
Discrete Mathematics 313 (2013) 122–128

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Inscribing a regular octahedron into polytopes
Arseniy Akopyan a,b,∗, Roman Karasev c,b

a Institute for Information Transmission Problems RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia
b B. N. Delone International Laboratory ‘‘Discrete and Computational Geometry’’, P. G Demidov Yaroslavl State University, Sovetskaya st. 14, Yaroslavl’,
150000, Russia
c Department of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, 141700, Russia

a r t i c l e i n f o

Article history:
Received 14 October 2011
Received in revised form 23 August 2012
Accepted 4 September 2012
Available online 29 September 2012

Keywords:
Inscribed polytopes
Spheric geometry

a b s t r a c t

Weprove that any simple polytope (and somenon-simple polytopes) inR3 admits a regular
octahedron inscribed into its surface.
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1. Introduction

The famous theorem of Shnirel’man [10] (see also [5]) asserts that for every smooth simple closed curve γ in the plane
there exists a square Q such that all four vertices of Q lie on γ .

In the thesis of Makeev [6] the following theorem was proved (reproved and generalized for higher prime power
dimensions in [2,4]):

Theorem 1.1. Let H be a smooth surface embedded into R3 and homeomorphic to the sphere S2. Let C be some Z3-symmetric
octahedron. Then there exists an octahedron C ′

⊂ R3 similar to C with all its vertices lying on H.

Remark 1.2. Here by Z3-symmetric we mean the following: The group Z3 ⊂ SO(3) acts on C by cyclically permuting three
pairs of its opposite vertices so that this action is extended to an action by isometries on the whole R3.

The word similar here means equivalent up to a similarity transform with positive determinant, that is a composition of
a proper rigid motion and a positive homothety. By inscribing a polytope P into a surface H we will always mean finding its
similar copy such that all vertices of P lie on H .

It is known (see [5,7,8] for example) that squares in the plane can be also inscribed into any polygonal simple curve; the
approximation by smooth curves and going to the limit works well in this case. Informally, the key feature here is that if
you look at the square from some direction in the plane then you do not see one of its vertices. The problem of inscribing a
square into any continuous simple closed curve in the plane remains unsolved, the approximation by smooth curves seems
to be insufficient in this case, see [7] for further information about this.

In R3 the situation is different even for regular octahedra: One can see all the vertices of an octahedron from some
directions. Thus we have to be careful when going to the limit and this is themain content of this paper. Note also that in the
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plane there exists a direct proof [9] of the Shnirel’man theorem for polygonal curves, while in this paper we cannot avoid
using the smooth case and going to the limit.

The main result of this paper is:

Theorem 1.3. Suppose P is a simple convex polytope in R3. Then there exists a regular octahedron inscribed into the surface ∂P.

Remark 1.4. The case of non-simple polytopes is considered in Section 4. In this case we are able to establish the existence
of an inscribed octahedron under certain additional assumptions on its solid angles (see Theorem 4.4).

Remark 1.5. Unlike the results for inscribing into smooth surfaces [2,3], here we only consider inscribing of a regular
octahedron, leaving out the case of inscribing an octahedron similar to a given Z3-symmetric octahedron. This case seems
to be out of reach of the methods presented here.

2. Approximation of ∂P by smooth surfaces

We are going to use the following way to approximate a polytope by smooth bodies:

Definition 2.1. Denote by Pε the union of all ε-balls that are contained in P

Pε =


Bε(x)⊆P

Bε.

The body Pε has a smooth boundary and, by the known results, admits an inscribed regular octahedron. Moreover, in [2,
3] it is proved that there is a nontrivial Z3-equivariant 1-homology class of such octahedra in the configuration space of all
octahedra, for which we take the space of similarity transforms with positive determinant S3, which is topologically equal
to R+

× R3
× SO(3). This space has an action of the symmetry group of the octahedron, and out of this group we are going

to use the Z3 that cyclically permutes the three axes of the octahedron.
In a certain ‘‘generic’’ case the set I of inscribed octahedra is indeed a smooth 1-manifold and itself represents a nonzero

class [I] ∈ H1(S3/Z3; F3). To handle degenerate cases (see [2,3]) it is useful to replace [I] with its Poincaré dual class
from some relative cohomology, which is actually convenient to treat as a member of the compact support cohomology
ζ ∈ H9

c (S3/Z3; F3) (see [1] as a reference for compact support cohomology). Using the technique of compact support
cohomology, we restate the results of [2,3] as follows: There exists a nonzero obstruction in cohomology ζ ∈ H9

c (S3/Z3; F3)
such that the set of inscribed octahedra I has ζ supported in its arbitrarily small neighborhood even in the degenerate cases,
when I itself does not look like a 1-cycle geometrically.

From here on, we argue in terms of the 1-dimensional homology cycle of I informally, having in mind that everything
becomes rigorous when passing to codimension 1 compact support cohomology.

Now let ε tend to zero. If the diameters of the inscribed octahedra of Pε do not tend to zero, then we obtain an inscribed
octahedron for P by standard compactness considerations. Hence for the rest of the proof we assume the contrary: Let
the maximum diameter of inscribed octahedra for Pε be at most δ(ε) and limε→+0 δ(ε) = 0. Denote the set of inscribed
octahedra for Pε by Iε ⊂ S3.

Since δ(ε) tends to zero, the octahedra from Iε tend (say, in Hausdorff metric) to points at the boundary of P . The first
observation is that they obviously cannot tend to a relative interior point of a facet. Moreover, the detailed analysis near an
edge shows that for small enough ε the octahedra in Iε cannot tend to an interior point of an edge. Indeed, if we project ∂P
along an edge thenwe obtain a plane angle A, the smoothening ∂Pε being projected to a smoothened plane angle Aε . Let C be
an octahedron inscribed into ∂Pε; it projects to a quadrilateral or hexagon C ′ inscribed into ∂Aε . Now it remains to note that
C ′ is centrally symmetric and we cannot see one of its vertices from any direction (of course, the invisible vertex depends
on the direction), while we can see the entire ∂Aε from some directions. This is a contradiction and we conclude:

Lemma 2.2. If there is no octahedron inscribed into ∂P then all octahedra in Iε tend to the vertices of P in Hausdorff metric. For
small enough ε the family Iε becomes a disjoint union of the sets Iε(v), corresponding to different vertices v ∈ P.

The decomposition of Iε into the sets Iε(v) corresponds to decomposition of the 1-homology class of inscribed octahedra
into a smooth body into a sum of 1-homology classes. Hence we have proved:

Lemma 2.3. There exists a vertex v, such that for arbitrarily small ε the octahedra Iε(v) (inscribed into ∂Pε near v) carry a
nontrivial Z3-equivariant 1-homology.

Thus we have to study the situation near the vertices of P . More precisely, we have to consider solid angles A(v) of
corresponding vertices of P and their smoothenings Aε(v) (not depending on ε > 0 essentially because of the possibility to
apply a homothety).

We want to describe the Z3-equivariant 1-homology of the set of octahedra inscribed into ∂Aε(v). The configuration
space S3 of all octahedra is homotopy equivalent to SO(3) and it has trivial homology modulo 3 in dimensions 1 and 2;
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Fig. 1.

the Z3-equivariant 1-homology modulo 3 (the homology of S3/Z3) is therefore equal to H1(Z3; F3) = F3. We choose the
generator of H1(S3/Z3; F3) to be equal to the 1-homology of octahedra inscribed into a generic smooth convex body.

The homology class of octahedra inscribed into ∂Aε(v) is well defined in the case when there are no arbitrarily large
octahedra inscribed into ∂Aε (note that we actually work in compact support cohomology and therefore must ensure
that everything remains bounded); in this case it corresponds to the well defined 1-homology class. Using an appropriate
homothety we conclude that fixed ε and arbitrarily large octahedron is the same as arbitrarily small ε and a fixed size
octahedron. By compactness considerations we conclude the following:

Lemma 2.4. The surface ∂Aε(v) has no well defined homology class of inscribed octahedra only if there exists an octahedron
inscribed into ∂A(v) without smoothening.

Definition 2.5. Call a solid angle A special if its boundary admits an inscribed octahedron.

Denote the configuration space of all congruence classes (SO(3)-orbits) of solid angles (with n ≥ 3 facets) by An and
denote the subset of special angles by An

S , this is a closed subset of An. Define the function

ϕ : An
\ An

S → F3

by assigning to a solid angle A the 1-homology of octahedra (divided by the generator of H1(S3/Z3; F3)) inscribed into the
smoothened solid angle Aε .

Lemma 2.6. The function ϕ is locally constant on An
\ An

S .

Proof. Fix some ε > 0. Under deformations of a solid angle A that avoid arbitrarily large inscribed octahedra for its
smoothening Aε , the smoothenings Aε are deformed continuously and the sizes of their inscribed octahedra remain bounded.
Hence, by the continuity of the 1-homology (or compact support cohomology), the class of octahedra inscribed into Aε is
preserved. �

Now in the inscribing problem we have the following options:
(a) P has a special angle. In this case it already has an inscribed octahedron.
(b) If (the sum is over all vertices in P)

v∈P

ϕ(A(v)) ≠ 1 (2.1)

then ∂P admits an inscribed octahedron. This follows from additivity of the homology classes.
Note that for every solid angle A close enough to a halfspace ϕ(A) = 0, since its smoothening does not admit an inscribed

octahedron.

3. Proof of Theorem 1.3

If the polytope P is simple then we deal with A3
S ⊂ A3. Taking into account the observations in the previous section,

we see that to prove Theorem 1.3 it is enough to prove the following lemma (because in this case the left hand part of (2.1)
vanishes):

Lemma 3.1. The set A3
\ A3

S is arcwise connected.

The proof of Lemma 3.1 will follow from the description of all solid angles that admit an octahedron inscribed into the
boundary:

Lemma 3.2. A solid angle A admits an octahedron inscribed into its boundary if and only if it is possible to place its corresponding
spherical triangle v1v2v3 inside of the regular spherical triangle t1t2t3 with |t1t2| = π/3 in the following way (up to relabeling
the vertices v1, v2, v3): The vertices v1 and t1 coincide, the vertex v2 lies on the segment t1t2, and v3 lies inside the triangle t1v2t3.
(see Fig. 1)

Proof. Let us check how an octahedron C could be inscribed into A. There are two alternatives:
Case 1: Some three vertices of C are on one facet of A, two are on the other facet, and one is on the third facet.
Case 2: Every facet of A contains two vertices of C .
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Fig. 3.

Fig. 4.

There are other degenerate cases, but we may ignore them since they all are limit cases of these two.
Denote the vertices of the octahedron by a, b, c , a′, b′, and c ′ (see Fig. 2).
Consider the first case. Suppose one of the facets of the angle A contains the facet a′b′c ′, the second facet contains the

edge ab, and the third facet contains the vertex c.
Denote the vertex of the angle A by v. It is easy to see that the common edge of the first and the second facets of A is

parallel to the edge ab of C , because both facets are parallel to ab. Without loss of generality we may assume that the point
b is closer to v than a. Let v1 be the vertex of the spherical triangle that corresponds to the common edge of the first and the
second facet of A, v2 correspond to the first and the third facet, and v3 is the remaining vertex (see Fig. 3).

Let t1, t2, and t3 be the vertices of the regular spherical triangle that corresponds to the vectors
−→
ba ,

−→
c ′b′, and

−→
a′c.

Denote by v′ the point where the edge v3 and the plane abc intersect (Fig. 3). Obviously, v′c is parallel to the edge v2.
Since v′c does not intersect the interior of the triangle abc , it follows that the vector

−→
v′c lies ‘‘between’’ the vectors

−→
ba and

−→
bc . Therefore on the sphere the vertex v2 lies on the segment [t1, t2].

Consider the plane α of the third facet that contains the point c of the octahedron. It contains the line cv′ and does not
intersect the octahedron in the interior. Thismeans that α lies ‘‘between’’ the planes (in terms of normals to oriented planes)
v′ca′ and v′ca, the latter coinciding with the plane abc . The line v2t3 (on the sphere) corresponds to the plane v′ca′ and the
line t1v2 corresponds to the plane v′ca. Therefore the third facet corresponds to a line ‘‘between’’ v2t1 and v2t3.

It is clear that the second facet corresponds to the line passing through t1 that lies ‘‘between’’ [t1, t2) and [t1, t3). Therefore
the point v3 lies inside the triangle t1v2t3.

To prove the lemma in the opposite direction, we note that for any triangle from the statement of the lemma it is possible
to construct an inscribed octahedron by the way depicted in Fig. 3.

Consider the second case. Without loss of generality we may assume that the first facet of A contains the edge ab of the
octahedron, the second facet contains the edge ca′, and the third facet contains the edge b′c ′. This means that extensions of
the sides of the spherical triangle △v1v2v3 pass through the vertices of △t1t2t3 (see Fig. 4). If the fact that △v1v2v3 is inside
△t1t2t3 is not clear to the reader, please see the proof of Lemma 4.1 for a rigorous explanation.

Let us show that △v1v2v3 can be placed in △t1t2t3 in the proper way. Since the area of △v1v2v3 is less than the area
of △t1t2t3 it follows that one of the angles of △v1v2v3 is less than ̸ t2t1t3 (note that △t1t2t3 is regular). Without loss of
generality we may assume that this angle is ̸ v2 and the triangle v1v2v3 is placed in t1t2t3 in the way shown in Fig. 4 (the
points t1 and v3 are on the same side of the line v1v2).
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Fig. 6.

Choose a point t ′1 so that |t ′1v2| = |t1t2| and ̸ t ′1v2t3 = ̸ t1t2t3; and choose a point t ′3 on the ray [v2, t3) so that
|t ′3v2| = |t1t2| (Fig. 5). Note that ̸ t3v2t1 > ̸ t3t2t1. Therefore the segment [t ′1, v2] intersects the segment [t1, v3], thus
giving the inclusion △v1v2v3 ⊂ △t ′1v1v2. We obtain that △v1v2v3 is positioned in the proper way inside △v2t ′1t

′

3, which is
congruent to △t1t2t3. �

Lemma 3.3. In Lemma 3.2 we may assume that |v1v2| ≥ |v1v3| ≥ |v2v3|.

Proof of Lemma 3.3. If |v1v3| > |v1v2| then reflect△v1v2v3 with respect to the bisector of ̸ v2v1v3 and the triangle v1v
′

2v
′

3,
which lies in △t1t2t3 in a proper way, because v′

2 ∈ [v1, v3] and △v1v2t3 ⊂ v1v
′

3t3.
If |v2v3| > |v1v3| then reflect △v1v2v3 with respect to the perpendicular bisector of the segment [v1, v2]. Denote by v′

3
the image of v3. We have

̸ v′

3v2v1 = ̸ v3v1v2 < ̸ t3v1v2 < ̸ t3v2v1.

Since |v2v3| > |v1v3|, we have

̸ v′

3v1v2 = ̸ v3v2v1 < ̸ v3v1v2 < ̸ t3v1v2.

Therefore the ‘‘rays’’ [v1, v
′

3) and [v2, v
′

3) are directed into the interior of △t1v2t3 and the point v′

3 lies inside this triangle.
Using this two kinds of operations we can rearrange the side lengths of the △v1v2v3 in the required order. �

Corollary 3.4. If all facet angles of a solid angle A ∈ A3 are less than π/6 then A ∈ A3
S . If one facet angle of a solid angle A ∈ A3

is greater than π/3 then A ∈ A3
\ A3

S .

Remark 3.5. It is not true that if all facet angles of a solid angle A ∈ A3 are at most π/3 then A ∈ A3
S . Indeed, we start from

the spherical triangle t1t2t3 and decrease slightly its side t2t3. The resulting triangle will not fit into△t1t2t3, so by Lemma 3.2
it cannot be in A3

S .

Now we make the final step:

Proof of Lemma 3.1. Consider the triangle T corresponding to a solid angle A ∈ A3
\ A3

S . Let T = △v1v2v3 and |v1v2| ≥

|v1v3| ≥ |v2v3|. Let T0 be the regular triangle t1t2t3 with side length π/3.
We are going to show how to increase the sides of the triangle T and obtain a triangle with a side greater than π/3 (the

set of triangles of this kind is obviously arcwise connected and by Corollary 3.4 belongs to the set A3
\ A3

S ).
Suppose all sides are less than π/3. Let us try to place the triangle T into the right triangle T0 in the way prescribed by

Lemma 3.3. The only way that makes the position not proper is that v3 is outside △v1v2t3, which is possible only if the
segment v1v3 goes outside the segment v2t3. From Corollary 3.4 it follows that |v1v2| ≥ π/6 and therefore ̸ v1v2t3 is acute.
Nowwe increase the length of the side v1v3 up to |v1v2| preserving the angle ̸ v2v1v3. The position of △v1v2v3 remains not
proper (as required by Lemma 3.3).

Now we start to increase the length of the sides v1v2 and v1v3 in such a way that they remain equal during the process.
The angle ̸ v1v2v3 will increase while the angle ̸ v1v2t3 will decrease during this process. Hence the point v3 will remain
outside △v1v2t3. Finally we obtain an isosceles triangle with two sides greater than π/3 (see Fig. 6). �
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4. The case of non-simple polytopes

In this case we have a weaker analogue of Lemma 3.2. We again associate a solid angle Awith its spheric convex polygon
and denote by T0 the regular spherical triangle with side length π/3.

Lemma 4.1. If A ∈ AS then some congruence takes the spherical polygon of A inside T0.

Proof. The assumption A ∈ AS means that the vertex v of A is outside C and we ‘‘see’’ all vertices of C from v. Here we see a
vertex c ∈ C if the segment [vc] does not intersect the interior of C . We also note that it is sufficient to prove the lemma in
the ‘‘generic’’ case and then go to the limit using compactness of the group of rotations. So we are free to perturb anything.

Consider a regular tetrahedron Θ formed by some four alternating facets of C . Observe that v is not in the interior of Θ ,
otherwise some vertex of C would be ‘‘behind’’ C when looking from v. Look at Θ from v, there are three alternatives:

Case I: We see some vertex of Θ and this vertex is not ‘‘behind’’ Θ . Denote by B the solid angle of this vertex, its spherical
triangle is congruent to T0. Let us make a small perturbation of A keeping C inscribed into X and making the intersection
∂A ∩ ∂B transversal.

Let ∂B consist of three flat angles B1, B2, and B3. Every intersection Xi = A ∩ Bi is a convex set containing the vertex s of
Bi and having three vertices x1, x2, and x3 of the octahedron C on its boundary. Consider the facet B1, in this case x1, x2 and
x3 is the triple of verticies a, b′ and c (Fig. 7).

Note that a and c are on the sides of B1 and the segments [a, b′
] and [b′, c] are parallel to the sides of B1, so sab′c is a

parallelogram. There exists a support line ℓ1 to X1 passing through b′ in the plane of B1. The points a, c , and s are on the
one side of ℓ1 and the line ℓ1 separates X1 from infinity, except for the case when ℓ1 is parallel to a side of B1. But the latter
situation is degenerate and can be excluded by a small perturbation. A similar statement holds for facets B2 and B3.

Thus ∂A ∩ ∂B is bounded and after the translation that identifies the vertices of A and B the whole solid angle A will get
inside B. This is true after an arbitrarily small perturbation of A, so it was true for the original A by the continuity.

Case II: We see some vertex of Θ and this vertex is ‘‘behind’’ Θ . In this case we replace Θ with another tetrahedron Θ ′

symmetric to Θ with respect to the center of C . The considered case cannot happen to both Θ and Θ ′ at the same time.
Case III: We see Θ as a quadrangle from v. In this case we do not see the vertex of C that corresponds to the farthest in

the pair of edges of Θ that intersect as we see them from v, because we see every face of C adjacent to v from inside. �

Now we make a definition:

Definition 4.2. Denote by A0 ⊂ A the set of solid angles that cannot be put into T0 by a congruence.

Remark 4.3. A careful analysis of Lemmas 3.2 and 3.3 shows that A3
∩ A0 ≠ A3

\ A3
S . It is sufficient to take T = T0 and

shrink one of its sides to the midpoint of that side slightly.

Theorem 4.4. Suppose P is a convex polytope in R3 such that all its solid angles either in A3 or in A0. Then there exists a regular
octahedron inscribed into ∂P.

Proof. It remains to show that any A ∈ A0 can be deformed to a halfspace staying inside A0. We can make a strong
monotonic (monotonic with respect to inclusion) deformation of A to a halfspace, and obviously A will remain in A0 under
such a deformation. �
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