.2 mM CaCl2 with EMEM/20% chelated FBS.

Immunofluorescence and Western Blot

Keratinocytes grown on glass coverslips were fixed in 4% paraformaldehyde,

blocked with 0.25% gelatin/PBS, and stained with primary and secondary an-

tibodies diluted in blocking buffer for 30 min at room temperature. Nuclei were

counterstained with DAPI (Roche). Primary antibodies were anti-involucrin

(1:1,000, ab68, Abcam) and anti-loricrin (1:1,000, RPB-145P, Covance); sec-

ondary antibodies were anti-rabbit Alexa Fluor 647 and anti-mouse Alexa Fluor

594 (1:500, Molecular Probes). Pictures were acquired using a Leica TCS SP5

confocal microscope. Protein extracts were analyzed by SDS-PAGE and

western blotting for PER1 (1:500, Affinity Bioreagents), PER2 (1:500, Alpha

Diagnostic), and Tubulin (1:5,000, clone SAP.4G5, Sigma-Aldrich).

Skin Reconstitution Assay

Infected human keratinocytes were mixed with mouse newborn fibroblasts

and transplanted onto the back of Swiss Nude mice (Lichti et al., 2008). Skin

grafts were collected 6 weeks posttransplantation and fixed for 2 hr in 4%

paraformaldehyde, embedded in OCT, and sectioned at 8 mm thickness.

Nuclei were stained with DAPI. Pictures were acquired using a Leica TCS

SP5 confocal microscope. Mice were housed in an AAALAC-I approved ani-

mal unit under 12 hr light/12 hr dark cycles and SPF conditions, and all proce-

dures were approved by the Ethical Committee for Animal Experimentation of

the Government of Catalonia.

FACS

The back skin of adult C57BL6/J mice sacrificed at ZT10 or ZT22 was incu-

bated for 2 hr at 37�C in 0.25% trypsin, and epidermal cells were isolated as

described previously (Jensen et al., 2010). Cell suspensions were incubated

for 30 min on ice with the following antibodies at the given dilutions: 1:100

for biotin-conjugated anti-CD34 (clone RAM34, BD PharMingen), 1:200 for

PE-conjugated anti-a6-integrin (CD49f clone NKI-GoH3, Serotec), and 1:500

for APC-conjugated streptavidin (BD PharMingen). DAPI staining was used

to rule out the presence of dead cells. FACS was performed using

FACSAriaII and FACSDiva software (BD Biosciences). CD34-negative/a6-

integrinbright epidermal cells were collected in E-medium and subjected further

to RNA isolation.

Microarrays, Data Acquisition, and Bioinformatics Methods

Total RNA from calcium and non-calcium treated primary human keratinocytes

was hybridized to Human Gene Expression 43 44K v2 microarrays and Sure-

PrintG3 HumanGene Expression 83 60Kmicroarrays, respectively, both from

Agilent. Probe signals were extracted using the Feature Extraction software

provided by Agilent and normalized using the Bioconductor R-Project limma

package. To compare the expression pattern of individual genes to those of

known clock components, we devised the method explained in the Supple-

mental Information.
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Gene expression data can be accessed at GEO using the accession number

GSE50631.
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Supplemental Information for this article includes Supplemental Experimental

Procedures, four figures, and four tables and can be found with this article
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