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A B S T R A C T

Using a high mass transport floating electrode technique with an ultra-low catalyst loading (0.84–
3.5 mgPt cm�2) of commonly used Pt/C catalyst (HiSPEC 9100, Johnson Matthey), features in the hydrogen
oxidation reaction (HOR) and hydrogen evolution reaction (HER) were resolved and defined, which have
rarely been previously observed. These features include fine structure in the hydrogen adsorption region
between 0.18 < V vs. RHE < 0.36 V vs. RHE consisting of two peaks, an asymptotic decrease at potentials
greater than 0.36 V vs. RHE, and a hysteresis above 0.1 V vs. RHE which corresponded to a decrease in the
cathodic scan current by up to 50% of the anodic scan. These features are examined as a function of
hydrogen and proton concentration, anion type and concentration, potential scan limit, and temperature.
We provide an analytical solution to the Heyrovsky–Volmer equation and use it to analyse our results.
Using this model we are able to extract catalytic properties (without mass transport corrections; a
possible source of error) by simultaneously fitting the model to HOR curves in a variety of conditions
including temperature, hydrogen partial pressure and anion/H+ concentration. Using our model we are
able to rationalise the pH and hydrogen concentration dependence of the hydrogen reaction. This model
may be useful in application to fuel cell and electrolyser simulation studies.
ã 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The hydrogen oxidation reaction (HOR), along with the
hydrogen evolution reaction (HER) is one of the most studied
reactions of modern science due to its simple reaction of one
hydrogen molecule going to two protons, while releasing two
electrons. This reaction also gains considerable attention as the
anode reaction of a fuel cell. However, due to its facile nature, the
kinetics have often been obscured by the relatively slow H2

transport capabilities of the electrochemical cell. This is evident
from room temperature (or room temperature corrected, where
the activation energy was also stated) exchange current densities
spanning three orders of magnitude in the literature, j0 = �0.2 –

60 mA cm�2 [1–11].
A previous paper by this group [12] showed ultra-high mass

transport can be achieved on a floating electrode. This technique
combined gaseous transport through a porous support and an
ultra-thin catalyst layer to obtain a geometric peak current density

of 5.7 A cm�2
Geo for a 10.15 mgPt cm�2 catalyst loading (60% Pt/C

HiSPEC 9100 catalyst, Alfa Aesar). Assuming this peak current
density was the absolute maximum geometric current density
(jGeo,max) for the technique, a corresponding mass transport
coefficient (kMT) equal to 58 cm s�1 was attained; equivalent to a
rotation rate of �4 �109 rpm on the RDE. kMT was calculated by
combining the Faraday equation with Fick’s law

kMT ¼ J=cH2 (1)

Where

J ¼ jGeo;max=nF (2)

J is the hydrogen flux, n = 2 for the HOR and cH2is the concentration
of hydrogen, taken as the saturation concentration in Nafion at
5.1 �10�7mol cm�3 [13]; due to the likelihood that a thin layer of
liquid or Nafion covers the catalyst in this gas diffusion electrode
[14,15]. This assumes the properties of the Nafion thin film layer
remain the same as bulk Nafion.

It is worth noting that the real kMT of the floating electrode
technique is likely to be much greater as Fig. 10 in [12] shows that
the geometric current density is still increasing linearly with* Corresponding author. Tel.: +44 20 75945831.
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catalyst loading, with no sign of bulk mass transport effects,
let alone a mass transport limitation.

kMT is also likely to be very high for a fuel cell [11,16,17].
However, with a comparatively larger catalyst loading than the
floating electrode, the rapid increase in current with over-potential
for the HOR means the working limit of the potentiostat can be
reached at small over-potentials. For example, to reach a current
density of 600 mA cm�2

Spec (as stated as the jspec,max in [12]), with
an equivalent PEFC loading of 0.2 mgPt cm�2

Geo and a catalyst metal
area of 89 m2g�1 (as the HiSPEC 9100 used in this study), the
geometric current density would be over 100 A cm�2

Geo. Even
when reducing the catalyst loading, the area of a fuel cell electrode
causes the absolute current density to be large. Neyerlin et al. [16]
reached currents of 3 A cm�2

Geo at only 60 mV vs. RHE with a
25 cm2 electrode at a 35 mgPt cm�2 catalyst loading, after correct-
ing for iR losses. The effect of uncompensated resistance prevents
the measurement of the HOR at higher over-potentials and could
incur large errors from their correction.

The floating electrode technique uses small quantities of
catalyst (sub 10 mgPt cm�2) deposited uniformly and homo-
geneously across a small catalyst area (typically 1 mm radius
spot, i.e. 0.0314 cm2 geometric area) which gives three advantages:
such a thin catalyst layer allows all the catalyst to see an equivalent
environment, giving access to electrochemical fine structure (e.g.
peaks) which would otherwise be blurred in an electrode with a
gradient of conditions across or through its catalyst layer; the
absolute current remains low (mA’s equivalent to A cm�2

geometric current), even at high over-potentials, reducing the
possible errors from correcting for iR effects and local Joule heating
effects; and small amounts of catalyst are needed for one test,
making it beneficial to test novel catalysts produced in small
quantities. This allows the floating electrode to be an advantageous
technique for testing novel fuel cell catalysts ex-situ while
retaining the high mass transport conditions expected in a PEFC.

Additionally, a benefit over the RDE technique is that as the
electrolyte is stationary, convective transport of environmental
contaminants (chloride etc.) is significantly reduced, leading to
better performance in the presence of even vanishingly small
quantities of solution impurities.

From these benefits, the floating electrode gives an
idealised environment to measure the HOR/HER, defining features
which have rarely been observed. These features include fine
structure in the hydrogen adsorption region between 0.18 and
0.36 V vs. RHE consisting of two peaks, an asymptotic decrease at
potentials greater than 0.36 V vs. RHE, and a hysteresis above 0.1 V
vs. RHE. This paper explains these features in terms of surface
adsorbed species and edge and facet sites on the catalyst. In
addition, intrinsic catalyst properties are extracted using a
numerical model to fit the HOR curves in a variety of conditions
including temperature, hydrogen partial pressure and anion/H+

concentration.

2. Experimental

A commercial 60 wt.% Pt/C catalyst (HiSPEC 9100, Alfa Aesar,
metal area of 89 m2g�1 [18]) and high purity gases (N2, H2 and O2 at
>5.8 N from Air Products) and acids were used; perchloric acid
from VWR (Merc Suprapur) and GFS chemicals (Veritas double
distilled) were both used with negligible difference in performance
(not shown) and sulfuric acid from VWR (Aristar grade). The
electrodes were made up as in [12]. Polycarbonate track etched
membranes (Sterlitech, PCTF0447100, 0.4 mm pores) were coated
with 100 nm of gold by sputter deposition, and after deposition of
the catalyst, the pores were hydrophobised with an amorphous
fluoropolymer (Teflon AF 2400, 2.1 mg cm�2

Geo). The catalyst was
deposited via the vacuum filtered catalyst (VFC) method described
in [12] to achieve uniform and homogeneous catalyst spots at
ultra-low catalyst loadings (mgPt cm�2) from a dilute catalyst ink.
The ink makeup was optimised to use small quantities of catalyst
(typically 1 mg), especially useful for novel catalysts synthesised in
small quantities. A stock ink containing a catalyst to solvent ratio of
1:10 (mg:ml); the solvent contained 50% butyl acetate (Sigma,
anhydrous grade) and 50% from a mix of propan-2-ol (VWR,
Normapur analytical reagent) and the PFSA solution (DuPont
DE521 Nafion solution, 5 wt%) to give a catalyst to PFSA ratio of 1:1
(volume). An aliquot of this stock catalyst ink was then diluted to
500 ml with a 50:50 mix of butyl acetate and propan-2-ol to

Fig. 1. Voltammogram of the HOR and HER on HiSpec 9100 60% Pt/C catalyst at a loading of 0.84 mgPt cm�2. 101 kPa H2, 4 mol dm�3 HClO4, 298 K, 10 mV s�1. The ordinate axis
corresponds to the specific current density (left), geometric current density (first right) and mass activity (second right), refer to Eq. (25) for relation between the units.
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produce the required loading (see reference [12] to correct for loss
of catalyst through the pores).

The performances of the floating electrodes were measured
with a Gamry Reference 600 potentiostat in a water jacketed three
electrode electrochemical cell utilizing a Pt counter electrode and a
RHE in a Luggin capillary configuration. These electrodes were
floated on liquid electrolytes with the reactant gas supplied to the
catalyst through the hydrophobised pores, allowing high mass
transport. 4 mol dm�3 perchloric acid was used to minimise the
uncompensated resistance at the high currents achieve from the
HOR, unless otherwise stated. Conditioning the electrodes by
switching between a HOR scan (100% H2, 50 mV s�1, �0.1–1 V vs.
RHE) and an ORR scan (100% O2, 50 mV s�1, 1.1–0.3 V vs. RHE), with
an intermediate N2 purge,10 times or until the scan was repeatable
at 25 �C was found to improve the repeatability of the measure-
ment across electrodes, while no loss of performance was observed
due to degradation. The cell was held at the relevant temperature
using a re-circulator (Polyscience digital temperature controller,
�0.1 �C). Gas mixtures were obtained using gas flow controllers
(Bronkhurst EL flow series). Uncompensated resistances were
corrected using the high frequency intercept of impedance
measurements at a range of voltages.

To measure the potential of zero total charge (PZTC), CO
displacement was recorded by dosing the electrode with CO at a
range of potentials while recording the current, a method
described in detail in [19,20]. This technique assumes CO is a
strong adsorbate, able to displace all of the previously adsorbed
species, however, the technique cannot distinguish between
species of the same charge. As CO is a neutral species, CO
displacement causes a quantity of charge associated with the
desorption (e�) of the previous species to be released, as shown in
Eqs. (3) and (4) for hydrogen and anion (A) species with partial
charge transfer (d), respectfully.

Pt � H þ CO ! Pt � CO þ Hþ þ e� (3)

Pt � Að1�dÞ� þ CO þ de� ! Pt � CO þ A� (4)

3. Results and discussion

Fig. 1 shows a typical CV of the HOR (Expanded in the inset)
using the ultra-low catalyst loading floating electrode technique
(loading = 0.84 mgPt cm�2). The scan also extends into the HER
region. The HOR shows fine structure in the hydrogen adsorption
region between 0.18 and 0.36 V vs. RHE consisting of two peaks
(herein called EPeak,low and EPeak,high for the peak at the lower and
higher potential, respectively), an asymptotic decrease at poten-
tials greater than 0.36 V vs. RHE, and a hysteresis above 0.1 V vs.
RHE which corresponds to a decrease in the cathodic scan current
by up to a half in comparison to the anodic scan; as reported
previously [12,15]. For the HER, the current density reached
8 A cm�2

Spec at a potential of -0.33 V vs. RHE with no sign of a
limitation, or current disruption from bubble formation. Such high
current densities without bubble formation, and hence potential
disruption of the catalyst layer, are unparalleled and are typically
the limiting factor for measuring the HER on the RDE. Instead, the
voltammogram remained smooth; confirming the fast mass
transport of H2 gas from the catalyst that this floating electrode
technique is capable of. The current density at the cathodic scan
limit corresponds to a H2 turnover number on Pt of >19000H2

molecules per surface platinum atom per second, or equivalently a
mass activity of over 7 MA gPt�1!

The Epeak,low of the HOR at 0.18 V vs. RHE has a current density of
0.51 A cm�2

Spec, corresponding to a turnover number of 1200H2

molecules per surface platinum atom per second. Previously, we
showed that the peak current density remains constant at
0.6 � 0.06 A cm�2

Spec with no decrease in current density as the
catalyst loading increased from 0.72 to 10.15 mgPt cm�2, showing
no bulk mass transport limitations [12]. The HER current density at
the cathodic limit is greater than ten times the current density of
the HOR limiting current density, and as the transportation of H2

away from the electrode looks adequate (i.e. no bubble formation);
it is logical to assume this electrode is capable of supplying H2 to
the electrode at the same rate. This adds further confirmation that
the peak current density is related to an electrokinetic or
adsorption step at the Pt surface such as a hydrogen adsorption
limitation or a local hydrogen or proton transport limitation;
possibly caused by a thin layer of Nafion or water as discussed in
[15].

3.1. HOR reaction

As our purpose in this paper is to consider some aspects of the
hydrogen oxidation reaction close to the equilibrium potential, we
will used a simplified model which neglects both the potential
dependence of adsorption site density, and assumes Heyrovsky–
Volmer kinetics.

Hbulk
2 ���!kMT ;gas

Hsurf
2 (5)

Pt þ Hsurf
2 ?

k1

k�1

H3O
þ;surf þ Pt � Had þ e� (6)

Pt � Had þ H2O
surf

?
k2

k�2

H3O
þ;surf þ Pt þ e� (7)

H3O
þ;surf

?
kMT;liq

kMT;liq

H3O
þ;bulk (8)

Where kMT,gas and kMT,liq are the mass transport coefficients in gas
and liquid respectively. We will assume for simplicity that that
mass transport of reactant and products are fast (although see
above), and so we only consider Eqs. (6) and (7). Although we do
not explicitly include water within the kinetic equations as it acts
as a solvent in our system, it might be important to include this
parameter under fuel cell systems, especially when operating at
low relative humidities. Eqs. (6) and (7) can be analytically solved
under steady state conditions, and we will provide a full derivation
in a future paper, however an abbreviated derivation follows. The
hydrogen coverage, under steady-state conditions can be found by
finding the solution to the equation

duHad

dt
¼ k1aH2

surf 1 � uHad

� �� k�1aH3O
þ;surf uHad

� k2uHad

þ k�2aH3O
þ;surf 1 � uHad

� �
¼ 0 (9)

where uHad
is the surface coverage of adsorbed hydrogen. Solution

of (9) provides

uHad
¼

k1aHsurf
2

þ k�2aH3O
þ;surf

k1aHsurf
2

þ k2 þ k�1aH3O
þ;surf þ k�2aH3O

þ;surf
(10)

This provides us the hydrogen coverage which then combined
with the equations for electrochemical current generation
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j=F ¼ k1aH2
surf ð1 � uHad

Þ � k�1aH3O
þ;surf uHad

þ k2uHad

� k�2aH3O
þ;surf ð1 � uHad

Þ (11)

allows calculation of the electrochemical current under any
conditions. Under equilibrium conditions (i.e. at the reversible
potential as defined by aH3O

þsurf and aH2
surf and denoted by

superscript “eq”), uHad
in Eq. (10) becomes ueqHad

, j in Eq. (11)
becomes zero and all the k's in both equations become keq’s.
Simultaneous solution of both of these equations under equilibri-
um conditions leads to the equality

keq2
keq�2aH3O

þ;surf

¼ keq�1

keq1

aH3O
þsurf

aHsurf
2

(12)

Hence we define a constant K, such that

K ¼ keq2
keq�2aH3O

þ;surf

;keq�2 ¼ keq2
KaH3O

þ;surf
; keq�1 ¼ Kkeq1

aH2
surf

aH3O
þ;surf

(13)

Substitution of keq�2 and keq�1 into in Eq. (10) under equilibrium
conditions provides the hydrogen coverage at the equilibrium
potential

ueqHad
¼ 1

1 þ K
(14)

In order to introduce the electrochemical potential into the
kinetic equations, we assume that as the applied potential is
altered from the equilibrium potential by h = E-Eeq, the k's take the
form

k1 ¼ keq1 eafh;

k�1 ¼ keq�1e
�ð1�aÞfh ¼ Kkeq1

aH2
surf

aH3O
þ;surf

e�ð1�aÞfh;

k2 ¼ keq2 eafh;

k�2 ¼ keq�2e
�ð1�aÞfh ¼ keq2

KaH3O
þ;surf

e�ð1�aÞfh

f ¼ F
RT

(15)

Where f = F/RT, with their usual meanings. Substituting into Eqs.
(10) and (11) provides the potential dependence of hydrogen
coverage and current density

uHad
ðhÞ ¼

keq1 aH2
surf eaf n þ keq2

K e
�ð1�aÞfh

ðkeq1 aH2
surf þ keq2 Þeafh þ ðKkeq1 aH2

surf þ keq2
K Þe�ð1�aÞfh

(16)

j ¼ F
�
keq1 aH2

surf ð1 � uHad
ðhÞÞ þ keq2 uHad

ðhÞ
�
eafh

�
� Kkeq1 aH2

surf uHad
ðhÞ þ keq2

K
ð1 � uHad

ðhÞÞ
  !

e�ð1�aÞfhÞ (17)

It can be seen that j depends in a complicated way
onK; keq1 ; keq2 ; aH2

surf and (through K), aH3O
þ;surf . For instance, when

the Heyrovsky step is fast compared to the Volmer step, then a first
order dependence in hydrogen concentration is expected. If we
assume that both Heyrovsky and Volmer step show the same
activation energy then we can include the temperature depen-
dence through the Arrhenius equation (assuming a standard
temperature of 298 K for T*)

j ¼ F keq1 aHsurf
2

1�uHad
hð Þ� �þ keq2 uHad

hð Þ
� �

eaf n
�
� Kkeq1 aHsurf

2
uHad

hð Þ
�

þkeq2
K

1 � uHad
hð Þ� ��

e� 1�að Þf n
�
e
�Ea
R

1
T � 1

T�ð Þ (18)

where Ea is the activation energy of the reaction. Provided h � af,
we can take the series expansion of this equation (having expanded
uHad

hð Þ in terms of Eq. (16)) about h = 0 to provide an estimate of the
current close to the equilibrium potential

jðhÞ ffi F
RT

4FueqHad

1
Kkeq1 aHsurf

2

þ 1
keq2

0
BBBB@

1
CCCCAhe

�Ea
R

1
T
�
1
T�

� �
h � af

j hð Þ ffi F
RT

johe

�Ea
R

1
T
�
1
T�

� �
(19)

Hence we see that close to the equilibrium potential, the
exchange current density is a composite associated with the
Heyrovsky and Volmer reactions in series. Limiting values for
hydrogen concentration dependence are first order
Kkeq1 aH2 
 keq2
� �

or zeroeth order for the opposite case. Depending
on the magnitude of K, limiting values of first order dependence
(K >> 1) or zeroth-order dependence (K << 1) may be seen for
hydrogen ion concentration. Of course, it is also possible to have
intermediate concentration dependence or a transition depending
on the ranges over which the reactants are changing.

Eq. (19) can be used to fit the linear region of a current voltage
curve for the hor/her utilising the three kinetic parameters as
fitting parameters K; keq1 ; keq2 ; Ea

� �
, or a simpler form of the equation

may be used to estimate which domain we are operating in. In this
case, Eq. (19), may be simplified to the form

jðhÞ ffi 4F2

RT
k0;obs aH2

surf

� �g
aH3O

þ;surf

� �e
he

�Ea
R

1
T� 1

T�ð Þh � af (20)

Where k0,obs is an effective rate constant assuming the values of
K; keq1 ; keq2 are such that the reactant concentration dependence are
separable from Eq. (19) (i.e Kkeq1 aHsurf

2

 keq2 or Kkeq1 aHsurf

2
and

K >> 1 or K << 1). A formula similar to Eq. (20) is often used in
previous literature without appreciation of the conditions under
which it is applicable. Under these simplifying conditions

jðhÞ ffi F
RT

j0;obsh
e
�Ea
R

1
T
� 1
T�ð Þ

h � af

j0;obs¼ 4Fk0;obs aH2
surf

� �g
aH3O

þ;surf

� �e
(21)

It is important to note that if the above criteria are not met, then
this simplified form is not applicable, and inconsistent results will
be obtained. One example of such inconsistent results will be non-
linearity in the reactant stoichiometry plots (Log(jo) vs log
(areactant)), although in practice many ignore such nonlinearities
and attempt to force a linear fit.

In the above analysis, we have for simplicity assumed that
the number of available sites for adsorption is 1 � uHad

� �
. In fact,

as we will show below, the situation is somewhat more
complicated and that the number of available sites for adsorption,
especially at higher potentials may be much less than this term
suggests. A more accurate approach may be to write this term as
1 � uSpectator � uHad

� �
where the extra term is associated with the

species that adsorb more strongly than the hydrogen on the
surface. The change in aH2 is the activity of dissolved hydrogen and
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equivalent to the change in partial pressure of hydrogen, PH2 ,
assuming Henry's Law

aH2 ¼ aH�
2

PH2

PH�
2

  !
� cH�

2

PH2

PH�
2

  !
(22)

Where aH�
2
and PH�

2
are the saturation activity and partial pressure

of pure hydrogen at standard conditions.

3.2. Hydrogen concentration dependence

Fig. 2a) shows the anodic scans of the HOR in pure H2 and at
different H2 partial pressures between 1 � p(H2) � 101 kPa in N2.
The x-axis is plotted in terms of over-potential (h), denoting that
the potential scale has been corrected for the shift in equilibrium
potential (Ee) for the set conditions through the Nernst equation, in
the rearranged form of Eq. (23).

Ee ¼ E0 � 2:303RT
nF

log
ffiffiffiffiffiffiffi
aH2

p � aH2O

aH3O
þ

  !
(23)

Where E0 is the standard potential and ax denotes the activity of
species x. The change in aH2 is equivalent to the change in partial
pressure of hydrogen, PH2 , assuming Henry’s Law, Equation.

Although in the experiments presented here, aH2O ¼ 1, as water
is the solvent, we explicitly include the water term as within a fuel
cell water activity may vary with operating conditions.

As the partial pressure increased, the current density increased
in a near linear fashion. Inset into Fig. 2a) are the plots of the
current densities ratioed to hydrogen partial pressure in each plot,
it can be seen that surprisingly there is little variation. jPeak,high
retains its relative height, and the decay in current at higher
potentials follows the same form. There is a slight shift in the
potential of EPeak,low towards lower potentials with decreasing
hydrogen partial pressure; this is especially visible when compar-
ing to the HOR in pure H2, where it has shifted by �0.2 V. While
these curves are iR corrected, this shift could be due to an
additional uncompensated resistance, but attempts to correct the
data show that the added effect is not a linear function of current. A
second hypothesis might be that the proton activity is being varied
at the catalyst surface due to a proton gradient at the interface (i.e.
diffusion of protons to/from the catalyst surface), and this is
producing a Nernstian shift in the equilibrium potential. A final
possibility is that the potential shift is a manifestation of a mass
transport effect – that is we are seeing a concentration over-
potential effect. A full discussion of these effects will be presented
in a separate paper [21].

We determine the experimental reaction order (g) of hydrogen
from the gradient of log(j) vs log(PH2), assuming Henrys law holds
and that mass transport effects are not too great. Fig. 2b) shows this
plot, linear gradients are obtained across the entire potential
region, and three examples are plotted; jMax, j10mV and J600mV.The
gradients of jMax and j600mV gave values close to g = 1. This is in
agreement with what Wang et al.’s [11] observed for a PtCoMn
alloy. While the gradient of j10mV falls below this at g = 0.7. These
results may be rationalised in terms of Eq. (18). If we assume that at
positive overpotentials, hydrogen coverage decreases (as is
commonly considered), we see that as the overpotential increases,
we more favour the keq1 terms (forward and reverse Heyrovsky
reactions) which both show a first order dependence on hydrogen
concentration. This means that at large positive overpotentials we
are liable to see a first order dependence with hydrogen
concentration. As the overpotential approaches the equilibrium
potential, the situation may become less clear cut, and the zeroeth
order dependence of the Volmer reaction ðkeq2 Þ will have a tendency
to decrease the observed hydrogen concentration dependence,
which may drop below 1, as seen in our results. This is confirmed
by the constant jSpec,max/PH2 values for the different pressures at
�3 mA cm�2 kPa�1 shown in the inset of Fig. 2(a).

Fig. 2. a) Hydrogen partial pressure dependence of a 3.5 mgPt cm�2 HiSpec 9100 60%
Pt/C electrode in 0.5 mol dm�3 HClO4. H2 partial pressure (N2 diluent, uncorrected
for water vapour): 1.00, 0.13, 0.11, 0.09, 0.07, 0.05, 0.03, 0.01;, 298 K, 10 mV s�1.
RE = RHE. The x-axis has been converted to over-potential, accounting for the
change in equilibrium potential with hydrogen partial pressure through the Nernst
equation. Inset shows the curves normalised to the partial pressure of hydrogen. b)
shows the log(jSpec) vs. log(p(H2)) of the curves.

Fig. 3. Anion effect for different acids on a 1.7 mgPt cm�2 HiSpec 9100 60% Pt/C
electrode in 4 mol dm�3 HClO4 and 4 mol dm�3 H2SO4. 101 kPa H2, 298 K, 10 mV s�1.
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3.3. Anion Species

To test the effect of anion adsorption on the HOR, two
electrolytes commonly used for their so called specifically and
non-specifically adsorbed anions were used; sulfuric and
perchloric acid. Anion interaction at the electrode surface has
been shown to have a strong displacement and blocking effect on
the ORR; the stronger the adsorption, the greater the blocking
effect [22]. As the electrocatalyst is bound with Nafion ionomer, we
may also expect some effect due to the teathered sulfonate groups
which have been previously shown to lead to strong anion
adsorption effects [13,23].

Fig. 3 shows the HOR using the floating electrode in both
electrolytes. Close to the origin and going up to EPeak,low, the activity
of the electrode in the two acids appears very similar. The potential
of EPeak,low in the two electrolytes are within 20 mV of each other.
Therefore, in the region below EPeak,low, no effect of anion
adsorption was observed and we conclude the exchange current
density can be measured in either acid with no significant
difference. This is in agreement with Rau et al. [24] when using
polycrystalline Pt with no perflorosulfonic ionomer (PFSI). The lack
of interference is most probably due to the potential being below
the PZTC, where anion adsorption is minimal, as discussed below.
This is also shown in Table 1 and Fig. 5 below, where the exchange
current density is the same in sulfuric acid as it is in perchloric acid
for equivalent acid concentrations.

As the potential passes EPeak,low, however, there begins to be a
significant difference between the two electrolytes. While the HOR
activity decays in both solutions, in ionomer/perchloric acid, a
5 fold decrease in activity is seen between 0.2 and 0.8 V vs. RHE
(before oxide formation is thought to begin), but in sulfuric acid,
the stronger adsorbing anion, the magnitude of Epeak,high is
significantly suppressed, and the HOR remains suppressed well
into high potentials (>0.8 V vs. RHE); leading to a 10 fold decrease
in activity between 0.2 and 0.8 V vs. RHE. The extra suppression
over perchloric acid can also be seen clearly on the reverse scan.
This suggests both electrolyte systems cause perturbation to the
HOR, with the stronger anion giving a stronger perturbation. Kita
et al. [25] performed experiments on single crystal platinum
electrodes in static electrolytes and observed a decrease in activity
at higher potentials (ca, 0.5 V vs. RHE), with a more pronounced
decrease or stronger inhibition for sulphuric acid then perchloric
acid, similar to in Fig. 3. They proposed that as perchloric acid is
not a specifically adsorbing anion, the HOR inhibition in perchloric
acid must be down to reorientation of surface water molecules in
the double layer. In contrast we consider that perchlorate does

adsorb to a small extent, especially as the perchlorate ion is at a
high concentration (4 mol dm�3) in this experiment. This conclu-
sion is also supported by recent work by Omura et al. [26] who
through quartz crystal microbalance and IR spectroscopy see
indications of perchlorate adsorption at higher potentials. The
potential dependence of this inhibition is explored further in the
sections Platinum PZTC and Hysteresis of the HOR. In these
electrodes, which utilise a small quantity of PFSI binder, it might be
expected that some effect of anion adsorption from the relatively
strongly adsorbing sulfonic acid groups of the PFSI might have
some contribution to the shutdown of hydrogen oxidation at
higher potential. However, due to the low coverage of the sterically
hindered sulfonate groups limited surface coverage (estimated at
�0.1 monolayers on Pt(111)) [23], it is unlikely to be the major
cause the 5 fold decrease in activity observed between 0.2 and
0.8 V vs. RHE here.

Bagotzky and Osetrova [1] observed HOR inhibition from
Br and I anion adsorption which shows the greater the
anion adsorption strength, the greater the kinetic inhibition.
Although we cannot exclude the possibility of some very small
amount of free chloride in our electrolyte (a contaminant in
even the most stringently prepared perchloric acid), we
have performed dosing experiments which suggest that the
level is less than 0.4 mmol dm�3. Furthermore, a tremendous
benefit of our approach compared to RDE experiments is the
absence of forced convection. Hence the transport of adventi-
tious poisons is much slower (ca. 100-fold) compared to RDE
measurements where the diffusion layer is much thinner
(ca. 1 mm) compared to the boundary layer in quiescent
electrolyte (ca. 100 mm).

Hence there is a clear indication that the HOR is affected by
anion adsorption above the EPeak,low. The reduced activity for the
HOR covers the entire potential region of the ORR, and agrees with
the reduced activity of the ORR seen in sulfuric acid in comparison
to perchloric acid. In this sense, Wiberg et al. [27] correlated the
inhibition of the HOR with oxide coverage (generally >0.8 V vs.
RHE) on a polycrystalline Pt disk RDE and applied this surface
blocking coverage to the ORR. The floating electrode technique
should allow the HOR to be used as a probe for the state of the Pt
surface across the entire ORR potential window.

3.4. Proton Activity

Fig. 4 and Table 1 show the effect of electrolyte pH and ionic
strength on the activity of the HOR in a) perchloric acid and b)
sulfuric acid between 0.1–4 mol dm�3. A decrease in the gradient

Table 1
Properties of the HOR at 298 K, 101 kPa H2 in different electrolytes. Exchange current densities calculated using Eq. (21).

Electrolyte conc./mol dm�3 pH j0*/mA cm�2 EPeak,low/V vs. RHE RHFR
y/V Predicted Rsoln

z/V

HClO4

4 �0.6 128 0.18 1.2 1.4
1.59 �0.2 92 0.24 2.4 2.1
0.63 0.2 82 0.30 5.1 4.2
0.25 0.6 50 0.40 11 10
0.1 1 32 0.54 25 26
HClO4 NaClO4

4 0 �0.6 150 0.16 3.1 2.8
0.4 3.6 0.4 38 0.31 3.6 5.9
H2SO4

4 �0.6 138 0.20 1 1.3
2 �0.3 118 0.20 1.5 1.7
0.5 0.3 70 0.27 4.8 4.8
0.1 14 28 0.51 17 23

*Calculation of “simple” exchange currents is discussed in Section 3.5, using Eq. (21). No correction made for water vapour.
yHigh frequency resistance measured using electrochemical impedance spectroscopy.
*Resistance (R) calculated using conductivity values from [28] for HClO4 and H2SO4 and [42] for NaClO4, the distance between the WE and RE (l) is 0.5 cm apart from the mixed
electrolyte section (HClO4 + NaClO4) in which the gap was 1 cm. For the mixed electrolyte, it is a combined resistance assuming negligible effect of ionic activity coefficients.
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across the polarisation region and peak shift to higher potentials is
clearly observed in both solutions. As there was no supporting
electrolyte in these experiments, the resistance also increased with
reducing acid concentration, and was corrected using the high
frequency intercept from impedance spectra. To check that the iR
correction wasn't introducing a systematic error, experimental
spectra were collected for an electrode placed in 4 mol dm�3

perchloric acid and 0.4 mol dm�3 perchloric acid plus 3.6 mol dm�3

sodium perchlorate electrolytes. For these two electrolytes the
perchlorate anion concentration was the same, and the resistance
did not change too significantly (results shown in Table 1). For the
0.4 mol dm�3 perchloric acid with 3.6 mol dm�3 sodium perchlo-
rate support, both the exchange current density and peak potential
correlated well to results in 0.4 mol dm�3 perchloric acid without
sodium perchlorate. In addition, the theoretical resistance was
calculated assuming a distance between the working and reference
electrode of 0.5 cm and the molar conductivity of the respective
electrolytes from [28], which also correlated well with the
experimentally measured resistances.

We postulate that two effects dominate the CVs as the proton
concentration decreases:

1) A change in local proton concentration
As calculated above, 1200H2 molecules are oxidised per surface

platinum atom per second at the peak current density. This rapid
production in protons local to the catalyst surface is likely to have
an effect on the local proton activity. A local pH change would shift
the Nernstian reversible potential and appear as an apparent
increase in polarisation, shifting the peak to higher potentials
(appearing like a resistance), and is likely to be the cause of the
peak broadening. In effect this is a mass transport effect, but of the
product, not the reactant. While this change in local pH should be
prevented by the principle of charge neutrality and possibly even
more so in our system where the presence of PFSI in the catalyst
layer should create a fixed layer of sulfonate anions at the surface
which would likely prevent large pH, we believe it cannot be
discounted. Bagotzky and Osetrova [1] observed this effect when
using a very thin film of electrolyte across a microelectrode. They
concluded that transport of protons away from the catalyst surface
was limited by the thin film and removed the effect by increasing
the film thickness. However, a thicker film caused a larger barrier
for H2 diffusion through which would decrease measured peak
current densities. The opposite effect has been recognised at
microelectrodes during the HER, leading to proton depletion near
the electrode, and hence an increase in local solution resistance,
and enhanced proton migration [29,30]. In this study, most results
used a high acidity electrolyte (4 mol dm�4 or pH �0.6) to reduce
any change in local pH.

2) An effect of proton concentration on the exchange current
density

At low current densities, the production of protons is not so
rapid, therefore the decreased gradient is not likely to be related to
a local pH change alone. Fig. 5 shows the pH dependence of the
logarithm of exchange current density in the electrolytes listed in
Table 1, from pH �0.6 to 1. An almost linear dependence of
exchange current density with pH in both sulfuric acid and
perchloric acid is seen with a gradient of close to �0.4, very similar
to the gradient of �0.5 presented by Bagotzky and Osetrova [1]. The
derivation of the HOR/HER (Eqs. (9)–(20)) in terms of a Heyrovsky–
Volmer reaction gives a dependence on hydrogen ion concentra-
tion, and that phenomenological dependence will depend on the
precise values of the electrochemical rate constants (see below).

Durst et al. and Sheng et al. [31,32] also observed a reduction in
exchange current density with pH and offered an alternative
discussion linking it to a change in hydrogen binding energy (HBE)
(proportional to the change in activation energy through the
Bronsted–Evans–Polanyi relationship [33]). While a change in the
Pt PZTC with pH was also considered (discussion on PZTC below), it
has generally been found to decrease in potential with increasing
pH [34], while here EPeak,low increases with pH; therefore it is
unlikely to be the cause of this increasing EPeak,low.

As will be shown below, the effect is adequately described by
the full analysis of the Heyrovsky–Volmer model provided above.

Fig. 4. Electrolyte concentration effect: Voltammograms of the HOR with a
1.4 mgPt cm�2 Pt/C catalyst run in a range of electrolyte concentrations of both
perchloric and sulphuric acid. 101 kPa H2, 10 mV s�1, 298 K. Voltammograms are iR
corrected using electrochemical impedance data.

Fig. 5. The dependence of pH on the logarithm of the exchange current density of
the different electrodes presented in Table 1, giving a gradient of about �0.4.
Temperature: 298 K, 101 kPa H2.

Fig. 6. Variation of horwith temperature effects. 2.2 mgPt cm�2HiSpec 9100 60 % Pt/
C electrode in 4 mol dm�3HClO4, 1bar H2, 10 mV s�1, CE = Pt wire and RE = RHE. Inset
shows an Arrhenius plot of j0 after correction for increased water vapour partial
pressure with temperature.
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3.5. Exchange Current Density and Activation Energy

The micro-polarisation region of an anodic scan at different
temperatures in 4 mol dm�3 HClO4 is shown in Fig. 6. As the
temperature increased, the gradient increased. Additionally, the
scan cuts the x-axis at slightly negative potentials, which could be a
sign of proton concentration varying with respect to the reference
electrode, as discussed above. As each curve was scanned from the
HER where protons will have been previously removed, the local
pH will have shifted more alkaline. This shift of the local
equilibrium potential by 0.7 mV equates to a local pH change of
�0.05 pH units. The cathodic scan also does not pass through the
origin, but passes at a more positive potential, showing a more
acidic local pH (results not shown). This effect cannot be accounted
for by the capacitance of the electrode as the equivalent capacitive
currents are about 20-fold smaller than the currents measured in
the presence of hydrogen.

Due to the short potential range of the polarisation curve
(�10 mV), linearization of the electrokinetic equations are possible
and Eq. (19) (or Eq. (21) under suitable limiting conditions) can be
used to calculate j0 for each temperature, shown in Table 2. This
requires the further assumption that through the potential range,
the proton activity remains constant (i.e. proton concentration is
not perturbed too much by the reaction). As this series of
experiments were completed in the same electrolyte strength and
the current densities are still relatively low, the proton activity is
likely to remain relatively constant. The mass transport correction
factor, which was present in [8], has been removed from Eq. (19)
and (21) as; 1) with a peak current density of 600 mA cm�2

Spec at
25 �C, the current was less than 10% at 10 mV over-potential and 2)
the peak current density is assumed to be caused by a combination
of the kinetics getting faster until an adsorption/local diffusion
limiting current density was reached at larger over-potentials, and
ufree decreasing due to site blocking species, rather than a mass
transport limitation; i.e., the geometric mass transport limitation is
likely to be above this. The peak current density is discussed in
detail in the Platinum PZTC section. The exchange current density
at 25 �C is similar in both sulphuric and perchloric acid (see Fig. 5).

In Fig. 6 it can be seen that between 50 �C and 60 �C the rate of
improvement in HOR performance with temperature decreases.
This is due to reduced hydrogen partial pressure associated with
increased water vapour partial pressure. To correct for this, the gas
phase in the catalyst layer and down the pores of the polycarbonate
track etched membrane was assumed to be at equilibrium with the
saturation vapour pressure of water for that corresponding
temperature. This is very plausible considering the catalyst layer
is in contact with an aqueous electrolyte. The effect is corrected for
in the third row in Table 2 assuming a hydrogen reaction exponent,
g, of unity, as discussed in the hydrogen partial pressure
measurements above.

Using the Arrhenius equation, adapted for the exchange current
density with water vapour and hydrogen partial pressure
correction (Eq. (23)), the activity can be plotted vs. the inverse
temperature as in the inset in Fig. 6, giving the gradient as the
activation energy at 18 kJ mol�1.

Ea ¼ �2:303R
Dlog j0=

PH2
P�H2

� �g� �
D1=T

(24)

The rate constant keq0
� �

can be related to the exchange current
density by normalising to standard conditions. Due to the
additional observed change in exchange current density by proton
activity for acidic conditions, Eq. (21) relates the exchange current
density through activation energy (Ea) at 25 �C, partial pressure
fraction of 1 and pH 0.

3.5.1. Full fit of experimental data set
Recent developments in measuring the HOR and HER at high

mass transports have promoted a number of attempts to model the
hydrogen oxidation and evolution reaction in the literature. For
instance Chen and Kucernak [8] considered whether Tafel–Volmer
or Heyrovski–Volmer kinetics adequately explained single Pt
particle microelectrode results whereas others [35–37] have
considered a potential dependent switch from Tafel–Volmer to
Heyrovski–Volmer kinetics. While both models can fit the mass
transport limited curve from the RDE and the shoulder in the curve
observed by Chen and Kucernak [8], both models in their current
forms are not capable of predicting the double peak with a dip in
current in-between as observed here and in other papers [12,17].
Clearly from the results above, there is also a significant anion
surface blocking effect and pH effect which controls the
electrokinetics of the HOR and any model which is going to
reproduce the experimental curves needs to include these effects.
To outline some of the elements needed for such a model, the
potential of zero total charge and potential dependence of anion
adsorption are discussed below.

However, for the HOR or HER on the anode of a fuel cell or the
cathode of an electrolyser, the over-potential typically remains
below 10 mV. Therefore, in this paper we provide two different
numerical fits to all the data presented across a polarisation range
of �10 mV and a variety of experimental conditions. We also show
that these models may be extended to about �50 mV without
introduction of too much error. Such numerical fits may be useful
in providing models for fuel cell anodes and electrolyser cathodes.
The fits utilise either Eq. (19) or (21). Fits utilising the latter
approximate the approaches previously used in the literature in
which it is assumed that the concentration dependence of protons
and hydrogen can be separated from an extrinsic rate constant,
whereas the fit utilising Eq. (19) is the full explicit Heyrovsky–
Volmer approach. In both cases the potential was corrected for the
small shift in pH which led to the scan not passing through the
origin (shift <1 mV in all cases). The fitting parameters when using
Eq. (19) were K; keq1 ; keq2 ; Ea. In this case there are no stoichiometric
coefficients for protons and hydrogen as their activity is included
explicitly within the kinetic equation. An “effective” stoichiometric
coefficient may be calculated by examining how the exchange
current density calculated from the fitted parameters varies as a
function of the reactant concentration within the appropriate
concentration range. The fitting parameters when using Eq. (21)
were keq0 , Ea, e and g . Both fits were performed on all datasets
simultaneously (20 data sets). The operating conditions for the
datasets are described in a footnote to Table 3.

The specific current density (jNorm.Ptsurf.) can be converted to
absolute current (i), geometric current density (jGeo) or mass
activity (jMass) through Eq. (25).

i ¼ jNorm:Pt surf: � A � SAPt � LPt ¼ jGeo � A ¼ jMass � A � LPt (25)

These terms are linked through the electrode area (A), the
platinum loading (LPt) and the catalyst’s metal area (SAPt). The

Table 2
“Raw” exchange current densities, and exchange current densities corrected by the
hydrogen partial pressure variation due to the presence of water vapour for the HOR
on HiSpec 9100 60 % Pt/C across a range of temperatures in 4 mol dm�3 HClO4.

T/�C 5 15 25 30 40 50 60

j0,T /mA cm�2 80 116 144 154 192 224 238

j0;T=
PH2
P�H2

� �g

*/mA cm�2 80 118 148 160 206 254 294

*exchange current density corrected for H2O vapour partial pressure, g = 1.
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values for the fit are presented in right most columns in Table 3,
with a selection of results which represent the dataset shown with
their corresponding fits in Fig. 7. For all the curves, and both fitting
approaches, with h�10 mV for the hor, the least squares error for
fitting is within 15%. These fits also continues to predict the HOR
behaviour fairly well up to �50 mV overpotential, however, the
HER seems to be slightly under estimated at higher overpotentials.

Both fitting functions produce similar goodness of fit, and also
show similar values of activation energy (the only parameter
common to both fits), with a value a little less than the value
determined solely by fitting the data in Fig. 6.

For the fit derived from the simplified analysis based on Eq. (21),
Fit 1, it can be seen that the hydrogen concentration reaction order
(g), deviates somewhat from the value determined from indepen-
dently fitting the data at an overpotential of 10 mV. In contrast, the
value for the proton activity reaction order is close to the value
obtained by individually fitting each parameter. An exchange
current density under standard conditions of 86 mA cm�2 is fit.
However, no further insight is gained into the mechanistic reason
for the values of the apparent reaction orders.

For the fit based on linearization of the exact Heyrovsky–
Volmer equation (Fit 2), Eq. (19), the value of K implies that
under standard conditions the equilibrium value of the forward
Volmer rate constant is only slightly faster than the reverse Volmer
step, suggesting discharge of protons on the platinum surface is
similar to the rate of adsorbed hydrogen atom oxidation. The
values of the rate constants for k1

eq and k2
eq are rather close to each

other in numerical value. The calculated exchange current density
under equilibrium conditions, at 101 mA cm�2 is derived from K,
k1

eq and k2
eq (Eq. (19)). It is important to note that as conditions are

changed away from equilibrium conditions, jo will vary in a
complex way with pH and hydrogen concentration, as shown
below. Although the derivation of the Heyrovsky–Volmer equation
implicitly assumes a reaction order of one for protons and
hydrogen within the individual micro-steps of Eqs. (6) & (7), a
non-unity reaction order may occur due to the interaction of the
reactant activities within Eqs. (16) and (17) and its linearised form
(19). As discussed previously, we would expect Eq. (21) to only be
applicable under certain conditions, notably Kkeq1 aH2surf 
 keq2 or
Kkeq1 aH2

surf � keq2 and K>>1 or K<<1. Comparison with the fitted

values of the parameters shows that although K >> 1, Kkeq1 aH2
surf �

keq2 when aH2
surf is equivalent to the value achievable with 1 bar

hydrogen. Hence we would not expect that we can apply Eq. (21) to
the experiments we have performed.

To better probe the phenomenological reaction orders, we have
looked at the sensitivity of the exchange current under standard
conditions

g ¼ d log j0ð Þ
d log PH2

� � e ¼ d log j0ð Þ
d log aHþð Þ (26)

In Fig. 8 we provide double logarithmic plots of the exchange
current versus the reactant concentrations using the fitting
parameters in Table 3 to calculate the exchange current as a
function of reactant concentration using equation (19). As
expected from the previous discussion, we see that the exchange
current density does not show a linear response with reactant
concentration showing that we are in the regime where the
reaction orders cannot be easily separated out from the exchange

Table 3
Summary of values experimentally measured in this paper under standard conditions, aH+ = 1; aH2 = 1; T = 298 K. Global fits were determined by simultaneously fitting 20 data
sets using either Eq. (21) (Global Fit 1) or Eq. (19) (Global fit 2). Hydrogen partial pressures were corrected for water vapour. Grey cells denote the parameters used in the fitting
process.

Description Observed Global Fit 1a Global Fit 2b

k0,obs
eq/cm s�1 Rate constant 0.86c n.a.

K Ratio of forward and reverse rate constants n.a. 2.6
k1

eq/mol cm�2 s�1 Rate constant n.a. 1.79 � 10�6d

k2
eq/mol cm�2 s�1 Rate constant n.a. 1.19 � 10�6

Ea/kJ mol�1 Activation energy 18e 15.4 15.5
j0,298K/mA cm�2

Spec Exchange current density 86 101f

g Hydrogen activity reaction order 0.68g 0.44 0.62h

e Proton activity reaction order 0.4i 0.36 0.38j

Datasets simultaneously fitted:
T = 298K, cH+ = 0.5 M HClO4, p(H2) = 101,13,11,9,7,5,3,1 kPa.
cH+ = 4 M HClO4, p(H2) = 101 kPa, T = 278,288,298,303,313,323,333 K.
T = 298K, p(H2) = 101 kPa, cH+ = 0.1,0.25,0.63,1.59,4.0 M HClO4.

a using Eq. (21);
b using Eq. (19);
c calculated from exchange current density assuming Eq. (21);
d If we do not use activities in the derivation of equation (21), then this parameter is 3.51 cm s�1 based on a saturated hydrogen concentration of 5.1 �10�7mol cm�3;
e from slope of Fig. 6 (inset);
f using Eq. (21) and fitted values of K, k1

eq, k2
eq;

g Slope of Fig. 2(b) at 10 mV overpotential;

h intrinsic value is 1, but estimated from @logðjoÞ
@logðpH2 Þ

� �
pH2 ¼p

;
i Slope of Fig. 5;
j intrinsic value is 1, but estimated from � @logðjoÞ

@pH

� �
pH¼0

.

Fig. 7. Data (points) and associated fits to Eq. (19) (........), and Eq. (21) (———) at low
over-potentials under different conditions See text for further details of fits.
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current as was performed in Eq. (21). We only see this occurring
when the pH > 1 or when pH2<10 kPa. Under standard conditions,
we can extract the effective reactant stoichiometries by determin-
ing the tangents of the curves at the standard conditions. We find
that for both hydrogen and protons, the effective values of g and e
are very close to those determined from the data, Table 3.
Furthermore, inset within Fig. 8(b) we also plot the variation of

current density with hydrogen partial pressure under standard
conditions, and at an overpontial of 0.6 V, equivalent to the
experimental result in Fig. 2(b). The reaction order we obtain from
this plot is 1.0, in good agreement with the experimental results.
Taking all the fitting results, and the ability to well describe the
reaction order phenomena, it would appear that the full
Heyrovsky–Volmer model provides a good explanation for the
experimental data.

3.5.2. Comparison to the literature
Due to the varying experimental conditions in the literature it is

hard to give an exact comparison to the values of j0, however,
Table 4 presents some j0 values mostly at room temperature.
Looking across the pH range as presented in Table 1, Bagotzky and
Osetrova’s [1] achieved a similar exchange current density as
presented in this paper with j0 > 50 mA cm�2

Spec in the same acid
concentration of 1 mol dm�3, while Durst et al. [31] measured
j0 = 200 mA cm�2

Spec in a high mass transport hydrogen pump
configuration (reported at pH 0) although at the slightly raised
temperature of 30 �C. At 0.1 mol dm�3 acid strength, an exchange
current density of 32 mA cm�2

Spec is close to previous results in this
group [8] and Sun et al. [10] at 24 and 27 mA cm�2

Spec, respectively
(note: these results would be 48 and 54 mA cm�2

Spec when
calculated through Eq. (21)).

Values outside the measured pH range in this paper include
Zhou et al. [5] and Zoski [6], obtaining j0’s of 60–80 and
42 mA cm�2

Spec for 0.01 mol dm�3 perchloric acid and Vogel
et al. obtaining 18–27 mA cm�2

Spec at a higher acid concentration
of 96% H3PO4. While these values are comparable to values
reported here, if extrapolated to comparable acid strengths, they
would be somewhat different.

A number of literature sources also presented much lower
values of <2 mA cm�2

Spec for example [3,4,7,9], which are still low
if corrected for acid strength. The much lower exchange current
densities are likely to either have not been fully corrected for mass
transport effects, or suffer from a reduced utilisation of catalyst
due to a hydrogen diffusion gradient through the catalyst layer
[10]. For example, Song et al. [9] reported an exchange current
density of 1.73 mA cm�2

Spec while testing in a PEFC with a catalyst
loading of 1 mgPt cm�2 between their anode and cathode. The high
activity of the HOR on Pt is likely to cause hydrogen depletion
through the catalyst layer leaving a high percentage of catalyst
sites to remain inactive. Only by using an ultra-thin catalyst layer

Fig. 8. Plots of sensitivity of effective exchange current density as a function of (a)
acid concentration; and (b) hydrogen partial pressure calculated using Eq. (19). The
dashed lines (———) are the tangents at c(H+) = 1.0 mol dm�3 and pH2 = 101 kPa
representing the phenomenological reactant order under those conditions. The
dotted lines (........) represent the limiting behaviour where the phenomenological
reaction orders are one. Inset in (b) is the current density versus hydrogen partial
pressure plot calculated at an overpotential of 0.6 V. T = 298 K; K = 2.6, k1

eq= 1.79
� 10-6mol cm�2 s�1,k2eq = 1.19 � 10-6mol cm s�1, T = 298 K, pH2 = 101 kPa (except in
(b)), c(H+) = 1.0 mol dm�3 (except in (a)).

Table 4
A comparison of literature obtained exchange current densities and activation energies, T close to 298 K.

Technique Conditions j0/mA cm�2 Ea/kJ mol�1 Reference

Floating electrode (Pt/C) Fit 1 1 mol dm�3 HClO4, 25 �C 86 15.4 This Work
Floating electrode (Pt/C) Fit 2 1 mol dm�3 HClO4, 25 �C 101 15.5 This Work
Pt microelectrode with a thin film of electrolyte 0.5–1 mol dm�3 H2SO4, r.t > 50 – [1]
Rapid potentiodynamic scanning
polycrystalline Pt, Pt black, Pt/C

96% H3PO4, 22 �C 27,21,18 10.5 [2]

RDE (single crystal: 110, 100, 111) 0.05 mol dm�3 H2SO4, 30 �C 0.98, 0.60, 0.45 9.5, 12, 18 [3]
RDE (Pt disk) with and without a Nafion film 0.1 mol dm�3 HClO4, r.t. 1.62, 1.35 – [4]
Pt microelectrode SECM 0.01 mol dm�3 HClO4 + 0.1 mol dm�3 NaClO4, r.t. 60 - 80 – [5]
Pt microelectrode SECM 0.01 mol dm�3 HClO4 + 0.1 mol dm�3 NaClO4, r.t. �42 – [6]
RDE (PtRu/C and Pt/C) 0.5 mol dm�3 H2SO4, 25 �C 1 - 2 – [7]
Single particle microelectrode 0.1 mol dm�3 H2SO4, 23 �C 24y – [8]
Fuel cell (calculated from Vloss for different anode loadings) Nafion1 112, 60 �C 27 – [43]
Hydrogen pump (Pt/C) �800 EW, 80 �C

�800 EW, 30 �C
235 – 300y

100y
– [16]

Fuel cell (PtRu/C) Nafion1 112, 23 �C, 304 kPa H2 1.73 34.6 [9]
RDE (low loading Pt/C) 0.1 mol dm�3 HClO4, 25 �C 27y 43 [10]
Fuel cell (sputtered Pt) Nafion 115, 80 �C 770y – [17]
Fuel cell (nanostructured thin film PtCoMn) 850 EW (3M), 80 �C 489 (42*) 38.9 [11]

SECM = scanning electrochemical microscope, r.t. = room temperature.
* Extrapolated to 25 �C for the given activation energy.
y Exchange current density calculated using j = 2F/RT(j0), not j = F/RT(j0), giving factor of 2 lower values than would be reported through Eq. (21).
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can all the catalyst be assured to be well supplied with hydrogen
and therefore fully active.

Table 4 also shows activation energies quoted in the literature;
scattered between 10–43 kJ mol�1, with the value reported here
lying between these values. This medium activation energy means
that the exchange current density is less affected by temperature
then recently reported values [9–11]. Extrapolating the exchange
current density for an acid concentration range of 1–4 mol dm�3 to
a more typical operating temperature of a fuel cell at 80 �C gives a
range of 260–440 mA cm�2

Spec. This range is close 470–600 mA
cm�2

Spec reported by Neyerlin et al. [16] (using their equation with
aa + ab = 1 which is in the same form as Eq. (21)), 489 mA cm�2

Spec

reported by Wang et al. [11] and 405 mA cm�2
Spec by extrapolating

the exchange current density at 25 �C from Sun et al. [10] using
their activation energy. However it is much lower than the
770 mA cm�2

Spec reported by Wesselmark et al. [17]. Note that Sun
et al. and Wesselmark et al. have a factor of two difference due to
the method of calculation, which would make their values larger
than those reported here. This still leaves a large variation in
exchange current densities reported at both low (20 �C) and high
(80 �C) temperature, however, with the introductions of higher
mass transport techniques, higher exchange current densities are
generally being reported. Also, while most results have a
comparable catalyst as used here (Pt/C), others used different
catalysts such as a nanostructured thin film PtCoMn [11] and a
sputtered Pt layer catalyst [17] and therefore the activities could be
substantially different. This still leaves a large variation in
exchange current densities reported at both low (20 �C) and high
(80 �C) temperature, however, with the introductions of higher
mass transport techniques, higher exchange current densities are
generally being reported.

3.6. Platinum PZTC

As discussed above, the HOR curve was not affected by anion
species below EPeak,low, while above EPeak,low, a large anion affect
was observed. The adsorption of anion (and cation) species are
strongly dependent on the charge at the surface of the electrode (Pt
in this case). The potential of zero free charge (PZFC) is a commonly
used potential where the surface of the electrode has a zero total
charge, first postulated by Frumkin and Petrii [38], and is generally
measured in ultra-high vacuum. In an electrolyte, the ions in the
solution interact with the surface, and therefore the PZFC cannot
be measured. Instead, a potential of zero total charge (PZTC) can be
measured which is the potential where the total charge at the

electrode surface plus the charge density transferred during the
adsorption process equals zero [19,20,38]. Due to the interaction
with the electrolyte, different electrolytes or electrolyte concen-
trations cannot directly be compared, but only used as a guide.

Fig. 9 shows the resultant current flow from CO displacement of
the adsorbed species on the HiSpec 9100 Pt/C with a particle size of
2.4 nm [18] coated in Nafion at different potentials in 4 mol dm�3

perchloric acid. The noise in the graph occurs as the electrode is
floating on the electrolyte surface and is slightly disrupted by the
purge of nitrogen or CO; which in this case is bubbled through the
solution. As the potential increases, the charge associated with the
displacement current moves from a positive to a negative current,
showing a shift in adsorbed species from cations to anions, inset in
Fig. 9. The x-intercept shows the PZTC is 0.24 � 0.01 V vs. RHE. This
value is shifted negative in comparison to the PZTC of polycrystal-
line platinum at 0.285 V vs. RHE in 0.1 mol dm�3 HClO4 [20].
However, studies on single crystals [19] have shown that the PZTC
of polycrystalline Pt is an average of the surface facets; Pt(110), Pt
(111) and Pt(10 0); in 0.1 mol dm�3 HClO4 they are 0.23, 0.34 and
0.43 V vs. RHE, respectively. With the particle size of 2.4 nm, a
cuboctahedron particle would contain Pt(10 0) and Pt(111) facets;
however, this would not account for the decrease in PZTC to 0.24 V
vs. RHE. Climent et al. [39,40] showed that an increased fraction of
step density to surface facets caused a negative shift in PZTC and
therefore these step sites have a lower PZTC (they measured a Pt
(110) step to have a PZTC of �0.15 V vs. RHE). Mayrhofer et al. [20]
applied this to nano-particles, showing that as the particle size
decreased (or ratio of edges to facets increases), the PZTC shifted
negative in potential. Our PZTC value is close to Mayrhofer et al.’s
value reported for a 1 nm Pt particle size under a thin film of Nafion
and in 0.1 mol dm�3 HClO4; while both catalyst layers are bound
with Nafion, the use of different electrolyte concentrations make
the results not directly comparable, as discussed above.

Comparing the PZTC to the HOR in Fig. 1, it could be expected
that the decrease in current density coincides with the adsorption
of anions acting as site blocking species, reducing the active Pt
surface area (assuming that the rate limiting step is the adsorption
of hydrogen and therefore site dependent). However, the measured
PZTC falls between the potentials of the two peaks. This suggests
that the two peaks in the HOR are two different sites (edges and
facets) with different PZTC’s and the measured PZTC corresponds
to the ratio of the two respective sites (as for polycrystalline Pt with
its different facets). As the step density has been shown to lower
the PZTC, this suggests the edge sites would have a PZTC below
0.24 V vs. RHE, and we propose that this is where EPeak,low appears
at 0.2 V vs. RHE. While the facets would be made of Pt(10 0) and Pt
(111) facets and in 0.1 mol dm�3 HClO4 they have a PZTC of
0.34 and 0.43 V vs. RHE, and we propose this is where Epeak,high sits
at 0.36 V vs. RHE. Therefore, below the PZTC for the respective
surface site, Hads is the dominant surface adsorbed species and the
HOR increases with over-potential. This is supported by the fact
that there is no effect of anion species below EPeak,low in Fig. 3.
Above the PZTC of the respective surface, the onset of competi-
tively adsorbing anions hinders the reaction, causing a current
decay. This implies that the ratio of the peak heights would change
with facets to edge ratio or particle size; the authors are currently
exploring this hypothesis.

While the two peaks in Fig. 1 have been observed on Pt
elsewhere [17] in high mass transport techniques, the decay in
mass transport above EPeak,high has not been widely presented at
such low potentials, typically because the HOR remains under
mass transport limitations until high potentials are exceeded. The
current decay has mainly been studied using the RDE, occurring at
>0.8 V vs. RHE and rationalised by the formation of oxides.
However, as the current is mass transport limited on the RDE
between 0.1–0.8 V vs. RHE, the potential at which the current

Fig. 9. Current measured from CO displacement on 2.4 nm Pt nanoparticles
supported on carbon in 4 mol dm�3 HClO4 at 298 K. CE = Pt wire, RE = RHE. The inset
shows the charge density with respect to potential, with the PZTC at 0.24 � 0.01 V
vs. RHE (intercept of the x-axis).
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begins to decay is masked. In fact, the decay in current in our
results above 0.8 V vs. RHE in Fig. 1 is very similar to the decay in
current density seen in the RDE once j < jMT (this can be seen
clearly in the inset of Fig. 9 in [12]).

A suitable comparison of the HOR can be made with Ru in the
RDE. Due to its order of magnitude lower activity, this reaction can
be measured without becoming mass transport limited. In Fig. 2 of
[41], a broad peak was observed at �0.2 V vs. RHE and attributed to
a kinetic limitation in agreement with the discussion here for Pt. A
single peak was observed, but as they were using polycrystalline
Ru, the edge contribution is likely to be minimal. After the peak
current density, the current decayed rapidly to almost zero at 0.4 V
vs. RHE. The authors assigned this decay to oxide adsorption, with
Ru well known to have an onset of oxide formation at low
potentials which assists in the oxidation of carbonaceous species
(e.g. CO). This decay is very similar in shape to the decay observed
for Pt here, where the current density decays 5 fold from
�500 mA cm�2

Spec at 0.2 V to <100 mA cm�2
Spec at 0.8 V in Fig. 1.

As described above, on platinum we ascribe this decay to anion
adsorption (sulfonate chains of the PFSI and perchlorate ions) as
oxide formation is not considered to occur until higher potentials,
and the onset of the current decay seems to be coincident with the
PZTC. For the case of Ru however, specifying whether anion
adsorption or oxide species dominate in the decay is challenging,
and is likely to be a mixture of both.

3.7. Hysteresis of the HOR

Fig. 10 shows the effect of a) the anodic limit and b) the cathodic
limit on two window opening scans for the HOR. The precise shape
of the curves in the two window opening experiments is slightly
different, due to the effect of electrolyte concentration as discussed
above, with Fig. 10a) and b) run in 0.5 and 4 mol dm�3 perchloric
acid, respectively. The anodic scan limit shows a “humming bird”
shape, where the scan starts at �0.01 V vs. RHE for all scans and the
upper limit changes from 0.1 to 1.1 V vs. RHE. The last scan without
hysteresis (labelled) has an upper potential of 0.22 V vs. RHE for
this CV and is just before EPeak,low. The next scan, with upper
potential of 0.33 V vs. RHE, displays a hysteresis loop. As discussed
in the Platinum PZTC section, after EPeak,low, anion adsorption
occurs on the Pt edge sites, reducing the current density. In
addition, the current density carries on decreasing as the potential

is reversed and only when the potential goes below the PZTC again,
does the current density start to recover. As the upper potential
limit increases further, the hysteresis increases (i.e. current on the
cathodic scan decreases), possibly showing that this anion
adsorption proceeds on the surface as the potential is increased.
This has the effect of blocking the HOR, and remains on the surface
until the potential is scanned below the PZTC for the specific site.
At higher potentials, this anion adsorption will change to oxide
formation, further perturbing the HOR.

For the cathodic scan limit window opening experiment
(Fig. 10b), the scans start at 1.1 V vs. RHE and the lower scan
limit reduces in potential from 1 to �0.1 V vs. RHE. The scans
between 1.1 V vs. RHE and EPeak,low all show little hysteresis, with
the last scan showing no hysteresis labelled. There is a slight
hysteresis in the high potential region (0.6–0.9 V), and this seems
to be associated with oxide formation and reduction. Therefore, a
consistent behaviour is observed for the site blocking species
perturbing the current density down to a potential of 0.2 V.
However, all of these scans follow the lower cathodic scan,
suggesting that a percentage of the sites remain irreversibly
blocked and only when the potential decreases to EPeak,low (or the
PZTC of the edges), do these sites become re-activated. This is
shown by the gradual increase in current density (and hysteresis)
of the anodic scan as the lower potential limit moves from EPeak,low
to �0.1 V vs. RHE; only upon going below 0 V vs. RHE does the
current density fully recover to jMax. This partial deactivation of the
HOR occurs across the entire potential region of the ORR, and it is
intriguing to consider whether the HOR could be used as a probe
for the state of the Pt surface during the ORR.

4. Conclusion

Using the floating electrode technique, kinetic parameters have
been extracted from the HOR with no mass transport correction
factor. This is made possible through a mixture of the high mass
transport capability and an optimised low loading catalyst layer.
The high mass transport capability has enabled rapid gas transport
towards the catalyst layer (HOR) or away from the catalyst layer
(HER). Maximum current densities of 0.6 and 8 A cm�2

Spec which
corresponds to 1200 and 19,000 H2molecules per surface platinum
atom per second were observed for the HOR and HER, respectively.
The low catalyst loading enables homogeneous conditions across

Fig.10. Effect of scan limit on two Pt/C electrodes: a) shows the change in anodic limit with a 0.7 mgP cm�2 electrode in 0.5 mol dm�3 HClO4 and b) shows the change in
cathodic limit with a 1.9 mgPt cm�2 electrode in 4 mol dm�3 HClO4. Both run with the conditions H2, 298 K, 10 mV s�1, CE = Pt wire and RE = RHE.
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the catalyst layer (removing internal polarisation gradients),
allowing definition such as the two peaks observed in the HOR.

For both perchloric and sulphuric acid, negligible anion effect
was seen for the HOR below EPeak,low. These potentials are below
the PZTC where little anions adsorption is expected and therefore
we conclude the exchange current density can be measured in
either perchloric or sulphuric acid (for a set pH). Above EPeak,low,
a > 5 fold decrease in activity occurred between 0.2 and 0.8 V vs.
RHE (before the onset of oxide formation), showing anion
adsorption perturbates the reaction. While the Pt/Nafion/
perchloric acid environment had a 5 fold decrease, the Pt/
Nafion/sulphuric acid had a 10 fold decrease, showing the stronger
adsorbing sulfuric acid has a greater blocking effect.

Our data suggests that proton generation during the HOR
cannot be ignored as it was found to cause a shift in the local pH
towards higher current densities (causing Epeak,low to shift to
positive potentials) and the pH of the acid was found to alterthe
exchange current density (in the pH range studied).

We have developed and analytically solved the full Heyrovsky-
Volmer equation and find that it adequately explains our
experimental results in that

a) It correctly predicts the effective reaction order for protons and
hydrogen under standard conditions;

b) it correctly predicts the reaction order at high over potentials
c) it is capable of replicating electrochemical performance in a

dataset comprising of almost three orders of magnitude of
hydrogen partial pressure; more than an order order of
magnitude of hydrogen concentration and a temperature range
from 278–333 K.

The linearised form of the model may be of significant relevance
to fuel cells and electrolysers. A further improvement to this work
would be to derive a model to fit the HOR across the entire
potential region. To do this, understanding of the anion effects at
high potential are needed. Furthermore, this model should be
considered for studying hydrogen oxidation under alkaline
conditions.

In addition, we have presented evidence that the two peaks
correspond to two different surface sites, edges or Pt atoms with
low coordination numbers (EPeak,low) and facets (EPeak,high) and that
the experimentally measured PZTC is a contribution of the two.
Further work is currently been completed with different Pt particle
sizes (changing the ratio of edges to facets) to explore the change in
the ratio of the peak heights.
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