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Objective/methods: Neuroimaging research has predominantly focused on exploring how cortical or subcortical
brain abnormalities are related to language dysfunction in patients with neurological disease through the use
of single modality imaging. Still, limited knowledge exists on how various MRI measures relate to each other
and to patients' language performance. In this study, we explored the relationship betweenmeasures of regional
cortical thickness, gray–white matter contrast (GWMC), white matter diffusivity [mean diffusivity (MD) and
fractional anisotropy (FA)] and the relative contributions of theseMRI measures to predicting language function
across patients with temporal lobe epilepsy (TLE) and healthy controls. T1- and diffusion-weighted MRI data
were collected from 56 healthy controls and 52 patients with TLE. By focusing on frontotemporal regions impli-
cated in language function, we reduced each domain of MRI data to its principal component (PC) and quantified
the correlations among these PCs and the ability of these PCs to explain the variation in vocabulary, naming and
fluency.We followed up our significant findings by assessing the predictive power of the implicated PCs with re-
spect to language impairment in our sample.
Results: We found significant positive associations between PCs representing cortical thickness, GWMC and FA
that appeared to be partially mediated by changes in total brain volume. We also found a significant association
between reduced FA and increased MD after controlling for confounding factors (e.g., age, field strength, total
brain volume). Reduced FA was significantly associated with reductions in visual naming while increased MD

was associated with reductions in auditory naming scores, even after controlling for the variability explained
by reductions in hippocampal volumes. Inclusion of FA andMDPCs in predictivemodels of language impairment
resulted in significant improvements in sensitivity and specificity of the predictions.
Conclusions:QuantitativeMRImeasures from T1 and diffusion-weighted scans are unlikely to represent perfectly
orthogonal vectors of disease in individuals with epilepsy. On the contrary, they exhibit highly intercorrelated
PCs in their factor structures, which is consistent with an underlying pathological process that affects both the
cortical and the subcortical structures simultaneously. In addition to hippocampal volume, the PCs of diffusion
weighted measures (FA and MD) increase the sensitivity and specificity for determining naming impairment
in patients with TLE. These findings underline the importance of combining multimodal imaging measures to
better predict language performance in TLE that could extend to other patients with prominent language
impairments.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

MRI provides a non-invasive method for measuring structural and
functional brain changes accompanying various neurological disorders.
Advanced MRI techniques increasingly used to explore in-vivo disease
biomarkers include T1- and T2-weighted structural images; diffusion
atory, Suite C101, 8950 Villa La
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weighted images (DWI) and diffusion tensor imaging (DTI); magnetic
resonance spectroscopy (MRS); functional MRI (fMRI); susceptibility
weighted imaging (SWI) and manganese-enhanced MRI (Obenaus,
2013). Likemany others, the field of epilepsy has benefited from the in-
tegration of the vast array of MRI techniques available to clinical prac-
tice. Within the context of surgical evaluation for refractory epilepsy,
structural MRI is now routinely used for the detection of hippocampal
volume loss, sclerosis and other pathologies, while DTI is selectively
used to delineate the location and direction of white-matter tracts that
need to be spared to the extent possible during surgery (Yogarajah and
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Duncan, 2008). Co-interpretation of MRI data showing widespread
structural changes with the broad neurocognitive impairments seen in
patients with temporal lobe epilepsy (TLE) has supported the relaxation
of the localization-based assumptions in favor of more network-based
ones (Saling, 2009).

Neuroimaging studies of language function in epilepsy have relied
predominantly on functional data, exploring language lateralization
and reorganization (Rodrigo et al., 2008; Hamberger and Cole, 2011;
Dym et al., 2011) and prediction of post-surgical language performance
(Swanson et al., 2007; Bonelli et al., 2012), including naming and word
generation/fluency (Rutten et al., 2002; Sabsevitz et al., 2003; Bonelli
et al., 2011). Studies of brain structure have also provided substantial in-
formation related to language functioning. Studies based on MRI
volumetry have revealed the importance of the hippocampus to lan-
guage performances, including naming and fluency (Seidenberg et al.,
2005). In addition, reduced volumes of the left prefrontal cortex have
been associated with impaired fluency in TLE (Hermann et al., 2003).
Recently, several investigations have also addressed the role of white
matter tracts in language function using DTI data (see Duffau et al.,
2008 for a review) and have used fMRI activation patterns to guide
DTI analysis of language networks in patients with TLE (Powell et al.,
2007). Studies exploringmean diffusivity (MD) and fractional anisotro-
py (FA) have found associations between the integrity of the uncinate
fasciculus and naming (McDonald et al., 2008; Papagno et al., 2011)
while those exploring intraoperative mapping have found associations
between superior longitudinal fasciculus (SLF) and inferior longitudinal
fasciculus (ILF) and phonemic and semantic paraphasias, respectively
(Duffau et al., 2002, 2009).

Overall, these approaches have underscored the utility of MRI in de-
lineatingwhich structures contribute to different aspects of language in
TLE and in assessing the risk of post-surgical decline based on this ana-
tomical information.However, past literature has often focused on a sin-
gle modality in isolation, and has rarely attempted to interpret the
totality of theMRI data acrossmultiple techniques. In theory, the neuro-
logical information captured by each of thesemodalities is likely to have
a great degree of overlap. However, unique informationmay also be ex-
tracted from various MRI modalities that could enhance our ability to
understand neurological diseases and cognitive morbidity, including
language dysfunction, in epilepsy. Combinant MRI metrics explored to
date have shown a promising improvement in clinical utility and pre-
dictive ability of MRI data used in conjunction with other modalities
(Thesen et al., 2011).

Multivariate approaches have garnered increasing interest from re-
searcherswhowish to characterize larger networks impacted by epilep-
sy. Recent approaches have included graph theoretical analysis,
independent component analysis (ICA), and exploratory factor analysis
(EFA), all of which rely on extracting information from a correlation or
covariance of variables of interest. As reviewed by Bernhardt et al.
(2013), graph-theoretical research has successfully characterized the
small-world topology (i.e., occurrence of clusters and hubs, short path
lengths on average) of various disease networks. Despite the applicabil-
ity of the covariation-based techniques used across multiple domains
(Guye et al., 2010), extant research often focuses on single-domain ma-
trices (e.g., cortical thickness; task-related activation), with very few
groups publishing findings on the comparative strength of structural
and functional networks across domains (Liao et al., 2013).

ICA's dimension reduction capabilities and ability to identify the
principal components of covariance matrices have made it a proven
tool for extracting valuable information in multimodal settings. ICA
has been successfully used to extract information from complex EEG
data (Stern et al., 2009) as well as co-interpreting simultaneously ac-
quired EEG–fMRI data to increase spatiotemporal resolution (Opitz
et al., 1999; Ikeda and Toyama, 2000) and source localization (Dien
et al., 2003). More recently, researchers have applied ICA to task-
based fMRI data to characterize epilepsy networks (Masterton et al.,
2013) and investigate changes in language networks (You et al.,
2011), reporting significant differences in patients. Research has also
shown that differences in scan site, scanner field strength or scanner
manufacturer do not obscure ICA and yield consistent results when
dealing with principal component vectors (You et al., 2009).

In this study, we quantify the overlap between the information de-
rived from different MRI techniques using PCA and test these compo-
nents' unique contributions in explaining language performance in a
sample of 56 healthy controls and 52 patients with temporal lobe epi-
lepsy. Specifically, we extract the principal components (PCs) that ex-
plain the maximal variance of the correlation from the following data
domains: i) cortical thickness, gray–white matter contrast (GWMC)
and hippocampal volume data obtained from T1-weighted 3-
dimensional images and ii) fiber tract FA and MD estimates based on
DTI. These MRI variables have all been shown to reveal disease-related
pathology in TLE that may affect cognitive functioning (Hermann
et al., 2009). We limit our scope to frontotemporal regions in an effort
to focus our analyses on regions for which there is strong empirical sup-
port of their contribution to language performance. We quantify the as-
sociations betweenMRI-driven PCs and performance in language-based
neuropsychological tests using Pearson's correlations. We also use
sequential discriminant function analyses (DFAs) to quantify the contri-
bution of DTI measures to the accurate prediction of language impair-
ment in our sample in terms of sensitivity and specificity.

2. Methods

2.1. Participants

This study was approved by the ethical standards committee on
human experimentation at University of California, San Diego (UCSD)
and completed according to the standards established in the Helsinki
Declaration. Written informed consent was obtained from all partici-
pants. Fifty-two patients with refractory TLE (ages 19–64) and 56 con-
trols (ages 18–61) were included in the study. Control subjects were
recruited through open advertisement and screened for past or present
neurological or psychiatric conditions; those with a history of neurolog-
ical or psychiatric illness were excluded from the study. All TLE patients
either were undergoing or had previously completed presurgical evalu-
ation at the UCSD Epilepsy Center and diagnosed with unilateral TLE by
a board-certified neurologist (E.S.T. and V.J.I.) with expertise in
epileptology. Seizure laterality was identified based on ictal recordings
in a video-EEG monitoring unit (with scalp and/or foramen ovale elec-
trodes), seizure semiology, and neuroimaging results. In particular, pa-
tients exhibiting dual pathology on MRI (e.g., tumors) were excluded
from the sample. Clinical MRI scans were available on all patients and
were visually inspected by a board-certified neuroradiologist for detec-
tion of unilateral mesial temporal sclerosis (MTS) which was observed
in 31 patients (16 patients with left MTS; 15 patients with right MTS;
none with bilateral MTS). Patients with contralateral temporal lobe
structural abnormalities, lateral temporal seizure focus and structural
abnormalities other than MTS were excluded. Demographic informa-
tion for controls and patients with TLE are presented in Table 1. There
were no significant age differences between the groups (p N .05), but
controls had significantly higher levels of education compared to pa-
tients (p= .003). The absence of significant age differences was partic-
ularly important given the possibility of age-related changes in brain
structure and function (Steffener et al., 2012, 2013). Both sexes were
similarly represented across all three groups χ2(2) = 0.39, p = .82.
The percentage of 1.5 vs. 3 T data was also equivalent across groups,
χ2(2) = 4.29, p = .12. Mann–Whitney U-tests revealed no significant
distribution differences between patients with left and right TLE in
terms of continuous clinical variables, i.e., age of seizure onset, seizure
frequency and number of medications (all ps N .1). Chi-squared tests
showed no significant group difference between left and right TLE pa-
tients in terms of the prevalence of positive history of status epilepticus,
mesial temporal sclerosis and positive history of febrile seizures (all



Table 1
Participant demographics.

Participants Control LTLE RTLE

N 56 25 27
1.5 T 45 17 16
3.0 T 11 8 11
Age 34.8 (11.8) 40.4 (12.4) 38.2 (13.5)
Education 15.0 (1.9) 13.6 (2.2) 13.6 (1.9)
Sex 33 F 14 F 16 F
Age of onset 17.1 (14.0) 16.6 (14.1)
Sz. freq (per mo.) 7.7 (7.9) 4.5 (3.6)
+MTS (on MRI) 16 15
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ps N .2). However, there was a significant reduction in FreeSurfer esti-
mates of hippocampal volumes between groups for the affected (ipsilat-
eral) hemisphere, F(2,105) = 9.01, p b .001 for the right hemisphere
and F(2,105)= 37.92, p b .001 for the left hemisphere. Clinical variables
for the patients did not exhibit a statistically significant correlationwith
ipsilateral hippocampal volumes, except for a significant association be-
tween longer disease duration and reduced ipsilateral hippocampal vol-
umes, r(52) = .58, p b .001. All patients were right handed.

2.2. MRI data acquisition and processing

2.2.1. Image acquisition
Magnetic resonance imagingwas performed on two General Electric

(GE) scanners. The 3 T scanswere acquired using a GEDiscoveryMR750
3.0 Tesla scanner with an in vivo 8-channel phased-array head coil.
Image acquisitions included a conventional 3-plane localizer, a T1-
weighted 3D customized FSPGR structural sequence (TE = 3.16 ms,
TR = 8.08 ms, TI = 600 ms, flip angle = 8°, FOV = 25.6 cm, matrix =
256 × 192, slice thickness = 1.2 mm), and a 30-directional diffusion-
weighted sequence (b-value = 1000, TE = 82.9 ms, TR = 8000 ms,
flip angle = 90°, FOV = 24.0 cm, matrix = 96 × 96, slice thickness =
2.5 mm, echo-spacing = 588 ms). The 1.5 T scans were acquired using
a GE EXCITE HD scanner with an eight-channel phased array head coil.
Image acquisitions included a conventional three-plane localizer, GE
calibration scan, two T1-weighted customized 3D MPRAGE-equivalent
structural scans (TE = 4.8 ms, TR = 10.7 ms, flip angle = 8°, FOV =
25.6 cm, matrix = 256 × 256, slice thickness = 1.0 mm), and
diffusion-weighted sequences (single-shot 51-directional echo planar
imaging with isotropic 2.5 mm voxels, b-value = 1000, matrix size =
96 × 96, FOV = 24 cm, slice thickness = 2.5 mm). The scans covered
the entire cerebrum and brainstem without gaps. Information on the
non-linear B0 correction performed on diffusion data from both scan-
ners is provided below. For all scanswithin the same scanner, the imag-
ing protocol was identical for all participants. For all scans, the patients
were seizure-free for a minimum of 24 h.

2.2.2. Image processing
Images in DICOM formatwere transferred to a Linuxworkstation for

processing. A custom, semi-automated processing stream combining
MATLAB and C++was used. Cerebral parcellations, subcortical volume
segmentation, cortical thickness and gray–white matter contrast
(GWMC) estimates were accomplished using FreeSurfer v5.1.0 image
analysis suite (http://surfer.nmr.mgh.harvard.edu/). Details of the re-
construction, which involves removal of non-brain tissue, Talairach
transformation, sub-cortical and cortical segmentation, intensity nor-
malization and topology correction to estimate gray–white matter and
graymatter–CSF boundaries, are described in detail in past publications
(Dale et al., 1999; Fischl andDale, 2000; Fischl et al., 1999a, 1999b, 2001,
2002, 2004a, 2004b;Han et al., 2006; Jovicich et al., 2006; Segonne et al.,
2004). The cerebral cortex was parcellated into surface ROIs based on
sulcal and gyral structure (Desikan et al., 2006). Cortical thickness was
defined as the shortest distance from the gray/white boundary to the
gray/CSF boundary at each vertex on the tessellated surface (Fischl
and Dale, 2000). For GWMC, the cortical matter was sampled at
0.2 mm from the gray–white matter boundary in both directions and
gray–white matter contrast was calculated as difference between T1
white matter intensity and gray matter intensity divided by their aver-
aged intensity at each voxel. Consequently, the range for these values
was zero to one, with larger numbers representing increased (i.e., bet-
ter) GWMC. Frontal and temporal lobe ROIs were included in the statis-
tical analysis (see Fig. 1).

Diffusion weighted images for each patient were first corrected
for warping and head-coil related inhomogeneities in signal sensi-
tivity. The images were pre-processed with a five-step procedure
that corrected for eddy current, motion and non-linear warping as
detailed in Hagler et al. (2009). The steps used for the intensity/
distortion correction and registration of the data to the T1 image
are provided in detail in Fjell et al. (2012), with the exception that our
images were resampled using linear interpolation to 1.875 mm3 isotro-
pic voxels.

Fiber tracts were derived using a probabilistic atlas containing infor-
mation about the locations and orientations of different fiber tracts as
detailed in Hagler et al. (2009). Atlas information was used to estimate
probability that a chosen voxel belongs to a particular fiber tract, which
became the basis for identifying and labeling thirteen white matter
tracts for the entire brain. Fiber ROIs were applied from the atlas to sin-
gle subjects using both T1-weighted images based on the similarity of
diffusion orientations, with an FA threshold of 0.15 (Wakana et al.,
2004). For each fiber tract, mean and anisotropic diffusion estimates
were calculated using conventional methods and averaged for the en-
tire tract, where FA showed the unidirectionality of the water diffusion
[0,1] and MD showed the overall magnitude of diffusion (Fjell et al.,
2012). Tracts traversing any portion of the frontal or temporal regions
were selected for analysis as tract ROIs (see Supplementary Table S1).
These tracts consisted of the following: fornix, superior longitudinal
fasciculus, superior corticostriate fasciculus, inferior frontal superior
fasciculus of the frontal cortex, striatum abutting the inferior frontal
cortex, anterior thalamic radiations, inferior longitudinal fasciculus,
inferior fronto-occipital fasciculus, forceps minor, uncinate fascicu-
lus, corpus callosum and cingulum. The tracts can be seen at the
bottom panels in Fig. 1, where they are displayed in two groups
for easier visualization.

2.2.3. Neuropsychological testing
Vocabulary subtest (Vocab) from theWechsler Abbreviated Scale of

Intelligence — Second Edition (WASI; Wechsler, 1997), Boston Naming
Test (BNT; Kaplan et al., 1983), Auditory Naming Test (ANT; Hamberger
and Seidel, 2003), and Letter Fluency (LF) and Category Fluency (CF)
subtests from Delis–Kaplan Executive Function System (D-KEFS; Delis,
Kaplan, and Kramer 2001)were used to quantify language ability across
participants. The Vocabulary subtest measures word knowledge and
verbal concept formation; BNT and ANT measure the ability to quickly
name visually or orally presented stimuli, respectively. LF and CF mea-
sure the ability to namewords that beginwith the same letter or belong
to the same semantic category in 1 min. The literature on naming and
fluency deficits in TLE even after controlling for education levels is
well-established (e.g., Hamberger and Tammy, 1999; Bell et al., 2003)
whereas group differences in vocabulary scores are likely to be driven
by an interaction of clinical variables and educational achievement.
Raw scores from each test were used in analyses and the scores
were corrected for age and education by including these variables
as covariates.

2.2.4. Statistical analysis
We defined four imaging data domains for the purposes of our analy-

sis: cortical thickness, GWMC, fractional anisotropy and mean diffusivity.
We used a surface-based parcellation scheme (Desikan, 2006) to extract

http://surfer.nmr.mgh.harvard.edu/


Fig. 1. ROIs selected for PCA analysis. Top panels show the cortical ROIs included in the generation of thickness and contrast PCs; bottom panels show the tracts included in the generation
of FA and MD PCs. Selected regions lie within the frontal and temporal lobes.
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averages for cortical thickness and GWMC based on FreeSurfer. We used
tractography estimates for fibers that traverse our region of interest and
only included fibers that either originate or terminate within a
frontotemporal region. We used PCA to extract the main factor with the
highest eigenvalue for each imaging data domain. We observed that the
factor model explained more than 70% of the variation on average (i.e.,
communality) for each of the neuroimaging variables. The use of a factor
analytic method in a relatively small sample was justified by the
overdetermination and high communality observed in our data
(Guadagnoli and Velicer, 1988). Moreover, basing our interpretations on
the PCs of each data domain minimizes the risk of interpreting unstable
patterns related to the idiosyncrasies of the participant sample. To mini-
mize the risk of working with unstable, idiosyncratic factor loadings, we
employed stringent factor-loading thresholds adjusted to the observed
communality in the data. Consequently, we adopted a 0.7 threshold for
all of the PCs,whichmeets theminimumcommunality requirements pro-
posed by Guadagnoli and Velicer (1988) for the interpretability of pat-
terns in smaller sample sizes.

ROI-level (thickness and GWMC) and tract-level (MD and FA) corre-
lation matrices in each data domain were analyzed using PCA. Cortical
thickness, GWMC, FA and MD were analyzed separately for the
frontotemporal regions in each hemisphere. Interhemispheric tracts
were excluded from the FA and MD analyses. Given our interest in the
PCs, regardless of their relationship to other factors, the unrotated solu-
tion was used in each domain. Given the similarity of the factor loading
structure, data from both scanning sites (1.5 and 3 T) were used when
deriving the PCs for each domain. Correlational analyses were carried
out both as zero-order correlations and as first-order correlations after
controlling for confounding factors that affect the derived PCs
(i.e., age, education, field strength of the scanner). Given multiple com-
parisons for eight PCs and five neuropsychological measures (i.e., 40
comparisons), a stringent cutoff was used to evaluate statistical signifi-
cance (p b .001) of brain–behavior correlations, reflecting a 40-fold cor-
rection to the family-wise alpha of .05. Significant correlations were
followed up with step-wise hierarchical regressions that juxtaposed
the variability explained by the PCs with the variability explained by a
commonly-referred measure in TLE research, hippocampal volume
loss, based on FreeSurfer estimates using the Desikan et al. (2006) atlas.

The predictive power of these PCs was further probed using a se-
quential (i.e., hierarchical) direct DFA. The goal of DFA is to determine
a function that maximizes the separation between groups, hence
achieving the greatest possible accuracy in assigning cases to groups.
In this study, the functions are linear combinations of demographic
and MRI/DTI variables and are called linear discriminant functions
(LDFs) (Boslaugh, 2012). Before we set up our analyses, we narrowed
our scope to only include the significant brain–behavior correlations
(i.e., naming tests and DTI PCs) and confirmed themultivariate normal-
ity and homogeneity of variance assumptions in our sample.We dichot-
omized impairment in naming performance using common clinical
cutoffs, where a scaled score less than or equal to 7 was considered im-
pairment for BNT and a raw score lower than 45 was considered im-
paired for ANT. We then set up three sequential direct DFAs that
predicted an individual's BNT impairment (i.e., membership to the “im-
paired” group). The first DFA included three predictive variables: age,
education and total brain volume. In the second DFA, we added hippo-
campal volume as a predictive variable to the existing three variables
to quantify the classification accuracy gained by the inclusion of this
commonly used clinical variable. For patients, the volume of the hippo-
campus in the affected hemisphere was used; for healthy individuals,
the average volumes of both hippocampi were used. In the third DFA,
we added the PCs for the DTI measures to the existing four variables
to quantify the additional accuracy gains resulting from the addition
of these measures to the classification model. A single LDF that com-
bined all the predictive variables was generated at each step. We pre-
dicted that different combinations of structural (e.g., hippocampal
volumes) and DTI data could give rise to different levels of separation
between the naming-impaired and healthy groups. Given the absence
of a formal criterion and the appropriateness of core DFA metrics in
quantifying this notion, p-value, classification accuracy, group distances
for the LDF, and the structure loadings for predictor variables for each
DFAwere used to evaluate the “usefulness” of each DFA and the contri-
bution of each variable to the classification accuracy. Classification



201N.E. Kucukboyaci et al. / NeuroImage: Clinical 5 (2014) 197–207
accuracy gains resulting from the inclusion of DTI PCs were quantified
using the percentage of those correctly classified and LDF distance
between groups in each case, where larger metrics indicated better
prediction of impairment. Again, given the absence of a formal sta-
tistical criterion, any improvement in these metrics accompanied
by a statistically significant p-value for the DFA was considered a
“useful” improvement in prediction of naming impairment. The sen-
sitivity and specificity of each DFA were then used to construct ROC
curves that comparatively illustrate the type I and II errors resulting
from the inclusion of DTI data in classification models. This proce-
dure was repeated for the ANT impairment index. Results were
evaluated individually and separately for the two field-strength
subgroups (i.e., 1.5 and 3.0 T).

3. Results

3.1. Principal component analyses (PCAs)

Dimension reduction using PCA yielded 3 left and 4 right hemi-
sphere cortical thickness factors; 1 left and 2 right hemisphere
GWMC factors; 2 left and 3 right hemisphere FA factors; and 2 left
and 1 right hemisphere MD factors. In all of the domains, the eigen-
value for the PC was at least 3 times larger than the preceding (sec-
ondary) factor. The variance explained by the secondary factors did
not exceed 13.9% for any data domain. Statistics for each domain are
provided below.

3.1.1. Cortical thickness
PC derived for the cortical thickness of the left hemisphere

explained 43.36% of the cortical thickness variation of the
frontotemporal region in this hemisphere (KMO = .883). PC de-
rived for the cortical thickness of the right hemisphere explained
40.56% of the cortical thickness variation of the frontotemporal
region in this hemisphere (KMO = .882). Items with loadings
exceeding 0.7 are provided in Table 2A. Portions of the inferior
frontal, superior frontal, middle frontal, lateral orbitofrontal,
middle and superior temporal gyri show strong loadings for
both hemispheres.

3.1.2. Gray–white matter contrast (GWMC)
PC derived for the GWMC of the left hemisphere explained

77.07% of the contrast variation of the frontotemporal region in
this hemisphere (KMO = .969). PC derived for the GWMC of
the right hemisphere explained 74.72% of the cortical thickness
variation of the frontotemporal region in this hemisphere
(KMO = .963). Items with loadings exceeding 0.9 are provided
in Table 2B.

3.1.3. Mean diffusivity and fractional anisotropy
PC derived for FA of tracts in the frontotemporal region explained

49.23% of the existing variation (KMO = .826) in the right hemisphere
tract FA and 51.98% of the existing variation (KMO = .851) in the left
hemisphere tract FA. Items with loadings exceeding 0.7 are provided
below in Table 2C.

PC derived for MD of tracts in the frontotemporal region explained
81.92% of the existing variation (KMO = .914) in the right hemisphere
tract MD and 82.71% of the existing variation (KMO = .925) in the left
hemisphere tract MD. Items with loadings exceeding 0.7 are provided
below in Table 2D.

3.2. Differences in language performance

Omnibus tests showed group differences in raw scores across all
language tests, driven by deficits observed in the left TLE group. The
results, summarized in Table 3, are consistent with past literature
and show that the group differences for all but ANT (p b .05) remain
statistically significant after correcting for age and education
(p b .001).

3.3. Correlational analyses

3.3.1. Correlations among neuroimaging PCs
Multiple significant correlations within and across domains were

identified among the eight PCs representing the four neuroimaging
data domains (see Supplementary Table S2) even after correcting for
multiple comparisons using p b .005. Left and right hemisphere PCs
were significantly correlated in all data domains (p b .0001). Zero-
order correlations indicated that increased thickness PCs were associat-
edwith increased FA PC and that increased contrast was associatedwith
increased FA and MD. However, these associations were no longer sig-
nificant after controlling for age, education, field strength differences
and total brain volume (i.e., confounding factors). A significant correla-
tion was also observed demonstrating that decreased FA PC was associ-
ated with increased MD PC only after controlling for the effect of the
confounding factors.

3.3.2. Correlations with language performance
Associations between the PCs and the language measures were de-

rived after controlling for age, education, scanner field strength and
total brain volume (i.e.) confounding variables. The partial correlations
are summarized in Table 4. The results showed a significant positive as-
sociation between BNT performance and left FA PCs even after control-
ling for the effects of confounding factors (p b .001). This association
was not statistically significant for the right FA PC. Higher left MD PC
was associated with worse ANT performance after controlling for the
confounding factors (p = .001). This association was not statistically
significant for the right MD PC. Higher left FA PC was associated
with improved performance on the WASI-Vocabulary tests even
after controlling for confounders; however, given the high num-
ber comparisons in Table 4 (i.e., 40), associations weaker than
p = .001 were not probed further. None of the cortical thickness
or contrast PCs showed statistically significant associations with
the language performance tests after controlling for confounding
factors. In addition, there were no statistically significant correla-
tions between any of the neuroimaging variables and measures
of letter or category fluency.

Significant correlations for BNT and ANT were probed further
by follow-up hierarchical linear regressions with all of the con-
founders entered in the first block, hippocampal volume entered
on the second block, and the appropriate PC entered stepwise in
the third block. For BNT, PC for FA accounted for an additional
7.8% of the variation in BNT scores, ΔF(1,73) = 9.28, β = .347,
p = .003, over and above the 15.2% explained by hippocampal
volume. For ANT, PC for MD accounted for an additional 9.9%
variation in ANT scores, ΔF(1,38) = 5.964, β = −.389, p =
.019, over and above the 21.1% explained by hippocampal
volume.

3.3.3. DFA results and ROC curves
Given their significant correlation with left FA PC and left MD PC,

BNT and ANT impairment was further analyzed. Three DFAs were per-
formed to predict membership to the BNT-impaired and the ANT-
impaired group separately. The null hypothesis for the homogeneity of
covariance matrices was confirmed using Box's M, which was insignifi-
cant for all DFAs. Results are summarized in Table 5, which shows the
significance level, percent accurately classified by each DFA, group
means (i.e., centroids) on the LDF and the structure loadings for each
predictor variable (i.e., the correlation between the predictors and the
LDF) separately for DFAs predicting BNT and ANT impairment. The
highest structure loading in each block (e.g., DFA 1) appears in bold; sta-
tistically significant loadings appear in italics. Results indicated that BNT
prediction could be predicted with 74.6% accuracy by weighing years of



Table 2B
Factor loadings for GWMC PCs.

Left hemisphere ROIs Loading Right hemisphere ROIs Loading

Superior frontal 0.9637 Rostral middle frontal 0.9740
Pars opercularis 0.9631 Superior frontal 0.9700
Pars triangularis 0.9608 Pars triangularis 0.9539
Rostral middle frontal 0.9565 Superior temporal 0.9485
Superior temporal 0.9561 Middle temporal 0.9461
Middle temporal 0.9514 Pars opercularis 0.9414
Fusiform 0.9479 Lateral orbitofrontal 0.9387
Inferior temporal 0.9409 Inferior temporal 0.9328
Caudal middle frontal 0.9341 Pars orbitalis 0.9248
Lateral orbitofrontal 0.9275 Caudal middle frontal 0.9142
Pars orbitalis 0.9045 Fusiform 0.9132

Table 2C
Fractional anisotropy (FA) PC factor loadings.

Left hemi. tracts Loading Right hemi. tracts Loading

Left parietal SLF 0.8821 Right IFOF 0.8706
Left temporal SLF 0.8744 Right temporal SLF 0.8438
Left IFOF 0.8586 Right parietal SLF 0.8388
Left uncinate 0.7695 Right uncinate 0.7796
Left ILF 0.7648 Right IFSFC 0.7659
Left SIFC 0.7516 Right ILF 0.7585
Left IFSFC 0.7428 Right SCSPC 0.7135
Left SCSPC 0.7159
Left SCSFC 0.7144

Table 2D
Mean diffusivity (MD) PC factor loadings.

Left hemi. tracts Loading Right hemi. tracts Loading

Left SCSFC 0.9741 Right SCSFC 0.9718
Left SCSPC 0.9737 Right parietal SLF 0.9693
Left temporal SLF 0.9672 Right temporal SLF 0.9687
Left parietal SLF 0.9661 Right SCSPC 0.9669
Left IFSFC 0.9649 Right IFOF 0.9443
Left uncinate 0.9415 Right CING (cingulate) 0.9434
Left IFOF 0.9309 Right ATR 0.9299
Left SIFC 0.9138 Right uncinate 0.9168
Left CING (cingulate) 0.9077 Right ILF 0.9139
Left ILF 0.9044 Right IFSFC 0.9087
Left ATR 0.8986 Right pyramidal 0.8919
Left pyramidal 0.8951 Right SIFC 0.8678
Left CING (parahippocampal) 0.8667 Right CING (parahippocampal) 0.8415

Table 3
Language performance across groups.

Vocab BNT ANT LF CF

Controls 64.4 (8.7) 54.5 (3.3) 48.7 (1.6) 46.4 (12.7) 44.6 (7.3)
LTLE 45.5 (7.3) 43.5 (7.9) 41.7 (6.5) 27.8 (8.7) 28.8 (9.2)
RTLE 59.0 (7.3) 52.0 (6.5) 46.9 (8.9) 35.4 (12.7) 33.2 (10.0)
Max score 80 60.0 50.0 – –

Significance **/** **/** ns/ns **/** **/**

Asterisks before and after the “/” sign indicate significant levels before and after controlling for age and education, respectively, where ns: not significant; **p b .001.
** p b 0.001.

Table 2A
Factor loadings for cortical thickness PCs.

Left hemisphere ROIs Loading Right hemisphere ROIs Loading

Rostral middle frontal 0.8691 Superior frontal 0.8554
Superior frontal 0.8490 Rostral middle frontal 0.8461
Pars triangularis 0.7989 Middle temporal 0.7959
Pars opercularis 0.7910 Superior temporal 0.7897
Superior temporal 0.7876 Caudal middle frontal 0.7869
Caudal middle frontal 0.7800 Pars opercularis 0.7814
Middle temporal 0.7322 Pars triangularis 0.7698
Lateral orbitofrontal 0.7304 Inferior temporal 0.7691

Lateral orbitofrontal 0.7595

202 N.E. Kucukboyaci et al. / NeuroImage: Clinical 5 (2014) 197–207



Table 4
Pearson's correlations between PCs and language test performances.

Vocab BNT ANT LF CF

N 56 75 40 73 73
LH thickness PC −.034 −.030 .257 −.054 .006
RH thickness PC −.061 −.118 .195 −.095 −.012
LH GWMC PC .044 .217 .022 .193 −.013
RH GWMC PC .000 .126 −.011 .125 −.017
LH FA PC .386* .403** .337 .188 .239
RH FA PC .326 .256 .202 .073 .154
LH MD PC −.326 −.149 −.517** −.111 −.101
RH MD PC −.235 −.035 −.425† −.052 −.028

Correlations after controlling for confounding factors (i.e., age, education, field strength differences and total brain volume).
† p b .01.
* p b .005.
** p b .001.
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education and left hemisphere FA PC for classification (DFA 3) more
than any other classifier (i.e., ipsilateral hippocampal volume) in the
LDF. Addition of hippocampal volume (DFA 2) to the BNT classification
model decreased accuracy by 1.7% compared to DFA 1; addition of DTI
PCs increased accuracy by 6.8% compared to DFA 1. On the other hand,
ipsilateral hippocampal volume appeared to be the best classifier for
ANT impairment regardless of the inclusion of DTI PCs in the model.
Nonetheless, improvements in classification accuracy were still ob-
served for DFA 6 that includedDTI PCs. Addition of hippocampal volume
(DFA 5) to the ANT classificationmodel increased accuracy by 12% com-
pared to DFA 4; addition of DTI PCs increased accuracy by 27.8% com-
pared to DFA 4. Group centroids on the LDF had negative values for
the naming-impaired group for each DFA and positive values for the un-
impaired group. Directional correspondence between the centroid
values and variables loadings showed that the likelihood of naming im-
pairment decreased for all DFAs (1–6) as education, hippocampal vol-
umes and anisotropic diffusion increased. Distances between group
centroids for eachDFA indicated that naming-impaired and unimpaired
subjects were better classified (i.e., more distant group centroids) for
ANT than BNT.

BNT results lost their significance but retained their structure when
using the smaller subgroup (i.e., 3.0 T) and when both field-strength
subgroups were pooled together. ANT results were insignificant for
the 1.5 T data. These results are provided in Supplementary Table S3.
Cross-validation of results using leave-one-out classification for each
observation in our 1.5 T data resulted with 64.4%, 62.7% and 66.1% clas-
sification accuracy for DFAs 1–3, respectively. Similar cross-validation
for ANT using 3.0 T data resulted with 60.0%, 76.0% and 83.3% classifica-
tion accuracy for DFAs 4–6, respectively.

ROC curves that visualize the relative classification performance of
each DFA are provided below (Fig. 2). Top left quadrant in each figure
represents a desirable classification ability with high sensitivity (i.e.,
low type I errors) and specificity (low type II errors). Both figures dem-
onstrate that the sensitivity and specificity of detecting BNT and ANT
impairment can be improved by using PCs calculated from DTI to level
above and beyond those obtained by standard models that rely on hip-
pocampal volume loss to predict impairment in TLE.

4. Discussion

In this study, we integrated information from multiple domains of
MRI data to explain language function in patients with refractory TLE.
We used four MRI-derived measurement domains (cortical thickness,
GWMC, MD and FA) and limited our analysis to the ROI (for thickness
and contrast) and tract-level (for MD and FA) characteristics of the
frontotemporal regions. We extracted the PCs from our pool of healthy
controls and patients with TLE in each domain and quantified the inter-
correlations among the PCs and between these PCs and language perfor-
mance. By pooling data from patients and healthy individuals for
structural and diffusion measures for which there is empirical support
of group differences (Bernhardt et al., 2010; Kemmotsu et al., 2011),
we hypothesized that the PCs would represent disease related change
measured by each MRI variable.

Our results confirmed that different MRI data domains convey vary-
ing degrees of unique information that are confounded by individual
and scanner variables. Past research has shown stronger associations
between volume loss and reduced FA in temporal lobe epilepsy
(Keller et al. 2012; Scanlon et al., 2013) compared to healthy young
adults, who exhibit modest associations between volume and diffusion
parameters (Tamnes et al., 2010). In our sample of 108 participants,
total brain volumes appeared to be positively associated with both
thickness and FA PCs.We found that FAmeasures show significant asso-
ciations with cortical thickness and GWMC measures, but that these
correlations are partially explained by the differential impact of age,
field-strength and total brain volume on these variables. The strong pos-
itive association between field strength and GWMCmeasures appeared
especially critical in artificially inflating the FA–GWMC correlation by
generating higher GWMC and FA estimates in higher field-strength
scanners. On the other hand, the significance of MD–FA correlations
was partially attenuated by age, total brain volume andfield strength ef-
fects. This finding was consistent with earlier reports on the longer-
term stabilization of diffusion parameters in patients with TLE following
seizures generating negatively correlated MD and FA estimates stem-
ming from the interplay between axonal integrity (e.g., demyelination),
gliosis and neuronal loss (Concha et al., 2010).

Despite the intuitive expectation for their occurrence, variations
in quantitative gray and white matter measures caused by magnetic
field strength differences are still being researched. Chung et al.
(2013) recently reported that FA estimates are systematically higher
for higher field strength diffusion-weighted acquisitions. In line
with Jovicich et al. (2009) and Pfefferbaum et al.'s (2012) reports
of local susceptibility, West et al. (2013) recently reported that the
overall brain segmentation total brain volume estimates were reli-
able and identical across both field strengths. However, the magni-
tude of disagreement between 1.5 and 3.0 T measures was larger
for white matter measures than it was for the gray matter, and
that deep brain structures, cerebellum and brain stem were espe-
cially susceptible. Our findings expand their reports to GWMC mea-
sures and comprise an addition to the emerging literature that
argues in favor of pooling T1-weighted anatomical data across 1.5
and 3.0 T measures with the use of appropriate correction proce-
dures (Pfefferbaum et al., 2012).

Of the eight PCs from the two domains of MRI data derived from
frontotemporal regions, only two of them showed significant correla-
tions with language measures. Lower left hemispheric tract FA was sig-
nificantly associatedwith poorer visual naming performance andworse
expressive vocabulary. Similarly, higher left hemispheric tract MD was
associated with poorer auditory naming performance (Hamberger and



Fig. 2. ROCs for the prediction on naming impairment. Left panel shows the performance of DFA 1 (solid line), DFA 2 (small dashes) and DFA 3 (short dashes) in predicting visual confron-
tation impairmentwithin the patients with 1.5 T data. Right panel shows the performance of DFA 4 (solid line), DFA 5 (small dashes) and DFA 6 (short dashes) in predicting auditory nam-
ing impairment within the patients with 3.0 T data. Remaining results are provided in Supplementary Table S3.

Table 5
Comparison of DFAs that predict BNT and ANT impairment.

BNT impairment (1.5 T; N = 59) ANT impairment (3.0 T; N = 25)

DFA 1 DFA 2 DFA 3 DFA 4 DFA 5 DFA 6

Significance .017 .027 .004 .152 .042 .015
Correctly classified 67.8% 66.1% 74.6% 68.0% 80.0% 95.8%
Group centroids −.642 ↔ .305 −.671 ↔ .319 −.999 ↔ .475 −1.013 ↔ .253 −1.490 ↔ .372 −2.924 ↔ .585
Age −.041 −.039 −.026 .039 .026 −.087
Education .880 .842 .565 .527 .358 .166
Total brain volume .439 .420 .282 .588 .400 .232
Ipsilateral HC volume .483 .324 .717 .605
Left hemi FA PC .565 .289
Right hemi FA PC .421 .136
Left hemi MD PC −.143 −.331
Right hemi FA PC −.046 −.166
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Seidel, 2003). In follow-up direct DFAs performed to gauge themarginal
explanatory power of the imaging PCs in verbal naming abilities, both
FA andMD left hemispheric PCs retained their significance in explaining
visual and auditory naming performance, respectively, after controlling
for age, education, field strength, total brain volume and hippocampal
volume. Inclusion of these DTI PCs not only improved the classification
accuracy (Table 5), but also improved the sensitivity and the specificity
of the prediction of naming impairment within our sample (Fig. 2). The
results were robust to the specification of model parameters: stepwise
procedures that involved all 8 PCs yielded similar results that showed
only left FA PC and education as significant classifiers for BNT impair-
ment. Thickness and GWMC PCs did not present unique abilities to ex-
plain the performance variation observed in these naming tests. In this
regard, hippocampal volume, in conjunction with diffusion-based FA
and MD PCs, contributed unique information only towards explaining
auditory naming deficits in patients with TLE whereas other T1-
based thickness and GWMC PCs did not. On the other hand, impair-
ment in visual confrontation naming (BNT) was best classified by
heavily relying on education levels and left hemispheric FA (i.e.,
weighing these metrics heavily on the LDF). In fact, relying solely
on ipsilateral hippocampal volume estimates in the absence of
DTI PCs appeared to increase both false positives and false nega-
tives when predicting visual naming impairment (DFA 2). This de-
crease in accuracy contrasted the substantial accuracy gains
generated by adding hippocampal volumes to the prediction of au-
ditory naming impairment (DFA 5). DFAs 3 and 6, which combined
hippocampal volumes and DTI PCs as classifiers, more accurately
predicted both visual and auditory naming impairment. Indeed,
following the combination of DTI PCs and hippocampal volume
estimates, auditory naming impairment appeared to be predicted
with 95.8% accuracy.

We also noted an interesting dissociation between FA andMD PCs in
our results that persisted across multiple statistical approaches. Left
hemisphere FA appeared specifically more associated with visual con-
frontation naming than it did with auditory naming, while left hemi-
sphere MD appeared specifically more associated with auditory
naming than it did with visual confrontation naming. This dissociation
was observed in terms of both partial correlations (i.e., Table 4) and
structure loadings (i.e., Table 5) of FA and MD PCs. Given that both
tract FA and MD estimates are based on identical diffusion tensors, the
divergence of the diffusion results in this manner is counterintuitive.
For BNT, we believe that the smaller effect sizes of MD may contribute
to the lack of statistical significance in the directionally meaningful cor-
relations observed. Profusion of published FA–behavior relationships in
extant neuropsychological literature with concurrent reports of non-
significant MD findings (Charlton et al., 2006; Madden et al., 2009;
Seghete et al., 2013; Trivedi et al., 2013) further supports this possibility.
On the other hand, this theory still does not explain why MD was the
only PC we observed to be associated with ANT. Despite recent reports
of similar BNT vs. ANT divergence in post-surgical TLE patients that im-
plicate differences in hippocampus-dependence of these tasks
(Hamberger et al., 2010), further research is needed to replicate and
elucidate this divergence in TLE.

Past research has established the sensitivity of DTI and tractography
in probing structural pathology including demyelination, glial hypertro-
phy, scarring and apoptosis (Obenaus, 2013). Research has already
shown that both hippocampal and extra-hippocampal white-matter
fiber architecture is affected by refractory TLE (Hermann et al., 2003;

image of Fig.�2
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Rodrigo et al., 2007; Diehl et al., 2008; Dulay et al. 2009; McDonald
et al., 2008; Yogarajah and Duncan, 2008; Keller et al., 2012;
Kucukboyaci et al., 2012). Prior estimates for significant correlations
between tract specific white-matter FA and language measures,
which range from r=.535 for right temporal FA and naming and vocab-
ulary based language performance in children with focal epilepsies
(Widjaja et al., 2013) to r=[.65–.80] for right and left arcuate and nam-
ing performance (McDonald et al., 2008b), appear directionally
consistent with the associations we report. With regard to the magni-
tudes, we observe a significant attenuation in the diffusion MRI data–
language performance relationship after controlling for age, education
and hippocampal volumes. Our reliance on partial correlations con-
trolled for these confounding variables may explain the smaller magni-
tude of our results. Still, all of these findings suggest that DTI can be
especially important in augmenting T1-weighted data and that the dif-
fusion metrics obtained may provide additional clinical utility for un-
derstanding language impairments at both the regional and the global
level.

In summary, we used PCA to simultaneously integrate and interpret
MRI data across different modalities. Based on PCs that represent
disease-driven change in our participant pool, we report significant cor-
relations between disease-driven cortical thickness andGWMC changes
across hemispheres alongwith associations between FA reductions and
MD increases that accompany the refractory disease process. Further-
more, we show that these changes in the diffusion patterns are associat-
edwith language performance,where FA reductions are associatedwith
worse visual confrontation naming and MD increases are associated
with worse auditory naming. We also find that the FA and MC patterns
are highly sensitive and specific in predicting language impairment at
the PC level. Our findings highlight the importance of frontotemporal
white matter integrity in language performances in TLE and suggest
that microstructural measures derived from DTI may bemore powerful
estimates of cognitive dysfunction than cortical measures derived from
T1-weighted volumes. Moreover, our multivariate methods retain the
statistical power that is often lost in ROI-based group comparisons.

Several limitations to our study should be noted. First, we utilize a
dimension-reduction technique (i.e., PCA) often used with larger sam-
ples (e.g., N250). We rely on the high communality we observed within
the frontotemporal regions of interest to boost the validity of our results
and ensure good recovery of population factors in samples regardless of
sample size, level of overdetermination, or the presence of model error
(MacCallum et al., 2001). We also work with data that show a high de-
gree of overdetermination (i.e., high number of items per factor), and
limit our scope to items with high factor loadings (N0.8), which maxi-
mizes the sample-to-population fit for the extracted factors (Velicer
and Fava, 1998). Therefore, we believe that the PCs we derive are inter-
pretable independent of the sample size used (Guadagnoli and Velicer,
1988). Working with PCs also allows us to pool data across field
strengths andmaintain statistical powerwithminimal problems arising
from multiple comparisons. Nonetheless, our methods also have their
shortcomings. While we choose to work with the PC of each data do-
main to capitalize on the stable, reliable portions of the communalities
observed, smaller components that were extracted may also have clini-
cal or research significance. Although the eigenvalues we observed
strongly suggested a unifactorial structure in each of our MRI domains,
it is possible to extract other, smaller factors. These smaller components,
which may include overrepresented correlations with hippocampal
morphometry and diffusion, may also capture disease-related changes
in MRI measurements (see Supplementary Table S4). However, our
sample size reduces our ability to accurately recover population charac-
teristics in our sample for smaller components. Moreover, our PCA has
relied on the unrotated factor structure in each domain since extracting
multiple,maximally orthogonal factors had not been our goal. However,
rotated factor structures could be of interest to other researchers who
can use larger samples with the aim of extracting multiple, reliable fac-
tors from each domain.
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