Inscribing a regular octahedron into polytopes

Arseniy Akopyan ${ }^{\text {a,b,* }}$, Roman Karasev ${ }^{\text {c,b }}$
${ }^{a}$ Institute for Information Transmission Problems RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia
${ }^{\text {b }}$ B. N. Delone International Laboratory "Discrete and Computational Geometry", P. G Demidov Yaroslavl State University, Sovetskaya st. 14, Yaroslavl', 150000, Russia
${ }^{\text {c }}$ Department of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, 141700, Russia

A R TICLE INFO

Article history:

Received 14 October 2011
Received in revised form 23 August 2012
Accepted 4 September 2012
Available online 29 September 2012

Keywords:

Inscribed polytopes
Spheric geometry

Abstract

We prove that any simple polytope (and some non-simple polytopes) in \mathbb{R}^{3} admits a regular octahedron inscribed into its surface.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The famous theorem of Shnirel'man [10] (see also [5]) asserts that for every smooth simple closed curve γ in the plane there exists a square Q such that all four vertices of Q lie on γ.

In the thesis of Makeev [6] the following theorem was proved (reproved and generalized for higher prime power dimensions in $[2,4])$:

Theorem 1.1. Let H be a smooth surface embedded into \mathbb{R}^{3} and homeomorphic to the sphere S^{2}. Let C be some \mathbb{Z}_{3}-symmetric octahedron. Then there exists an octahedron $C^{\prime} \subset \mathbb{R}^{3}$ similar to C with all its vertices lying on H.

Remark 1.2. Here by \mathbb{Z}_{3}-symmetric we mean the following: The group $\mathbb{Z}_{3} \subset S O(3)$ acts on C by cyclically permuting three pairs of its opposite vertices so that this action is extended to an action by isometries on the whole \mathbb{R}^{3}.

The word similar here means equivalent up to a similarity transform with positive determinant, that is a composition of a proper rigid motion and a positive homothety. By inscribing a polytope P into a surface H we will always mean finding its similar copy such that all vertices of P lie on H.

It is known (see [5,7,8] for example) that squares in the plane can be also inscribed into any polygonal simple curve; the approximation by smooth curves and going to the limit works well in this case. Informally, the key feature here is that if you look at the square from some direction in the plane then you do not see one of its vertices. The problem of inscribing a square into any continuous simple closed curve in the plane remains unsolved, the approximation by smooth curves seems to be insufficient in this case, see [7] for further information about this.

In \mathbb{R}^{3} the situation is different even for regular octahedra: One can see all the vertices of an octahedron from some directions. Thus we have to be careful when going to the limit and this is the main content of this paper. Note also that in the

[^0]plane there exists a direct proof [9] of the Shnirel'man theorem for polygonal curves, while in this paper we cannot avoid using the smooth case and going to the limit.

The main result of this paper is:
Theorem 1.3. Suppose P is a simple convex polytope in \mathbb{R}^{3}. Then there exists a regular octahedron inscribed into the surface ∂P.
Remark 1.4. The case of non-simple polytopes is considered in Section 4. In this case we are able to establish the existence of an inscribed octahedron under certain additional assumptions on its solid angles (see Theorem 4.4).

Remark 1.5. Unlike the results for inscribing into smooth surfaces [2,3], here we only consider inscribing of a regular octahedron, leaving out the case of inscribing an octahedron similar to a given \mathbb{Z}_{3}-symmetric octahedron. This case seems to be out of reach of the methods presented here.

2. Approximation of $\boldsymbol{\partial P}$ by smooth surfaces

We are going to use the following way to approximate a polytope by smooth bodies:
Definition 2.1. Denote by P_{ε} the union of all ε-balls that are contained in P

$$
P_{\varepsilon}=\bigcup_{B_{\varepsilon}(x) \subseteq P} B_{\varepsilon} .
$$

The body P_{ε} has a smooth boundary and, by the known results, admits an inscribed regular octahedron. Moreover, in [2, 3] it is proved that there is a nontrivial \mathbb{Z}_{3}-equivariant 1-homology class of such octahedra in the configuration space of all octahedra, for which we take the space of similarity transforms with positive determinant S_{3}, which is topologically equal to $\mathbb{R}^{+} \times \mathbb{R}^{3} \times S O(3)$. This space has an action of the symmetry group of the octahedron, and out of this group we are going to use the \mathbb{Z}_{3} that cyclically permutes the three axes of the octahedron.

In a certain "generic" case the set ℓ of inscribed octahedra is indeed a smooth 1-manifold and itself represents a nonzero class $[\ell] \in H_{1}\left(S_{3} / \mathbb{Z}_{3} ; \mathbb{F}_{3}\right)$. To handle degenerate cases (see [2,3]) it is useful to replace [ℓ] with its Poincaré dual class from some relative cohomology, which is actually convenient to treat as a member of the compact support cohomology $\zeta \in H_{c}^{9}\left(S_{3} / \mathbb{Z}_{3} ; \mathbb{F}_{3}\right)$ (see [1] as a reference for compact support cohomology). Using the technique of compact support cohomology, we restate the results of [2,3] as follows: There exists a nonzero obstruction in cohomology $\zeta \in H_{c}^{9}\left(S_{3} / \mathbb{Z}_{3} ; \mathbb{F}_{3}\right)$ such that the set of inscribed octahedra ℓ has ζ supported in its arbitrarily small neighborhood even in the degenerate cases, when ℓ itself does not look like a 1-cycle geometrically.

From here on, we argue in terms of the 1-dimensional homology cycle of ℓ informally, having in mind that everything becomes rigorous when passing to codimension 1 compact support cohomology.

Now let ε tend to zero. If the diameters of the inscribed octahedra of P_{ε} do not tend to zero, then we obtain an inscribed octahedron for P by standard compactness considerations. Hence for the rest of the proof we assume the contrary: Let the maximum diameter of inscribed octahedra for P_{ε} be at most $\delta(\varepsilon)$ and $\lim _{\varepsilon \rightarrow+0} \delta(\varepsilon)=0$. Denote the set of inscribed octahedra for P_{ε} by $\ell_{\varepsilon} \subset S_{3}$.

Since $\delta(\varepsilon)$ tends to zero, the octahedra from ℓ_{ε} tend (say, in Hausdorff metric) to points at the boundary of P. The first observation is that they obviously cannot tend to a relative interior point of a facet. Moreover, the detailed analysis near an edge shows that for small enough ε the octahedra in ℓ_{ε} cannot tend to an interior point of an edge. Indeed, if we project ∂P along an edge then we obtain a plane angle A, the smoothening ∂P_{ε} being projected to a smoothened plane angle A_{ε}. Let C be an octahedron inscribed into ∂P_{ε}; it projects to a quadrilateral or hexagon C^{\prime} inscribed into ∂A_{ε}. Now it remains to note that C^{\prime} is centrally symmetric and we cannot see one of its vertices from any direction (of course, the invisible vertex depends on the direction), while we can see the entire ∂A_{ε} from some directions. This is a contradiction and we conclude:

Lemma 2.2. If there is no octahedron inscribed into ∂P then all octahedra in ℓ_{ε} tend to the vertices of P in Hausdorff metric. For small enough ε the family ℓ_{ε} becomes a disjoint union of the sets $\ell_{\varepsilon}(v)$, corresponding to different vertices $v \in P$.

The decomposition of ℓ_{ε} into the sets $\ell_{\varepsilon}(v)$ corresponds to decomposition of the 1-homology class of inscribed octahedra into a smooth body into a sum of 1-homology classes. Hence we have proved:

Lemma 2.3. There exists a vertex v, such that for arbitrarily small ε the octahedra $\ell_{\varepsilon}(v)$ (inscribed into ∂P_{ε} near v) carry a nontrivial \mathbb{Z}_{3}-equivariant 1-homology.

Thus we have to study the situation near the vertices of P. More precisely, we have to consider solid angles $A(v)$ of corresponding vertices of P and their smoothenings $A_{\varepsilon}(v)$ (not depending on $\varepsilon>0$ essentially because of the possibility to apply a homothety).

We want to describe the \mathbb{Z}_{3}-equivariant 1-homology of the set of octahedra inscribed into $\partial A_{\varepsilon}(v)$. The configuration space S_{3} of all octahedra is homotopy equivalent to $S O(3)$ and it has trivial homology modulo 3 in dimensions 1 and 2 ;

Fig. 1.
the \mathbb{Z}_{3}-equivariant 1-homology modulo 3 (the homology of $\left.S_{3} / \mathbb{Z}_{3}\right)$ is therefore equal to $H_{1}\left(\mathbb{Z}_{3} ; \mathbb{F}_{3}\right)=\mathbb{F}_{3}$. We choose the generator of $H_{1}\left(S_{3} / \mathbb{Z}_{3} ; \mathbb{F}_{3}\right)$ to be equal to the 1-homology of octahedra inscribed into a generic smooth convex body.

The homology class of octahedra inscribed into $\partial A_{\varepsilon}(v)$ is well defined in the case when there are no arbitrarily large octahedra inscribed into ∂A_{ε} (note that we actually work in compact support cohomology and therefore must ensure that everything remains bounded); in this case it corresponds to the well defined 1-homology class. Using an appropriate homothety we conclude that fixed ε and arbitrarily large octahedron is the same as arbitrarily small ε and a fixed size octahedron. By compactness considerations we conclude the following:

Lemma 2.4. The surface $\partial A_{\varepsilon}(v)$ has no well defined homology class of inscribed octahedra only if there exists an octahedron inscribed into $\partial A(v)$ without smoothening.

Definition 2.5. Call a solid angle A special if its boundary admits an inscribed octahedron.
Denote the configuration space of all congruence classes ($S O(3)$-orbits) of solid angles (with $n \geq 3$ facets) by \mathcal{A}^{n} and denote the subset of special angles by \mathcal{A}_{S}^{n}, this is a closed subset of \mathcal{A}^{n}. Define the function

$$
\varphi: \mathcal{A}^{n} \backslash \mathcal{A}_{s}^{n} \rightarrow \mathbb{F}_{3}
$$

by assigning to a solid angle A the 1-homology of octahedra (divided by the generator of $H_{1}\left(S_{3} / \mathbb{Z}_{3} ; \mathbb{F}_{3}\right)$) inscribed into the smoothened solid angle A_{ε}.

Lemma 2.6. The function φ is locally constant on $\mathcal{A}^{n} \backslash \mathcal{A}_{s}^{n}$.
Proof. Fix some $\varepsilon>0$. Under deformations of a solid angle A that avoid arbitrarily large inscribed octahedra for its smoothening A_{ε}, the smoothenings A_{ε} are deformed continuously and the sizes of their inscribed octahedra remain bounded. Hence, by the continuity of the 1 -homology (or compact support cohomology), the class of octahedra inscribed into A_{ε} is preserved.

Now in the inscribing problem we have the following options:
(a) P has a special angle. In this case it already has an inscribed octahedron.
(b) If (the sum is over all vertices in P)

$$
\begin{equation*}
\sum_{v \in P} \varphi(A(v)) \neq 1 \tag{2.1}
\end{equation*}
$$

then ∂P admits an inscribed octahedron. This follows from additivity of the homology classes.
Note that for every solid angle A close enough to a halfspace $\varphi(A)=0$, since its smoothening does not admit an inscribed octahedron.

3. Proof of Theorem 1.3

If the polytope P is simple then we deal with $\mathcal{A}_{S}^{3} \subset \mathcal{A}^{3}$. Taking into account the observations in the previous section, we see that to prove Theorem 1.3 it is enough to prove the following lemma (because in this case the left hand part of (2.1) vanishes):

Lemma 3.1. The set $\mathcal{A}^{3} \backslash \mathcal{A}_{S}^{3}$ is arcwise connected.
The proof of Lemma 3.1 will follow from the description of all solid angles that admit an octahedron inscribed into the boundary:

Lemma 3.2. A solid angle A admits an octahedron inscribed into its boundary if and only if it is possible to place its corresponding spherical triangle $v_{1} v_{2} v_{3}$ inside of the regular spherical triangle $t_{1} t_{2} t_{3}$ with $\left|t_{1} t_{2}\right|=\pi / 3$ in the following way (up to relabeling the vertices v_{1}, v_{2}, v_{3}): The vertices v_{1} and t_{1} coincide, the vertex v_{2} lies on the segment $t_{1} t_{2}$, and v_{3} lies inside the triangle $t_{1} v_{2} t_{3}$. (see Fig. 1)

Proof. Let us check how an octahedron C could be inscribed into A. There are two alternatives:
Case 1: Some three vertices of C are on one facet of A, two are on the other facet, and one is on the third facet.
Case 2: Every facet of A contains two vertices of C.

Fig. 2.

Fig. 3.

Fig. 4.

There are other degenerate cases, but we may ignore them since they all are limit cases of these two.
Denote the vertices of the octahedron by $a, b, c, a^{\prime}, b^{\prime}$, and c^{\prime} (see Fig. 2).
Consider the first case. Suppose one of the facets of the angle A contains the facet $a^{\prime} b^{\prime} c^{\prime}$, the second facet contains the edge $a b$, and the third facet contains the vertex c.

Denote the vertex of the angle A by v. It is easy to see that the common edge of the first and the second facets of A is parallel to the edge $a b$ of C, because both facets are parallel to $a b$. Without loss of generality we may assume that the point b is closer to v than a. Let v_{1} be the vertex of the spherical triangle that corresponds to the common edge of the first and the second facet of A, v_{2} correspond to the first and the third facet, and v_{3} is the remaining vertex (see Fig. 3).

Let t_{1}, t_{2}, and t_{3} be the vertices of the regular spherical triangle that corresponds to the vectors $\overrightarrow{b a}, \overrightarrow{c^{\prime} b^{\prime}}$, and $\overrightarrow{a^{\prime} c}$.
Denote by v^{\prime} the point where the edge v_{3} and the plane $a b c$ intersect (Fig. 3). Obviously, $v^{\prime} c$ is parallel to the edge v_{2}. Since $v^{\prime} c$ does not intersect the interior of the triangle $a b c$, it follows that the vector $\overrightarrow{v^{\prime} c}$ lies "between" the vectors $\overrightarrow{b a}$ and $\overrightarrow{b c}$. Therefore on the sphere the vertex v_{2} lies on the segment $\left[t_{1}, t_{2}\right]$.

Consider the plane α of the third facet that contains the point c of the octahedron. It contains the line $c v^{\prime}$ and does not intersect the octahedron in the interior. This means that α lies "between" the planes (in terms of normals to oriented planes) $v^{\prime} c a^{\prime}$ and $v^{\prime} c a$, the latter coinciding with the plane $a b c$. The line $v_{2} t_{3}$ (on the sphere) corresponds to the plane $v^{\prime} c a^{\prime}$ and the line $t_{1} v_{2}$ corresponds to the plane $v^{\prime} c a$. Therefore the third facet corresponds to a line "between" $v_{2} t_{1}$ and $v_{2} t_{3}$.

It is clear that the second facet corresponds to the line passing through t_{1} that lies "between" $\left[t_{1}, t_{2}\right)$ and $\left[t_{1}, t_{3}\right)$. Therefore the point v_{3} lies inside the triangle $t_{1} v_{2} t_{3}$.

To prove the lemma in the opposite direction, we note that for any triangle from the statement of the lemma it is possible to construct an inscribed octahedron by the way depicted in Fig. 3.

Consider the second case. Without loss of generality we may assume that the first facet of A contains the edge $a b$ of the octahedron, the second facet contains the edge $c a^{\prime}$, and the third facet contains the edge $b^{\prime} c^{\prime}$. This means that extensions of the sides of the spherical triangle $\Delta v_{1} v_{2} v_{3}$ pass through the vertices of $\Delta t_{1} t_{2} t_{3}$ (see Fig. 4). If the fact that $\Delta v_{1} v_{2} v_{3}$ is inside $\Delta t_{1} t_{2} t_{3}$ is not clear to the reader, please see the proof of Lemma 4.1 for a rigorous explanation.

Let us show that $\Delta v_{1} v_{2} v_{3}$ can be placed in $\Delta t_{1} t_{2} t_{3}$ in the proper way. Since the area of $\Delta v_{1} v_{2} v_{3}$ is less than the area of $\Delta t_{1} t_{2} t_{3}$ it follows that one of the angles of $\Delta v_{1} v_{2} v_{3}$ is less than $\angle t_{2} t_{1} t_{3}$ (note that $\Delta t_{1} t_{2} t_{3}$ is regular). Without loss of generality we may assume that this angle is $\angle v_{2}$ and the triangle $v_{1} v_{2} v_{3}$ is placed in $t_{1} t_{2} t_{3}$ in the way shown in Fig. 4 (the points t_{1} and v_{3} are on the same side of the line $v_{1} v_{2}$).

Fig. 5.

Fig. 6.

Choose a point t_{1}^{\prime} so that $\left|t_{1}^{\prime} v_{2}\right|=\left|t_{1} t_{2}\right|$ and $\angle t_{1}^{\prime} v_{2} t_{3}=\angle t_{1} t_{2} t_{3}$; and choose a point t_{3}^{\prime} on the ray $\left[v_{2}, t_{3}\right)$ so that $\left|t_{3}^{\prime} v_{2}\right|=\left|t_{1} t_{2}\right|$ (Fig. 5). Note that $\angle t_{3} v_{2} t_{1}>\angle t_{3} t_{2} t_{1}$. Therefore the segment [t_{1}^{\prime}, v_{2}] intersects the segment [t_{1}, v_{3}], thus giving the inclusion $\Delta v_{1} v_{2} v_{3} \subset \Delta t_{1}^{\prime} v_{1} v_{2}$. We obtain that $\Delta v_{1} v_{2} v_{3}$ is positioned in the proper way inside $\Delta v_{2} t_{1}^{\prime} t_{3}^{\prime}$, which is congruent to $\Delta t_{1} t_{2} t_{3}$.

Lemma 3.3. In Lemma 3.2 we may assume that $\left|v_{1} v_{2}\right| \geq\left|v_{1} v_{3}\right| \geq\left|v_{2} v_{3}\right|$.
Proof of Lemma 3.3. If $\left|v_{1} v_{3}\right|>\left|v_{1} v_{2}\right|$ then reflect $\Delta v_{1} v_{2} v_{3}$ with respect to the bisector of $\angle v_{2} v_{1} v_{3}$ and the triangle $v_{1} v_{2}^{\prime} v_{3}^{\prime}$, which lies in $\triangle t_{1} t_{2} t_{3}$ in a proper way, because $v_{2}^{\prime} \in\left[v_{1}, v_{3}\right]$ and $\triangle v_{1} v_{2} t_{3} \subset v_{1} v_{3}^{\prime} t_{3}$.

If $\left|v_{2} v_{3}\right|>\left|v_{1} v_{3}\right|$ then reflect $\Delta v_{1} v_{2} v_{3}$ with respect to the perpendicular bisector of the segment $\left[v_{1}, v_{2}\right]$. Denote by v_{3}^{\prime} the image of v_{3}. We have

$$
\angle v_{3}^{\prime} v_{2} v_{1}=\angle v_{3} v_{1} v_{2}<\angle t_{3} v_{1} v_{2}<\angle t_{3} v_{2} v_{1}
$$

Since $\left|v_{2} v_{3}\right|>\left|v_{1} v_{3}\right|$, we have

$$
\angle v_{3}^{\prime} v_{1} v_{2}=\angle v_{3} v_{2} v_{1}<\angle v_{3} v_{1} v_{2}<\angle t_{3} v_{1} v_{2}
$$

Therefore the "rays" $\left[v_{1}, v_{3}^{\prime}\right.$) and $\left[v_{2}, v_{3}^{\prime}\right.$) are directed into the interior of $\Delta t_{1} v_{2} t_{3}$ and the point v_{3}^{\prime} lies inside this triangle.
Using this two kinds of operations we can rearrange the side lengths of the $\triangle v_{1} v_{2} v_{3}$ in the required order.
Corollary 3.4. If all facet angles of a solid angle $A \in \mathcal{A}^{3}$ are less than $\pi / 6$ then $A \in \mathcal{A}_{S}^{3}$. If one facet angle of a solid angle $A \in \mathcal{A}^{3}$ is greater than $\pi / 3$ then $A \in \mathcal{A}^{3} \backslash \mathcal{A}_{s}^{3}$.

Remark 3.5. It is not true that if all facet angles of a solid angle $A \in \mathcal{A}^{3}$ are at most $\pi / 3$ then $A \in \mathcal{A}_{S}^{3}$. Indeed, we start from the spherical triangle $t_{1} t_{2} t_{3}$ and decrease slightly its side $t_{2} t_{3}$. The resulting triangle will not fit into $\Delta t_{1} t_{2} t_{3}$, so by Lemma 3.2 it cannot be in \mathcal{A}_{S}^{3}.

Now we make the final step:
Proof of Lemma 3.1. Consider the triangle T corresponding to a solid angle $A \in \mathcal{A}^{3} \backslash \mathcal{A}_{5}^{3}$. Let $T=\Delta v_{1} v_{2} v_{3}$ and $\left|v_{1} v_{2}\right| \geq$ $\left|v_{1} v_{3}\right| \geq\left|v_{2} v_{3}\right|$. Let T_{0} be the regular triangle $t_{1} t_{2} t_{3}$ with side length $\pi / 3$.

We are going to show how to increase the sides of the triangle T and obtain a triangle with a side greater than $\pi / 3$ (the set of triangles of this kind is obviously arcwise connected and by Corollary 3.4 belongs to the set $\mathscr{A}^{3} \backslash \mathcal{A}_{S}^{3}$).

Suppose all sides are less than $\pi / 3$. Let us try to place the triangle T into the right triangle T_{0} in the way prescribed by Lemma 3.3. The only way that makes the position not proper is that v_{3} is outside $\Delta v_{1} v_{2} t_{3}$, which is possible only if the segment $v_{1} v_{3}$ goes outside the segment $v_{2} t_{3}$. From Corollary 3.4 it follows that $\left|v_{1} v_{2}\right| \geq \pi / 6$ and therefore $\angle v_{1} v_{2} t_{3}$ is acute. Now we increase the length of the side $v_{1} v_{3}$ up to $\left|v_{1} v_{2}\right|$ preserving the angle $\angle v_{2} v_{1} v_{3}$. The position of $\Delta v_{1} v_{2} v_{3}$ remains not proper (as required by Lemma 3.3).

Now we start to increase the length of the sides $v_{1} v_{2}$ and $v_{1} v_{3}$ in such a way that they remain equal during the process. The angle $\angle v_{1} v_{2} v_{3}$ will increase while the angle $\angle v_{1} v_{2} t_{3}$ will decrease during this process. Hence the point v_{3} will remain outside $\Delta v_{1} v_{2} t_{3}$. Finally we obtain an isosceles triangle with two sides greater than $\pi / 3$ (see Fig. 6).

Fig. 7.

4. The case of non-simple polytopes

In this case we have a weaker analogue of Lemma 3.2. We again associate a solid angle A with its spheric convex polygon and denote by T_{0} the regular spherical triangle with side length $\pi / 3$.

Lemma 4.1. If $A \in \mathcal{A}_{S}$ then some congruence takes the spherical polygon of A inside T_{0}.
Proof. The assumption $A \in \mathcal{A}_{S}$ means that the vertex v of A is outside C and we "see" all vertices of C from v. Here we see a vertex $c \in C$ if the segment $[v c]$ does not intersect the interior of C. We also note that it is sufficient to prove the lemma in the "generic" case and then go to the limit using compactness of the group of rotations. So we are free to perturb anything.

Consider a regular tetrahedron Θ formed by some four alternating facets of C. Observe that v is not in the interior of Θ, otherwise some vertex of C would be "behind" C when looking from v. Look at Θ from v, there are three alternatives:

Case I: We see some vertex of Θ and this vertex is not "behind" Θ. Denote by B the solid angle of this vertex, its spherical triangle is congruent to T_{0}. Let us make a small perturbation of A keeping C inscribed into X and making the intersection $\partial A \cap \partial B$ transversal.

Let ∂B consist of three flat angles B_{1}, B_{2}, and B_{3}. Every intersection $X_{i}=A \cap B_{i}$ is a convex set containing the vertex s of B_{i} and having three vertices x_{1}, x_{2}, and x_{3} of the octahedron C on its boundary. Consider the facet B_{1}, in this case x_{1}, x_{2} and x_{3} is the triple of verticies a, b^{\prime} and c (Fig. 7).

Note that a and c are on the sides of B_{1} and the segments $\left[a, b^{\prime}\right]$ and $\left[b^{\prime}, c\right]$ are parallel to the sides of B_{1}, so $s a b^{\prime} c$ is a parallelogram. There exists a support line ℓ_{1} to X_{1} passing through b^{\prime} in the plane of B_{1}. The points a, c, and s are on the one side of ℓ_{1} and the line ℓ_{1} separates X_{1} from infinity, except for the case when ℓ_{1} is parallel to a side of B_{1}. But the latter situation is degenerate and can be excluded by a small perturbation. A similar statement holds for facets B_{2} and B_{3}.

Thus $\partial A \cap \partial B$ is bounded and after the translation that identifies the vertices of A and B the whole solid angle A will get inside B. This is true after an arbitrarily small perturbation of A, so it was true for the original A by the continuity.

Case II: We see some vertex of Θ and this vertex is "behind" Θ. In this case we replace Θ with another tetrahedron Θ^{\prime} symmetric to Θ with respect to the center of C. The considered case cannot happen to both Θ and Θ^{\prime} at the same time.

Case III: We see Θ as a quadrangle from v. In this case we do not see the vertex of C that corresponds to the farthest in the pair of edges of Θ that intersect as we see them from v, because we see every face of C adjacent to v from inside.

Now we make a definition:
Definition 4.2. Denote by $\mathcal{A}_{0} \subset \mathscr{A}$ the set of solid angles that cannot be put into T_{0} by a congruence.
Remark 4.3. A careful analysis of Lemmas 3.2 and 3.3 shows that $\mathcal{A}^{3} \cap \mathcal{A}_{0} \neq \mathcal{A}^{3} \backslash \mathcal{A}_{S}^{3}$. It is sufficient to take $T=T_{0}$ and shrink one of its sides to the midpoint of that side slightly.

Theorem 4.4. Suppose P is a convex polytope in \mathbb{R}^{3} such that all its solid angles either in \mathscr{A}^{3} or in \mathscr{A}_{0}. Then there exists a regular octahedron inscribed into ∂P.
Proof. It remains to show that any $A \in \mathcal{A}_{0}$ can be deformed to a halfspace staying inside \mathcal{A}_{0}. We can make a strong monotonic (monotonic with respect to inclusion) deformation of A to a halfspace, and obviously A will remain in \mathscr{A}_{0} under such a deformation.

Acknowledgments

The authors thank Benjamin Matschke for the discussion and helpful remarks, thank the unknown referees for numerous remarks and comments, and thank Igor Pak for useful advice on improving the readability of this text.

The research of both authors is supported by the Dynasty Foundation, the President's of Russian Federation grant MD352.2012 .1 , the Russian Foundation for Basic Research grant 10-01-00096, the Federal Program "Scientific and scientificpedagogical staff of innovative Russia" 2009-2013, and the Russian government project 11.G34.31.0053. The research of A.V. Akopyan is also supported by the Russian Foundation for Basic Research grant 11-01-00735 and the research of R.N. Karasev is also supported by the Russian Foundation for Basic Research grant 10-01-00139.

References

[1] A. Borel, J. Moore, Homology theory for locally compact spaces, Michigan Mathematical Journal 7 (1960) 137-159.
[2] R.N. Karasev, Inscribing a regular crosspolytope, 2009. Arxiv preprint arXiv:0905.2671.
[3] R.N. Karasev, Equipartition of a measure by $\left(Z_{p}\right)^{k}$-invariant fans, Discrete \& Computational Geometry 43 (2) (2010) 477-481.
[4] R.N. Karasev, Knaster's problem for $\left(Z_{2}\right)^{k}$-symmetric subsets of the sphere $S^{2^{k}-1}$, Discrete \& Computational Geometry 44 (2) (2010) 429-438.
[5] V. Klee, S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, in: The Dolciani Mathematical Expositions, vol. 11, Mathematical Association of America, Washington, DC, 1991, p. xv, 333.
[6] V.V. Makeev, Universally inscribed and outscribed polytopes, Doctor of Sciences thesis, Saint-Petersburg State University, 2003.
[7] B. Matschke, On the square peg problem and some relatives, 2009. Arxiv preprint http://arxiv.org/abs/1001.0186.
[8] I. Pak, Lectures on discrete and polyhedral geometry, Preliminary version available at author's web page, 2010.
[9] I. Pak, The discrete square peg problem, 2008. Arxiv preprint http://arxiv.org/abs/0804.0657.
[10] L.G. Shnirel'man, On certain geometrical properties of closed curves, Uspekhi Matematicheskikh Nauk (10) (1944) 34-44.

[^0]: * Corresponding author at: Institute for Information Transmission Problems RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia.

 E-mail addresses: akopjan@gmail.com (A. Akopyan), r_n_karasev@mail.ru (R. Karasev).
 URL: http://www.rkarasev.ru/en/ (R. Karasev).

