Effective Dini's Theorem on Effectively Compact Metric Spaces

Hiroyasu Kamo ${ }^{1}$
Dept. of Information and Computer Sciences, Faculty of Science,
Nara Women's University, Nara, Japan

Abstract

We show that if a computable sequence of real-valued functions on an effectively compact metric space converges pointwise monotonically to a computable function, then the sequence converges effectively uniformly to the function. This is an effectivized version of Dini's Theorem.

Keywords: Dini's Theorem, effectively compact metric space, computable function, effective uniform convergence

1 Introduction

If a sequence of real-valued continuous functions on a compact space converges pointwise monotonically to a continuous function, then the sequence converges uniformly to the function. It is called Dini's theorem and one of the fundamental theorems in functional analysis and general topology.

From the viewpoint of computability, the question arises: whether we can effectivize Dini's theorem, in other words, whether there is a theorem which is a Dini's theorem with some topological concepts replaced by their computational counterparts. In this paper, we show a positive answer to this question in the case of metric spaces, more precisely, the theorem that if a computable sequence of real-valued functions on an effectively compact metric space con-

[^0]verges pointwise monotonically to a computable function, then the sequence converges effectively uniformly to the function.

Meanwhile, if a computable sequence of real numbers converges monotonically to a computable real number, then the sequence converges effectively to the real number. It is called the monotonic convergence theorem [6]. The main theorem in this paper is not only an effectivization of Dini's thorem but also an extension of the monotonic convergence theorem to real-valued continuous functions on effectively compact metric spaces. The monotonic convergence theorem is considered a special case of our theorem on $C(\{0\})$, the space of all real-valued continuous functions on a singlton.

2 Preliminaries

For a relation $S \subset X_{1} \times \cdots \times X_{m} \times Y_{1} \times \cdots \times Y_{n}$ and a tuple $\left(x_{1}, \ldots, x_{m}\right) \in$ $X_{1} \times \cdots \times X_{m}$, the set $\left\{\left(y_{1}, \ldots, y_{n}\right) \in Y_{1} \times \cdots \times Y_{n} \mid\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \in S\right\}$ is denoted by $S\left(x_{1}, \ldots, x_{m}\right)$.

We fix some standard tuple functions and corresponding projection functions on \mathbb{N}. $\langle-, \ldots,-\rangle$ denotes the n-tuple function. $(-)_{k}^{n}$ denotes the corresponding k th projection function. We often identify an n-tuple sequence $\left(x_{k_{1}, \ldots, k_{n}}\right)$ with its serialization $\left(x_{\left.(k)_{1}^{n}, \ldots,(k)_{n}^{n}\right)}\right)_{k \in \mathbb{N}}$.

We use the terminology and the notation on computability of real numbers and of real functions that Pour-El and Richards have used in [6].

The following four definitions are introduced in [9] by Yasugi, Mori, and Tsujii.

Definition 2.1 Let (M, d) be a metric space. A set $\mathcal{S} \subset M^{\omega}$ is a computability structure on (M, d) if the following three conditions hold.
(i) If $\left(x_{n}\right),\left(y_{n}\right) \in \mathcal{S}$, then $\left(d\left(x_{n}, y_{n^{\prime}}\right)\right)_{n, n^{\prime}}$ forms a computable double sequence of real numbers.
(ii) If $\left(x_{n}\right) \in \mathcal{S}$ and $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ is a recursive function, then $\left(x_{\sigma(n)}\right) \in \mathcal{S}$.
(iii) If $\left(x_{n, k}\right) \in \mathcal{S},\left(x_{n}^{\prime}\right) \in M^{\omega}$, and $\left(x_{n, k}\right)$ converges to $\left(x_{n}^{\prime}\right)$ effectively in n and k as $k \rightarrow \infty$, then $\left(x_{n}^{\prime}\right) \in \mathcal{S}$.
An element of \mathcal{S} is called a computable sequence in M.
Definition 2.2 A metric space with a computability structure (M, d, \mathcal{S}) is effectively totally bounded if there exists a computable sequence $\left(e_{l}\right) \in \mathcal{S}$ and a recursive function $\gamma: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
M=\overline{\left\{e_{l} \mid l \in \mathbb{N}\right\}} \quad \text { and } \quad(\forall i \in \mathbb{N}) M=\bigcup_{l=0}^{\gamma(i)} B\left(e_{l}, 1 / 2^{i}\right)
$$

(M, d, \mathcal{S}) is effectively compact if it is effectively totally bounded and d is a complete metric.

Definition 2.3 Let (M, d, \mathcal{S}) be a metric space with a computability structure. A subset $K \subset M$ is an effectively compact subset of M if $\left(K,\left.d\right|_{K}, \mathcal{S} \cap K^{\omega}\right)$ is an effectively compact metric space.

In other words, K is an effectively compact subset of (M, d, \mathcal{S}) iff it is a compact subset of (M, d) and there exists a computable sequence $\left(e_{l}\right) \in \mathcal{S}$ and a recursive function $\gamma: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
K=\overline{\left\{e_{l} \mid l \in \mathbb{N}\right\}} \quad \text { and } \quad(\forall i \in \mathbb{N}) K \subset \bigcup_{l=0}^{\gamma(i)} B\left(e_{l}, 1 / 2^{i}\right)
$$

Definition 2.4 Let (M, d, \mathcal{S}) be an effectively compact metric space. A sequence of functions $\left(f_{n}\right), f_{n}: M \rightarrow \mathbb{R}$, is computable if the following two conditions hold.
(i) (Sequential computability) For any computable sequence $\left(x_{k}\right)$ in M, $\left(f_{n}\left(x_{k}\right)\right)_{n, k}$ forms a computable sequence of real numbers.
(ii) (Effective uniform continuity) There exists a recursive function α : $\mathbb{N}^{2} \rightarrow \mathbb{N}$ such that for any $n, j \in \mathbb{N}$ and any $x, y \in M$,

$$
d(x, y)<1 / 2^{\alpha(n, j)} \Longrightarrow\left|f_{n}(x)-f_{n}(y)\right|<1 / 2^{j}
$$

A function $f: M \rightarrow \mathbb{R}$ is a computable function if $(f)_{n \in \mathbb{N}}$, the sequence all of whose elements are equal to f, is a computable sequence of functions.

The recursive function α in Definition 2.4 (ii) is called an effective modulus of continuity of $\left(f_{n}\right)$.

3 Effective Dini's Theorem

First, we show two propositions with no assumptions on computability.
Proposition 3.1 Let (M, d) be a metric space. Let $K \subset M$ be a nonempty compact subset with $\left(e_{l}\right) \in M^{\omega}$ and $\gamma: \mathbb{N} \rightarrow \mathbb{N}$ such that $K=\overline{\left\{e_{l} \mid l \in \mathbb{N}\right\}}$ and $(\forall i) K \subset \bigcup_{l=0}^{\gamma(i)} B\left(e_{l}, 1 / 2^{i}\right)$. Then, for any finite sequence of open balls $\left(B\left(x_{k}, r_{k}\right)\right)_{k=0, \ldots, m}$, the following holds:

$$
K \subset \bigcup_{k=0}^{m} B\left(x_{k}, r_{k}\right) \Longleftrightarrow(\exists i)(\forall l \leq \gamma(i))(\exists k \leq m) d\left(x_{k}, e_{l}\right)+\frac{1}{2^{i}}<r_{k}
$$

Proof. (\Longleftarrow) Suppose $y \in K$. Then, $(\exists l \leq \gamma(i)) d\left(y, e_{l}\right)<1 / 2^{i}$. It follows that

$$
(\exists i)(\exists l \leq \gamma(i))(\exists k \leq m)\left[d\left(y, e_{l}\right)<\frac{1}{2^{i}} \wedge d\left(x_{k}, e_{l}\right)+\frac{1}{2^{i}}<r_{k}\right] .
$$

This implies $(\exists k \leq m) d\left(y, x_{k}\right)<r_{k}$, i.e., $y \in \bigcup_{k=0}^{m} B\left(x_{k}, r_{k}\right)$. This shows $K \subset \bigcup_{k=0}^{m} B\left(x_{k}, r_{k}\right)$.
(\Longrightarrow) We will prove the contraposition. The negation of the conclusion is:

$$
(\forall i)(\exists l \leq \gamma(i))(\forall k \leq m) \quad d\left(x_{k}, e_{l}\right)+\frac{1}{2^{i}} \geq r_{k} .
$$

By choosing an l for each i, we obtain a function $\gamma^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
(\forall i)(\forall k \leq m) \quad d\left(x_{k}, e_{\gamma^{\prime}(i)}\right)+\frac{1}{2^{i}} \geq r_{k} .
$$

Since K is sequentially compact, there exists a subsequence $\left(e_{\gamma^{\prime}(\theta(i))}\right)$ that converges to a point in K. Let y be the limit. A simple manipulation of limits yields $(\forall k \leq m) d\left(x_{k}, y\right) \geq r_{k}$, i.e., $y \notin \bigcup_{k=0}^{m} B\left(x_{k}, r_{k}\right)$. This shows $K \not \subset \bigcup_{k=0}^{m} B\left(x_{k}, r_{k}\right)$.
Proposition 3.2 Let (M, d) be a separable metric space with a dense, at most countable subset $\left\{e_{l} \mid l \in \mathbb{N}\right\}$. Let a be a real number such that $a \geq 1$. Let $\left(\varepsilon_{i}\right)$ be a sequence of positive real numbers converging to 0 . Then,

$$
B(x, r)=\bigcup_{\substack{l, i \in \mathbb{N}, d\left(x, e_{l}\right)+a \varepsilon_{i}<r}} B\left(e_{l}, \varepsilon_{i}\right) .
$$

Proof. Comparison of the distance between the centers with the difference between the radii yields $B(x, r) \supset B\left(e_{l}, \varepsilon_{i}\right)$ if $d\left(x, e_{l}\right)+a \varepsilon_{i}<r$. This implies $B(x, r) \supset \bigcup_{l, i \in \mathbb{N}, d\left(x, e_{l}\right)+a \varepsilon_{i}<r} B\left(e_{l}, \varepsilon_{i}\right)$.

Suppose $y \in B(x, r)$. There exists an ε_{i} such that $d(x, y)<r-$ $(a+1) \varepsilon_{i}$. Furthermore, there exists an e_{l} such that $d\left(y, e_{l}\right)<\varepsilon_{i}$. From these two inequalities as well as $d\left(x, e_{l}\right) \leq d(x, y)+d\left(y, e_{l}\right)$, we obtain $d\left(x, e_{l}\right)+a \varepsilon_{i}<r$. Therefore $y \in \bigcup_{l, i \in \mathbb{N}, d\left(x, e_{l}\right)+a \varepsilon_{i}<r} B\left(e_{l}, \varepsilon_{i}\right)$. This shows $B(x, r) \subset \bigcup_{l, i \in \mathbb{N}, d\left(x, e_{l}\right)+a \varepsilon_{i}<r} B\left(e_{l}, \varepsilon_{i}\right)$.

Next, we show two lemmata. Lemma 3.3 is on a consequence of effective compactness. Lemma 3.4 is on another characterization of computable realvalued functions.

Lemma 3.3 Let (M, d, \mathcal{S}) be a metric space with a computability structure. For any effectively compact subset K of M and any computable double sequence
$\left(B\left(x_{n, k}, r_{n, k}\right)\right)$ of open balls in M, there exists a recursive partial function $\alpha: \mathbb{N} \rightharpoonup \mathbb{N}$ such that $\alpha(n)$ is defined and $K \subset \bigcup_{k=0}^{\alpha(n)} B\left(x_{n, k}, r_{n, k}\right)$ holds if $K \subset \bigcup_{k=0}^{\infty} B\left(x_{n, k}, r_{n, k}\right)$, and $\alpha(n)$ is undefined otherwise.

Proof. We choose a computable sequence $\left(e_{l}\right)$ and a recursive function γ : $\mathbb{N} \rightarrow \mathbb{N}$ such that $K=\overline{\left\{e_{l} \mid l \in \mathbb{N}\right\}}$ and $(\forall i) K \subset \bigcup_{l=0}^{\gamma(i)} B\left(e_{l}, 1 / 2^{i}\right)$. By applying Proposition 3.1 to each finite sequence $\left(B\left(x_{n, k}, r_{n, k}\right)\right)_{k=0, \ldots, m}$ for $n=0,1,2, \ldots$, we obtain

$$
K \subset \bigcup_{k=0}^{m} B\left(x_{n, k}, r_{n, k}\right) \Longleftrightarrow(\exists i)(\forall l \leq \gamma(i))(\exists k \leq m) d\left(x_{n, k}, e_{l}\right)+\frac{1}{2^{i}}<r_{n, k} .
$$

It is clear that the right-hand side is recursively enumerable in n and m. Therefore, there exists a primitive recursive predicate φ on \mathbb{N}^{3} such that $\left(\exists i^{\prime}\right) \varphi\left(n, m, i^{\prime}\right)$ iff $K \subset \bigcup_{k=0}^{m} B\left(x_{n, k}, r_{n, k}\right)$. Hence, we can construct α by $\alpha(n) \simeq\left(\min \left\{m^{\prime} \mid \varphi\left(n,\left(m^{\prime}\right)_{1}^{2},\left(m^{\prime}\right)_{2}^{2}\right)\right\}\right)_{1}^{2}$.

Lemma 3.3 corresponds to " $\delta_{\text {range }}^{\prime} \leq \delta_{\text {Haine-Borel }} \mathcal{K}^{*}$ " shown by Brattka and Presser in [1]. The proof here is essentially the same as that in [1] with some correction for a minor error.

Lemma 3.4 Let (M, d, \mathcal{S}) be an effectively compact metric space. Let $\left(e_{l}\right) \in \mathcal{S}$ be dense in M. For any sequence $\left(f_{n}\right)$ of real-valued functions on M, the following two conditions are equivalent.
(i) $\left(f_{n}\right)$ is a computable sequence of functions.
(ii) There exists a recursively enumerable set $S \subset \mathbb{N} \times \mathbb{Q} \times \mathbb{Q}^{+} \times \mathbb{N} \times \mathbb{N}$ such that

$$
(\forall n \in \mathbb{N})(\forall c \in \mathbb{Q})\left(\forall r \in \mathbb{Q}^{+}\right) \quad f_{n}^{-1}((c-r, c+r))=\bigcup_{(l, i) \in S(n, c, r)} B\left(e_{l}, 1 / 2^{i}\right) .
$$

Proof. [(i) \Rightarrow (ii)] Let $\alpha: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be an effective modulus of continuity of $\left(f_{n}\right)$. Let $S \subset \mathbb{N} \times \mathbb{Q} \times \mathbb{Q}^{+} \times \mathbb{N} \times \mathbb{N}$ be the set defined by

$$
\begin{aligned}
& (n, c, r, l, i) \in S \\
& \stackrel{\Longleftrightarrow}{\Longleftrightarrow}(\exists j \in \mathbb{N})\left(i=\alpha(n, j) \wedge c-r<f_{n}\left(e_{l}\right)-1 / 2^{j} \wedge f_{n}\left(e_{l}\right)+1 / 2^{j}<c+r\right) .
\end{aligned}
$$

Since α is a recursive function and $\left(f_{n}\left(e_{l}\right)\right)$ is a computable double sequence of real numbers, it follows immediately from the definition of S that S is a recursively enumerable set.

Let $(l, i) \in S(n, c, r)$. Then we have, for some $j \in \mathbb{N}$,

$$
\begin{aligned}
f_{n}\left(B\left(e_{l}, 1 / 2^{i}\right)\right) & =f_{n}\left(B\left(e_{l}, 1 / 2^{\alpha(n, j)}\right)\right) \\
& \subset\left(f_{n}\left(e_{l}\right)-1 / 2^{j}, f_{n}\left(e_{l}\right)+1 / 2^{j}\right) \\
& \subset(c-r, c+r)
\end{aligned}
$$

Therefore, $B\left(e_{l}, 1 / 2^{i}\right) \subset f_{n}^{-1}((c-r, c+r))$. This shows $f_{n}^{-1}((c-r, c+r)) \supseteq$ $\bigcup_{(l, i) \in S(n, c, r)} B\left(e_{l}, 1 / 2^{i}\right)$.

Suppose $x \in f_{n}^{-1}((c-r, c+r))$, i.e., $\left|f_{n}(x)-c\right|<r$. Then, for some $j \in \mathbb{N}$, it holds that $2 / 2^{j} \leq r-\left|f_{n}(x)-c\right|$. For such a j, there exists an e_{l} such that $d\left(x, e_{l}\right)<1 / 2^{\alpha(n, j)}$. Hence $\left|f_{n}\left(e_{l}\right)-f_{n}(x)\right|<1 / 2^{j}$. By using $f_{n}\left(e_{l}\right)-1 / 2^{j}<f_{n}(x)$, we obtain

$$
f_{n}\left(e_{l}\right)+1 / 2^{j}<f_{n}(x)+2 / 2^{j} \leq f_{n}(x)+r-\left|f_{n}(x)-c\right| \leq c+r
$$

Analogously, by using $f_{n}\left(e_{l}\right)+1 / 2^{j}>f_{n}(x)$, we obtain $f_{n}\left(e_{l}\right)-1 / 2^{j}>c-r$. The conjunction of the obtained two inequalities implies $(n, c, r, l, \alpha(n, j)) \in$ S. Therefore, $x \in B\left(e_{l}, 1 / 2^{i}\right)$ for some $(l, i) \in S(n, c, r)$. This shows $f_{n}^{-1}((c-r, c+r)) \subset \bigcup_{(l, i) \in S(n, c, r)} B\left(e_{l}, 1 / 2^{i}\right)$.
$[(\mathrm{ii}) \Rightarrow(\mathrm{i})]$ (Sequential computability) \quad Suppose $\left(x_{k}\right) \in \mathcal{S}$. From (ii), we obtain

$$
\left|f_{n}\left(x_{k}\right)-c\right|<1 / 2^{j} \Longleftrightarrow(\exists l)(\exists i)\left[\left(n, c, 1 / 2^{j}, l, i\right) \in S \wedge d\left(x_{k}, e_{l}\right)<1 / 2^{i}\right]
$$

Hence $\left\{(n, k, j, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{Q}| | f_{n}\left(x_{k}\right)-c \mid<1 / 2^{j}\right\}$ is a recursively enumerable set. Meanwhile, $(\forall n)(\forall k)(\forall j)(\exists c \in \mathbb{Q})\left|f_{n}\left(x_{k}\right)-c\right|<1 / 2^{j}$ holds since \mathbb{Q} is dense in \mathbb{R}. Therefore, there exists a computable triple sequence of rational numbers $\left(c_{n, k, j}\right)$ such that $(\forall n)(\forall k)(\forall j)\left|f_{n}\left(x_{k}\right)-c_{n, k, j}\right|<1 / 2^{j}$, i.e., $\left(f_{n}\left(x_{k}\right)\right)_{n, k}$ is a computable double sequence of real numbers.
(Effective uniform continuity) Using Proposition 3.2, we obtain that

$$
B\left(e_{l}, 1 / 2^{i}\right)=\bigcup_{\substack{l^{\prime}, i^{\prime} \in \mathbb{N}, d\left(e_{l}, e_{l^{\prime}}\right)+2 / 2^{i^{\prime}}<1 / 2^{i}}} B\left(e_{l^{\prime}}, 1 / 2^{i^{\prime}}\right)
$$

It is clear that $d\left(e_{l}, e_{l^{\prime}}\right)+2 / 2^{i^{i}}<1 / 2^{i}$ is a recursively enumerable predicate of $l, i, l^{\prime}, i^{\prime}$. It is also clear that $(\forall l)(\forall i)\left(\exists l^{\prime}\right)\left(\exists i^{\prime}\right) d\left(e_{l}, e_{l^{\prime}}\right)+2 / 2^{i^{\prime}}<1 / 2^{i}$ holds. Hence there exist recursive functions $\sigma, \rho: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that for any $l, i \in \mathbb{N}$,

$$
\begin{aligned}
\left\{\left(l, i, l^{\prime}, i^{\prime}\right) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid d\left(e_{l}, e_{l^{\prime}}\right)\right. & \left.+2 / 2^{i^{\prime}}<1 / 2^{i}\right\} \\
& =\{(l, i, \sigma(l, i, k), \rho(l, i, k)) \mid k \in \mathbb{N}\}
\end{aligned}
$$

Therefore, for any $l, i \in \mathbb{N}$,

$$
\begin{equation*}
B\left(e_{l}, 1 / 2^{i}\right)=\bigcup_{k=0}^{\infty} B\left(e_{\sigma(l, i, k)}, 1 / 2^{\rho(l, i, k)}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\forall k) \quad d\left(e_{l}, e_{\sigma(l, i, k)}\right)+2 / 2^{\rho(l, i, k)}<1 / 2^{i} . \tag{2}
\end{equation*}
$$

Since S is a recursively enumerable set, so is $\{(n, j, l, i, c) \in \mathbb{N} \times \mathbb{N} \times$ $\left.\mathbb{N} \times \mathbb{N} \times \mathbb{Q} \mid\left(n, c, 1 / 2^{j+1}, l, i\right) \in S\right\}$. On the other hand, since $M=$ $\bigcup_{c \in \mathbb{Q}} f_{n}^{-1}\left(\left(c-1 / 2^{j+1}, c+1 / 2^{j+1}\right)\right)$, it holds that

$$
M=\bigcup_{c \in \mathbb{Q}}(l, i) \in S\left(n, c, 1 / 2^{j+1}\right), ~ B\left(e_{l}, 1 / 2^{i}\right) .
$$

Hence $(\forall n)(\forall j)(\exists l)(\exists i)(\exists c \in \mathbb{Q})\left(n, c, 1 / 2^{j+1}, l, i\right) \in S$. Therefore, there exist recursive functions $\sigma^{\prime}, \rho^{\prime}: \mathbb{N}^{3} \rightarrow \mathbb{N}$ and a computable triple sequence of rational numbers $\left(c_{n, j, k}\right)$ such that for any $n, j \in \mathbb{N}$,

$$
\begin{aligned}
\{(n, j, l, i, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} & \left.\times \mathbb{Q} \mid\left(n, c, 1 / 2^{j+1}, l, i\right) \in S\right\} \\
& =\left\{\left(n, j, \sigma^{\prime}(n, j, k), \rho^{\prime}(n, j, k), c_{n, j, k}\right) \mid k \in \mathbb{N}\right\} .
\end{aligned}
$$

Thus, for any $n, j \in \mathbb{N}$,

$$
\begin{equation*}
M=\bigcup_{k=0}^{\infty} B\left(e_{\sigma^{\prime}(n, j, k)}, 1 / 2^{\rho^{\prime}(n, j, k)}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(\forall k) \quad f_{n}\left(B\left(e_{\sigma^{\prime}(n, j, k)}, 1 / 2^{\rho^{\prime}(n, j, k)}\right)\right) \subset\left(c_{n, j, k}-1 / 2^{j+1}, c_{n, j, k}+1 / 2^{j+1}\right) . \tag{4}
\end{equation*}
$$

From (1) and (3), we obtain

Application of Lemma 3.3 yields that there exists a recursive function γ : $\mathbb{N}^{2} \rightarrow \mathbb{N}$ such that

$$
M=\bigcup_{k=0}^{\gamma(n, j)} B\left(e_{\sigma\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)^{2}\right),(k)_{2}^{2}\right)}, 1 / 2^{\rho\left(\sigma^{\prime}\left(n, j,(k)^{2}\right), \rho^{\prime}\left(n, j,(k)^{2}\right),(k)^{2}\right)}\right) .
$$

Let $\alpha: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a recursive function defined by

$$
\alpha(n, j)=\max _{k \leq \gamma(n, j)} \rho\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)
$$

Suppose points $x, y \in M$ satisfy $d(x, y)<1 / 2^{\alpha(n, j)}$. Then there exists some $k \leq \gamma(n, j)$ such that

$$
d\left(x, e_{\sigma\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)}\right)<1 / 2^{\rho\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)}
$$

With such a k,

$$
\begin{aligned}
& d\left(x, e_{\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right)}\right) \\
& \leq d\left(e_{\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right)}, e_{\sigma\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)}\right)+d\left(x, e_{\sigma\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)}\right) \\
& <d\left(e_{\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right)}, e_{\sigma\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)}\right)+1 / 2^{\rho\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)} \\
& <1 / 2^{\rho^{\prime}\left(n, j,(k)_{1}^{2}\right)}-1 / 2^{\rho\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
d\left(y, e_{\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right)}\right) & \leq d\left(x, e_{\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right)}\right)+d(x, y) \\
& <1 / 2^{\rho^{\prime}\left(n, j,(k)_{1}^{2}\right)}-1 / 2^{\rho\left(\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right), \rho^{\prime}\left(n, j,(k)_{1}^{2}\right),(k)_{2}^{2}\right)}+1 / 2^{\alpha(n, j)} \\
& \leq 1 / 2^{\rho^{\prime}\left(n, j,(k)_{1}^{2}\right)}
\end{aligned}
$$

Therefore, $x, y \in B\left(e_{\sigma^{\prime}\left(n, j,(k)_{1}^{2}\right)}, 1 / 2^{\rho^{\prime}\left(n, j,(k)_{1}^{2}\right)}\right)$. Due to (4), this implies $f_{n}(x), f_{n}(y) \in\left(c_{n, j,(k)_{1}^{2}}-1 / 2^{j+1}, c_{n, j,(k)_{1}^{2}}+1 / 2^{j+1}\right)$. Hence $|f(x)-f(y)|<$ $1 / 2^{j}$. This shows that α is an effective modulus of continuity of $\left(f_{n}\right)$.

The condition (ii) in Lemma 3.4 is equivalent to δ_{6}-computability defined by Weihrauch in [7]. Lemma 3.4 shows that for a real-valued function on an effectively compact metric space, computability defined by Mori, Tsujii, and Yasugi in [5] and used in this paper is equivalent to δ_{6}-computability.

Now we are ready to show the main theorem.
Theorem 3.5 Let (M, d, \mathcal{S}) be an effectively compact metric space. Let $\left(f_{n}\right)$ be a computable sequence of real-valued functions on M and f a computable real-valued function on M. If f_{n} converges pointwise monotonically to f as $n \rightarrow \infty$, then f_{n} converges effectively uniformly to f.

Proof. Let $\left(e_{l}\right)$ be a computable sequence dense in M.
Let $U_{j, n}=\left(f_{n}-f\right)^{-1}\left(\left(-1 / 2^{j}, 1 / 2^{j}\right)\right)$. Since f_{n} converges pointwise to f, it holds that $(\forall j) M=\bigcup_{n=0}^{\infty} U_{j, n}$. Due to Lemma 3.4, there exists a recursively
enumerable set $S \subset \mathbb{N}^{4}$ such that $(\forall j)(\forall n) U_{j, n}=\bigcup_{(i, l) \in S(j, n)} B\left(e_{l}, 1 / 2^{i}\right)$. From these two equalities, we obtain

$$
(\forall j) \quad M=\bigcup_{(n, i, l) \in S(j)} B\left(e_{l}, 1 / 2^{i}\right) \text {. }
$$

This implies $(\forall j) S(j) \neq \emptyset$. Therefore, there exist recursive functions θ, ρ, σ : $\mathbb{N}^{2} \rightarrow \mathbb{N}$ such that $S=\{(j, \theta(j, k), \rho(j, k), \sigma(j, k)) \mid j, k \in \mathbb{N}\}$. Using these functions, we can rewrite the formula above as follows:

$$
(\forall j) \quad M=\bigcup_{k=0}^{\infty} B\left(e_{\sigma(j, k)}, 1 / 2^{\rho(j, k)}\right) .
$$

Since M itself is a compact subset of M, application of Lemma 3.3 yields that there exists a recursive total function $\beta: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
(\forall j) \quad M=\bigcup_{k=0}^{\beta(j)} B\left(e_{\sigma(j, k)}, 1 / 2^{\rho(j, k)}\right) .
$$

Since $B\left(e_{\sigma(j, k)}, 1 / 2^{\rho(j, k)}\right) \subset U_{j, \theta(j, k)}$, this implies $(\forall j) M=\bigcup_{k=0}^{\beta(j)} U_{j, \theta(j, k)}$. Since f_{n} converges monotonically to f, it holds that $U_{j, n} \subset U_{j, n^{\prime}}$ if $n \leq n^{\prime}$. Let $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ be a recursive function defined by $\alpha(j)=\max _{k \leq \beta(j)} \theta(j, k)$. We have $(\forall j)(\forall n \geq \alpha(j)) M=U_{j, n}$, which is equivalent to:

$$
(\forall j)(\forall n \geq \alpha(j))(\forall x \in M) \quad\left|f_{n}(x)-f(x)\right|<1 / 2^{j} .
$$

Thus f_{n} converges effectively uniformly to f as $n \rightarrow \infty$.

References

[1] V. Brattka, G. Presser: Computability on subsets of metric spaces, Theoret. Comput. Sci. 305 (2003) 43-76.
[2] V. Brattka, K. Weihrauch: Computability on subsets of Euclidean space I: Closed and compact subsets, Theoret. Comput. Sci. 219 (1999) 65-93.
[3] H. Kamo, K. Kawamura: Computability of self-similar sets, Math. Log. Quart. 45 (1999) 23-30.
[4] Subiman Kundu, A.B. Raha: The Stone-Weierstrass theorem and Dini's theorem: An insight, Houston J. of Math. 27 (2001) 887-895.
[5] T. Mori, Y. Tsujii, M. Yasugi: Computability structures on metric spaces, in: D. S. Bridges et al (Eds.), Combinatorics, Complexity and Logic, Proc. DMTCS '96, Springer, Berlin, (1996) 351-362.
[6] M. B. Pour-El, J. I. Richards: Computability in Analysis and Physics, Springer-Verlag, Berlin, Heidelberg, 1989.
[7] K. Weihrauch: Computability on computable metric spaces, Theoret. Comput. Sci. 113 (1993) 191-210.
[8] K. Weihrauch: Computable Analysis, Springer-Verlag, Berlin, 2000.
[9] M. Yasugi, T. Mori, Y. Tsujii: Effective properties of sets and functions in metric spaces with computability structure, Theoret. Comput. Sci. 219 (1999) 467-486.

[^0]: ${ }^{1}$ Email: wd@ics.nara-wu.ac.jp

