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SUMMARY

The interplay between excitation and inhibition in the
auditory cortex is crucial for the processing of
acoustic stimuli. However, the precise role that inhibi-
tion plays in the distributed cortical encoding of
natural vocalizations has not been well studied. We
recorded single units (SUs) and local field potentials
(LFPs) in the awake mouse auditory cortex while
presenting pup isolation calls to animals that either
do (mothers) or do not (virgins) recognize the sounds
as behaviorally relevant. In both groups, we observed
substantial call-evoked inhibition. However, in
mothers this was earlier, longer, stronger, and more
stereotyped compared to virgins. This difference
was most apparent for recording sites tuned to tone
frequencies lower than the pup calls’ high-ultrasonic
frequency range. We hypothesize that this auditory
cortical inhibitory plasticity improves pup call detec-
tion in a relatively specific manner by increasing the
contrast between call-evoked responses arising
from high-ultrasonic and lateral frequency neural
populations.

INTRODUCTION

One of the fundamental tasks of the auditory system is to

process species-specific communication sounds. In mammals,

the auditory cortex is thought to be essential for this (Rau-

schecker, 1998; Scott and Johnsrude, 2003). Facilitatory combi-

nation-sensitivity (Fitzpatrick et al., 1993; Rauschecker et al.,

1995; Razak and Fuzessery, 2008; Washington and Kanwal,

2008) and precisely timed inhibitory input (Razak and Fuzessery,

2006) both help shape excitatory selectivity for calls at the single-

cortical-neuron level. At the population level, anesthetized

studies suggest distributed cortical excitation can help improve

the signal-to-noise ratio for downstream processing (Liu and

Schreiner, 2007; Medvedev and Kanwal, 2004; Wallace et al.,

2005; Wang et al., 1995). However, this picture ignores a possible

role for call-evoked inhibition at the population level—an issue

that has been overlooked in most vocalization studies. We
address this here in an awake mouse preparation using single

unit (SU) and local field potential (LFP) recordings to reveal the

widespread presence, plasticity, and potential coding function

of a purely inhibited cortical response to species-specific

communication calls.

We took advantage of a previously described ultrasonic

communication system between mouse pups and adult females

(Liu et al., 2003, 2006; Liu and Schreiner, 2007). Ultrasonic whis-

tles emitted by mouse pups are recognized as behaviorally rele-

vant by mothers but not by pup-naive virgins (Ehret, 2005; Ehret

et al., 1987). Multineuronal unit (MU) correlates for this behavioral

distinction have been found as early as auditory cortex, but only

in anesthetized animals (Liu et al., 2006; Liu and Schreiner,

2007). Here we report on electrophysiological recordings in the

auditory cortices of fully awake, head-restrained mice, to our

knowledge for the first time. We focused on how neural

responses could contribute to the collective detection of a class

of natural pup calls by contrasting pooled responses to all calls

between virgins and mothers. We found that communication

sounds can generally excite as well as purely inhibit cortical

spiking. Comparing animal groups, pooling the various forms

of evoked excitation did not reveal a significant response differ-

ence during the calls. However, the timing and strength of

call-evoked inhibition was systematically altered in mothers—

particularly for the frequency band lateral to the �60–80 kHz

frequency of the pup whistles. We suggest this lateral band

inhibitory plasticity as a mechanism to enhance the signal-to-

noise ratio in the neural population representation of a pup call,

consequently improving the downstream detection of calls.

RESULTS

In order to investigate cortical responses to communication

sounds in conscious animals, we developed a head-restrained,

awake electrophysiology preparation for mice (see Experimental

Procedures). We targeted recording locations using a stereotax-

ically laid grid of holes over auditory cortex. SUs and LFPs

were first characterized by their traditional responses to tones

(Figure 1, bottom row). We classified SUs as tone-excited or -in-

hibited depending on whether spiking increased or only de-

creased following tone presentation, respectively (see

Figure S2 available online); some SUs were tone nonresponsive

or not isolated during tone stimulation (Table 1). A best frequency
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(BF) was selected for each tone-excited SU by finding the

frequency eliciting the greatest spike rate in a window around

its peristimulus time histogram (PSTH) peak. A BF for each

LFP site was determined similarly based on the largest average

negative deflection within the first 100 ms after tone onset. In our

data set, mothers and virgins were mostly similar in their distribu-

tions of both SU and LFP BFs (see Supplemental Data and

Figure S3). Recording sites were then similarly characterized

by their responsiveness to a pool of 18 different pup ultrasounds

(Figure S1) as pup call-excited (Figures 1A and 1B; Figures S2O

and S2P), -inhibited only (Figure 1C; Figures S2M and S2N),

or -nonresponsive (Figures S2Q and S2R).

Plasticity in SU Responses
We found a larger proportion of SUs in mothers (35/47)

compared to virgins (21/39) that were either excited or inhibited

by pup calls (z test, z = 1.81, p < 0.05, one-tailed). In both animal

groups, though, about equal proportions of these responsive

SUs showed either pure inhibition or some form of excitation

(18 excited versus 17 inhibited in mothers, z test, z = 0, p >

0.05, two-tailed; 10 versus 11 in virgins, z test, z = 0, p > 0.05,

two-tailed), indicating a previously underreported prevalence

of communication call-evoked cortical inhibition (Table 1).

Focusing first on excited responses, we found a significantly

higher proportion of tone-excited SUs in mothers (12/18)

Figure 1. Typical SU and LFP Recordings

Three examples of different SU and LFP pairs cor-

ecorded off the same electrode in response to pup

calls and tones demonstrate the quality of our

recordings. Top row: waveforms of all spikes

(left) and interspike interval distributions (right) for

pup call stimulation. Note the absence of refrac-

tory spikes within 1 ms. Middle row: responses

to pup calls. Trial-by-trial SU spike raster (upper)

and 10 ms-binned PSTH (middle) for call-excited

(A and B) and -inhibited (C) SUs. The mean call-

evoked LFP responses (bottom) at the same site

are also shown. Stimuli presented during the

interval are denoted by the horizontal black bar.

Bottom row: tonal tuning curves for SU spike

count (solid black line, left axis) and the amplitude

of the negative LFP deflection (dashed black line,

right axis). Correlation coefficients (CC) between

the full-frequency tuning curves for SUs and

LFPs varied from �0.58 to 0.95 over our tone-

excited population of SUs, suggesting these

neural signals do not reflect the same processes.

compared to virgins (8/26) which were

also pup excited (z test, z = 2.04, p <

0.05, two-tailed). Furthermore, in pre-

vious anesthetized MU studies, nearly

all excitation had occurred near sound

onset, and mothers showed better

temporal alignment across BF ranges

than virgins (Liu and Schreiner, 2007).

By contrast, we now found that latencies

to the excitation onset, maximum, or half-

maximum (Figure 2A1) varied over a wide

range of times. This reflected the many different ways by which

excitation occurred in the awake animal, such as transient

onsets and delayed offsets. Therefore, the distributions of these

excitation latencies and durations (Figure 2A2) overlapped

between the two animal groups. Meanwhile, the magnitude of

the time-dependent, population-averaged excitatory spike rate

across all calls was higher in mothers, although this was not

significant (note the large error bars in Figure 2A3). When we

computed the strength of SU excitation by integrating the

normalized spike rate over the stimulus period (Figure 2A3,

inset), differences between mothers and virgins were not signifi-

cant. Although we did not find significant changes in the latency,

duration, and strength of the pooled cortical excitation in awake

animals, we cannot exclude the possibility that our methods may

have failed to uncover more subtle changes in excitation.

Turning to inhibited cells, the time course of responses was

more stereotyped, in contrast to excited cells. The proportion

of call-inhibited SUs in mothers compared to virgins was higher

but not significantly so, whether all SUs (20/47 for mothers, 11/39

for virgins, z test, z = 1.2, p > 0.05, two-tailed) or only tone-in-

hibited SUs (10/14 for mothers, 5/9 for virgins, z test, z = 0.33,

p > 0.05, two-tailed) were considered. More importantly, unlike

excitation, the latency to the half-minimum point in each call-in-

hibited SU PSTH (Figure 2B1) was significantly shorter, and the

duration of inhibition was significantly longer, so that mothers
706 Neuron 62, 705–716, June 11, 2009 ª2009 Elsevier Inc.
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and virgins occupied distinct regions in the latency-duration

plane (Figure 2B2). Comparing the magnitude of inhibition, we

found that the inhibition was significantly deeper in mothers on

a time point by time point basis (Figure 2B3). Integrated over

the duration of the stimulus, call-evoked SU inhibition resulted

in a significantly lower normalized firing rate in mothers (Fig-

ure 2B3, inset). Thus, in the awake mouse, pooled inhibition of

cortical spiking by the class of pup calls was systematically

earlier, longer, and stronger in mothers compared to virgins.

What function might these changes have, and how specific are

they for processing pup calls? Because our SU data alone did

not permit us to fully address these questions, as explained

below, we turned next to analyzing the LFP. This allowed us to

both corroborate and extend our evidence for functionally rele-

vant inhibitory plasticity.

Plasticity in LFP Responses
What causes a neuron to be inhibited or excited depends on the

nature of its inputs from other neurons. To monitor this, we used

the LFP, which is sensitive to the slow currents generated at

excitatory and inhibitory synapses (Lopes da Silva and Kamp,

1987) and to spiking afterpotentials from neurons across this

network (Logothetis, 2003). Although distant, synchronous

currents contribute to this signal, a recent study suggests that

local contributions within �250 mm are dominant (Katzner

et al., 2009). In principle, such local currents could be different

around SUs that are being inhibited versus excited, not least of

all because of the absence of the SUs’ own spiking in the former

case. Indeed, simultaneous in vivo intracellular and extracellular

recordings have shown that an SU membrane potential often

mirrors the LFP, so that depolarizations (hyperpolarizations)

co-occur with relative negativities (positivities) in the extracellular

potential (Kaur et al., 2005; Poulet and Petersen, 2008).

Table 1. Classification of Single Unit Responses

Mothers Virgins

Total recorded SUs 47 39

Pup call-responsive 35/47 21/39

No tone data 9 3

and pup call-excited 4/9 0/3

and pup call-inhibited 3/9 0/3

and pup call-nonresponsive 2/9 3/3

Tone-responsive 32/38 35/36

Tone-excited 18/32 26/35

and pup call-excited 12/18 8/26

and pup call-inhibited 1/18 6/26

and pup call-nonresponsive 5/18 12/26

Tone-inhibited 14/32 9/35

and pup call-excited 2/14 2/9

and pup call-inhibited 10/14 5/9

and pup call-nonresponsive 2/14 2/9

Tone-nonresponsive 6/38 1/36

and pup call-excited 0/6 0/1

and pup call-inhibited 3/6 0/1

and pup call-nonresponsive 3/6 1/1
Given this possibility, we separately examined LFPs depend-

ing on whether a corecorded SU was excited or inhibited by

calls, in case the local network supporting each response type

changed in a systematic way that would be reflected in the

LFP. For this limited purpose, we focused only on the wide-

band LFP (up to 100 Hz), rather than consider specific spectral

bands (e.g., theta band) individually (E.E.G.-L. and R.C.L.,

unpublished data). We used standard time-domain methods

(see Experimental Procedures and Supplemental Data) to

generate the Hilbert phase time series for each trial’s LFP signal.

This describes when various shape features in a signal—such as

local minima (�p), maxima (�0 and 2p), and zero-crossings

(�0.5p and 1.5p)—occur.

Using this analysis, we found that Hilbert phases correspond-

ing to points near the valley of the LFP (just after p up to just

before 1.25p) occurred significantly earlier in mothers (Figures

3A1 and 3B1), but only at call-inhibited SU sites. If upward and

downward fluctuations of the LFP signal represent periods of

relative hyperpolarization and depolarization, respectively (Ha-

slinger et al., 2006; Kaur et al., 2005), then this would indicate

that the delay to when the extracellular potential around an

inhibited SU begins hyperpolarizing must occur earlier in

mothers (Figures 3A2 and 3B2), consistent with the SU itself

being inhibited earlier (Figure 2B2). Hence, plasticity in the

mean shape of the call-evoked LFP around inhibited cortical

SUs corroborates our SU finding that average features of call-

evoked cortical inhibition are significantly altered in mothers.

Besides these changes in mean LFP activity, we also discov-

ered plasticity in the call-evoked variability of the local network

activity around call-inhibited SUs. To characterize variability,

we constructed at each recording site a time-dependent histo-

gram of the Hilbert phase trajectories across the different trials

of all the calls (Figure 3C). Before stimulus onset, the instanta-

neous Hilbert phase was essentially random. However, shortly

after the onset of the calls, the Hilbert phase began concen-

trating near 0.5p to p, corresponding to the descent of the LFP

toward its valley. The Hilbert phase distribution then became

very sharp, and eventually widened back to a uniform distribu-

tion. We quantified the trial-by-trial variability of this local

network response by a phase precision measure indicating

how well aligned the instantaneous Hilbert phases from different

trials were: a value of 1 at a particular time implies that all trials

had exactly the same phase, whereas randomly distributed

phases would yield a value of 0. Examples of the LFP phase

precision at call-excited and -inhibited sites are shown in the

upper panels of Figures 4A1 and 4B1, respectively. In general,

call onset reliably reset the wide-band LFP Hilbert phase and

drove a rapid increase in the precision of the local network

response at each site. Over time, this phase drifted as intrinsic,

non-stimulus-locked fluctuations began dominating the signal

again.

In order to detect systematic differences in local network vari-

ability, we compared the rise times, durations, and the popula-

tion-averaged phase precision time courses between animal

groups. Mirroring the results found when comparing SU firing

between mothers and virgins, the LFPs at call-excited SU sites

(Figures 4A2 and 4A3) were not different in any of these

measures. In contrast, the LFP phase precision at call-inhibited
Neuron 62, 705–716, June 11, 2009 ª2009 Elsevier Inc. 707
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Figure 2. Plasticity in SU Responses

Pure SU inhibition, but not excitation, evoked by calls was

systematically earlier, longer, and stronger in mothers

compared to virgins.

(A1 and B1) Examples of raw (gray bars, 5 ms bins) and

Gaussian-smoothed (black line) PSTHs for a call-excited

and -inhibited SU. The stars indicate the half-max or half-

min values for calculating the excitation or inhibition latency

and duration.

(A2 and B2) Scatter plot: call-excited (upward triangles)

and -inhibited (downward triangles) latencies and durations

for mothers (black in this and other figures) and virgins (gray

in this and other figures). Stars refer to SUs depicted in (A1)

and (B1). Excited Nmothers = 16, Nvirgins = 10. Inhibited Nmothers =

17, Nvirgins = 11. Bottom box plots: group comparison of call-

evoked excitatory and inhibitory latencies. For this and later

figures, box plots show lines at the lower quartile, median,

and upper quartile, and whiskers extending out to extreme

data points that are not outliers, while notches in boxes graph-

ically show the 95% confidence interval about the median. The

difference between mothers and virgins for call-excited SUs

was not significant (Mann-Whitney, U = 80, Nmothers = 16,

Nvirgins = 10, p > 0.05, two-tailed), but was significant for

call-inhibited SUs (t test, t = 2.9, df = 26, p < 0.01). For this

and later figures, n.s./asterisk indicates a nonsignificant/

significant comparison. Right box plots: group comparison

of call-evoked excitatory and inhibitory durations. Mothers

and virgins were not significantly different for call-excited

SUs (t test, t = 0.54, df = 24, p > 0.05), but were for call-

inhibited SUs (t test, t = 4.7, df = 26, p < 0.0001).

(A3 and B3) Population-averaged time course of spike rate

normalized by the spontaneous rate (mean ± SE), for call-

excited and -inhibited SUs. In this and later figures, the gray

rectangles marked by asterisks denote regions where signifi-

cant differences (anovan, followed by protected multiple t test comparisons, p < 0.05) were found between traces. Significant differences occurred only for

call-inhibited responses. Dotted lines represent the baseline spontaneous rate. Insets show the normalized rate derived by integrating the SU spike count

over the stimulus period and dividing by the spontaneous level. Call-excited SUs were not different between mothers and virgins (Mann-Whitney, U = 51,

Nmothers = 16, Nvirgins = 10, p > 0.05, two-tailed), but call-inhibited SUs were significantly different (t test, t = 2.8, df = 26, p < 0.01, two-tailed).
sites in mothers rose significantly faster, and stayed higher for

longer, even beyond the duration of the pup call stimulus

(Figures 4B2 and 4B3). Thus, the local network near call-inhibited

SUs in mothers responded trial by trial with earlier and more

stereotyped activity than in virgins.

Furthermore, the LFP phase precision at call-inhibited SU sites

in mothers increased even beyond the level of precision at call-

excited sites. Although there was no difference in the rise time

for phase precision between call-excited and -inhibited sites in

mothers, the precision became greater for inhibited sites after

about 18 ms, and stayed higher until 190 ms after stimulus onset

(comparison not illustrated). This result indicates that local

network-level changes between virgins and mothers consis-

tently increased the precision of presumed synaptic and

membrane currents associated with inhibiting cortical neurons.

In fact, on a site-by-site basis, we found that the stronger the

SU inhibition, as measured by a lower normalized spike rate

averaged across all calls (integrated over the maximum call

duration), the greater the peak LFP phase precision (corrcoef,

cc = �0.55, df = 26, p < 0.005, two-tailed). This did not occur

for excitation (cc = 0.33, df = 24, p > 0.05, two-tailed). Thus,

earlier, longer, and deeper inhibition of SU spiking in mothers

correlates with more rapid, sustained, and higher precision in

the LFP.
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Plasticity Dominated by Laterally Tuned Sites
The SU and LFP data both suggest significant changes in the

nature of call-evoked inhibition in the mother’s auditory cortex.

Is this plasticity globally distributed, or might changes in inhibition

between virgins and mothers depend on the specificity of

a recording site’s tuning to the frequencies in pup calls? We

addressed this by separating our SUs and LFPs at call-excited

and -inhibited sites depending on the LFP BF. Sites with LFP BF

< 50 kHz (lateral band) nevertheless responded to high-ultrasonic

calls presented at moderate sound levels. These sites showed

a significant difference in the degree of call-evoked SU inhibition

between mothers and virgins (Figure 5B1, inset). In parallel, there

were large differences in the strength of the phase precision for

LFPs recorded aroundcall-inhibited SUs (Figure5B1). Differences

were not apparent for call-excited SUs (Figure 5A1 and inset).

In fact, the lateral BF range was mainly responsible for the pop-

ulation differences in normalized SU firing (Figures 2A3 and 2B3,

insets) and LFP phase precision (Figures 4A3 and 4B3). When we

compared LFP sites tuned to high-ultrasonic frequencies (BF >

50 kHz), the differences in SUs and LFPs at both call-excited

and -inhibited SU sites (Figures 5A2 and 5B2) were not signifi-

cant. For the call-excited SU responses, the median SU normal-

ized firing rate was higher in mothers, but not significantly so.

Mirroring the SU results, the LFP phase precision at call-excited
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and -inhibited sites also did not show significant differences

between mothers and virgins. Thus, using both SUs and LFPs,

we conclude that there is a robust plasticity in call-evoked inhibi-

tion within auditory cortical regions tuned to frequencies lower

than the high-ultrasonic frequencies where pup calls are found.

The LFP plasticity may partially reflect a change in the reli-

ability of feedforward inputs into the lateral band. This conclusion

is based on how quickly the phase precision rises at the onset of

vocalizations. The high-ultrasonic regions in both virgins and

mothers presumably receive strong inputs from pup calls, and

the rise times for both animal groups at both call-excited and -in-

hibited (Figures 5A3 and 5B3, solid bars) sites were correspond-

ingly short and not significantly different. On the other hand, pup

calls do not normally drive very robust inputs to the lateral band

(hatched bars), because the phase precision here took signifi-

cantly longer to build up compared to the high-ultrasonic

band, for both call-excited and -inhibited sites (Figures 5A3

and 5B3, top asterisks). This changed in mothers, particularly

for call-inhibited sites, so that the lateral band exhibited more

robust evoked responses whose precision rose significantly

faster than in virgins (bottom asterisk in Figure 5B3). This

produced a uniformly rapid rise in phase precision across both

the high-ultrasound and lateral bands, not only at call-inhibited

but also -excited SU sites in mothers (top n.s. in Figures 5B3

and 5A3), generating a more temporally ‘‘synchronized’’ onset

of precise neural activity.

Figure 3. Plasticity in the Shape of the Call-Evoked

LFP

The timing of when the call-evoked LFP reached specific

phases was significantly different between mothers and

virgins for sites around call-inhibited but not -excited SUs.

(A1 and B1) Box plots: group comparison of the times at which

the Hilbert phase of a site’s average call-evoked LFP reached

values of p and 1.16p for call-excited and -inhibited SU sites.

These times were not different between mothers and virgins

for call-excited sites (Mann-Whitney, Nmothers = 16, Nvirgins =

10, p: U = 56, p > 0.05, 1.16p: U = 52, p > 0.05, two-tailed),

but were for phases between p and 1.25p at call-inhibited

sites (Mann-Whitney, Nmothers = 14, Nvirgins = 11, p: U = 45,

p > 0.05, 1.16p: U = 30, p < 0.05, two-tailed). These phases

corresponded to the initial rise from the minimum of the LFP.

Note: sample sizes for LFPs may be less than or equal to

that of SUs if more than one SU was isolated at a site.

(A2 and B2) Comparison of the population-averaged LFP for

all call-excited or -inhibited sites. The location of p (circle)

and 1.25p (square) Hilbert phase values are marked. Notice

that the timing difference in the Hilbert phase seen in (B1)

manifests as a sizeable shift in the timing of the valley between

mothers and virgins.

(C) Variability in the LFP shape depicted as a time-dependent

probability histogram of trial-by-trial Hilbert phases. Whiter

(darker) colors indicate higher (lower) probabilities for a

specific phase at a specific time.

Horizontal white bar marks the stimulus.

Lateral Band Plasticity Enhanced
for Pup Call Frequencies
Both the SU and the LFP data suggest that the

main changes in call-evoked inhibition occurred

for neural sites tuned to lateral frequencies. We

next asked whether these changes were in any way specific

for pup calls, or whether they reflected a more generic difference

in auditory processing in mothers. To address this, we turned to

pure tonal stimuli, because tone frequency is one of the main

parameters that defines these whistle-like pup calls (Liu et al.,

2003). We looked to see whether the lateral band’s inhibitory

plasticity was specific for stimulus frequencies in the high-ultra-

sonic range, and analyzed tone responses from lateral sites the

same way we did for natural pup calls. However, because we

had far fewer trials for our tone stimuli (�15/tone) compared to

our pup call stimuli (�50/call 3 18 calls), we had to pool

responses for five adjacent, logarithmically spaced tones.

Even still, the reduced trials made our normalized SU firing

rate estimates noisy. Moreover, because there is a floor in SU

spiking, relative changes in the strength of SU inhibition are

harder to quantify. Thus, because we found that SU inhibition

is correlated with LFP phase precision, we relied on the latter

for this analysis.

Comparing LFP phase precisions for high-ultrasonic tones

between 60 and 80 kHz, we found a significant increase in

mothers compared to virgins at lateral band call-inhibited SU

sites (Figure 6B1, top panel). This was a more than 50% improve-

ment, computed by taking the (bootstrap) mean difference in

the group-averaged phase precisions during the tone. This

enhancement was relatively specific for the natural pup call

frequency range: varying the center tone frequency outside of
Neuron 62, 705–716, June 11, 2009 ª2009 Elsevier Inc. 709
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Figure 4. Plasticity in the LFP Phase Precision

Mothers have an earlier, longer, and greater LFP phase preci-

sion at call-inhibited but not -excited SU sites.

(A1 and B1) Example LFP phase precision trajectories and

their rise times and durations (stars) for both a call-excited

and -inhibited site in a mother and virgin. Phase precision

values lying above the dotted line are significant (see Experi-

mental Procedures).

(A2 and B2) Scatter plot: rise times and durations of the

LFP phase precision at call-excited (upward triangles)

and -inhibited SU sites (downward triangles) for mothers and

virgins. Excited Nmothers = 16, Nvirgins = 10. Inhibited Nmothers =

14, Nvirgins = 11. Bottom box plots: group comparison of call-

evoked LFP phase precision rise times. Differences between

mothers and virgins were not significant at call-excited SU

sites (Mann-Whitney, U = 70, Nmothers = 16, Nvirgins = 10, p >

0.05, two-tailed), but were significant at call-inhibited SU sites

(t test, t = 2.0, df = 23, p = 0.05, two-tailed). Right box plots:

group comparison of call-evoked LFP phase precision dura-

tions. Differences between mothers and virgins were not

significant at call-excited SU sites (Mann-Whitney, U = 54,

Nmothers = 16, Nvirgins = 10, p > 0.05, two-tailed), but were

significant at call-inhibited SU sites (t test, t = 2.3, df = 23,

p < 0.05, two-tailed).

(A3 and B3) Population-averaged phase precision trajectories

(mean ± SE). LFPs from call-excited SU sites did not show

a significant difference between mothers and virgins. LFPs

from call-inhibited sites in mothers had a significantly higher

phase precision trajectory than virgins beginning near sound

onset until more than 100 ms after sound offset.
this range caused the improvement to drop from its peak

(Figure 6C). Some weak frequency generalization was neverthe-

less apparent. When tone frequencies between 30 and 40 kHz

were examined, a group difference was still found (Figure 6B1,

lower panel), but it was smaller, and the time interval for signifi-

cance was shorter. Thus, call-inhibited SU sites in mothers had

a significant increase in tone-evoked phase precision for

frequencies starting above�30 kHz, with greatest enhancement

spanning the natural pup call range.

In contrast, at call-excited SU sites, the phase precision time

course for 60–80 kHz tones was not different between virgins

and mothers (Figure 6A1, top panel). The percentage increase

relative to virgins was also nonsignificant across all tone frequen-

cies (0% line lies within the 95% confidence interval; blue band in

Figure 6C). Finally, neither call-excited nor -inhibited sites with

LFP BF > 50 kHz exhibited significant differences (data not

shown).

Despite the similar increase in phase precision in the local

network response to high-ultrasonic tones and to pup calls at

call-inhibited SU sites, responses to these two stimuli were

not entirely identical. In Figure 5B3, call-inhibited SU sites in

the lateral band had a significantly faster rise in call-evoked

phase precision in mothers compared to virgins. However,

a significant difference was absent for tones (Figures 6A2 and

6B2). This is remarkable, because there was actually more

acoustic variability in the onset of the natural calls used
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(Figure S1) than of the tones used (all 10 ms rise times), yet

the local network supporting SU inhibition in mothers increased

its precision more quickly (compared to virgins) for natural calls,

but not for tones.

DISCUSSION

Earlier studies of auditory cortical communication sound encod-

ing have almost entirely focused on excitatory neural responses

(Huetz et al., 2009; Liu et al., 2006; Liu and Schreiner, 2007; Med-

vedev and Kanwal, 2004; Recanzone, 2008; Syka et al., 2005;

Wallace et al., 2005; Wang et al., 1995). Inhibition has previously

been considered only in so far as it shapes an individual cortical

neuron’s receptive field and excitatory responsiveness to calls

(Narayan et al., 2005; Razak and Fuzessery, 2006). Our study

of ultrasonic call processing in the awake mouse demonstrates

an alternative role for inhibition in the distributed cortical repre-

sentation of species-specific vocalizations. Its importance was

revealed through a plasticity that yielded more robust inhibition

to ultrasonic pup call frequencies by neural sites tuned to lateral

frequencies. Our data suggest lateral band inhibition can

enhance the cortical contrast in the population representation

of a communication call. Here we relate this work to prior studies,

interpret our plasticity data, and propose its function for

improving call detection in background noise.
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Figure 5. Plasticity from Call-Inhibited Sites Tuned to

Lateral Frequencies

Significant differences in LFP phase precision mainly arose

from call-inhibited sites with LFP BF < 50 kHz. SUs from these

same lateral band sites had greater call-evoked inhibition in

mothers than in virgins.

(A1 and A2) Population-averaged phase precision trajectories

for LFPs (mean ± SE) at call-excited SU sites, grouped by LFP

BF. No significant differences in trajectories were found

between mothers and virgins for either lateral (A1) or high-

ultrasonic (A2) band sites. Similarly, differences in the normal-

ized, integrated SU firing (see insets of Figures 2A3 and 2B3)

did not reach significance for either the lateral (t test, t = .98,

df = 10, p > 0.05, two-tailed) or the high-ultrasonic band

(Mann-Whitney, U = 16, Nmothers = 9, Nvirgins = 5, p > 0.05,

two-tailed).

(B1 and B2) Population-averaged phase precision trajectories

for LFPs at call-inhibited SU sites, grouped by LFP BF. The

trajectory for mothers was significantly higher than virgins at

lateral (B1) but not high-ultrasonic (B2) band sites. Similarly,

differences in the normalized, integrated SU firing were signifi-

cant for the lateral (t test, t = 2.3, df = 13, p < 0.05, two-tailed)

but not the high-ultrasonic band (t test, t = 1.7, df = 11, p >

0.05, two-tailed; Nmothers = 9, Nvirgins = 4).

(A3 and B3) Group comparison of call-evoked LFP phase

precision rise times for lateral (hatched) and high-ultrasonic

(solid) bands. No differences between mothers and virgins

were found at call-excited sites for both the lateral (Mann-

Whitney, U = 12, Nmothers = 7, Nvirgins = 5, p > 0.05, two-tailed)

and high-ultrasonic bands (t test, t = 1.6, df = 12, p > 0.05,

two-tailed). However, there was a significant difference at

call-inhibited sites in the lateral (t test, t = 2.3, df = 12, p <

0.05, two-tailed) but not high-ultrasonic band (t test, t =

0.05, df = 9, p > 0.05, two-tailed). When comparing across frequency ranges within the same group, there was no significant differences between the LFP phase

precision rise times for mothers for excited (Mann-Whitney, U = 12, NBF > 50kHz = 9, NBF < 50kHz = 7, p > 0.05, two-tailed) and inhibited (t test, t = 1.7, df = 12,

p > 0.05, two-tailed). However, the virgins showed differences between LFP sites with BF < 50 kHz and BF > 50 kHz for both excited (t test, t = 2.5, df = 8,

p < 0.05, two-tailed) and inhibited (t test, t = 3.0, df = 9, p < 0.05, two-tailed) SUs.
Relation to Prior Studies
This work took advantage of a known behavioral change in the

recognition of a natural communication call to search for auditory

cortical correlates of its behavioral relevance, a strategy previ-

ously applied in anesthetized mice (Liu et al., 2006; Liu and

Schreiner, 2007). Here we investigated cortical coding in awake

mice, for the first time to our knowledge, and focused only on

neural changes relevant for detection by pooling responses

across calls. Some conclusions remained consistent. Both the

current and earlier work suggest plasticity in feedforward

activity, because mothers showed a more ‘‘synchronized’’

response onset across the auditory cortex (compare the nonsig-

nificant differences in rise times in mothers in Figures 5A3 and

5B3 to the near simultaneous PSTH onsets in Figure 1 of Liu

and Schreiner, 2007). Moreover, the faster rise in LFP precision

found here (Figure 4B2) is consistent with our earlier finding of

increased call detection information near the onset of MU

spiking, because reduced stimulus-evoked variability generally

enhances transmission of stimulus information.

Nevertheless, the current data are fundamentally different and

could not have been predicted from the anesthetized work.

Whereas earlier conclusions were based on changes in excit-

atory neural responses, here we found that half of our SUs that

responded to calls did so in a purely inhibitory manner (Figure 2).

In fact, call-evoked pure inhibition has rarely been reported,
perhaps for methodological reasons. MU recordings may

obscure the inhibition of individual neurons by sounds. Ketamine

anesthesia may disinhibit (Behrens et al., 2007; Bergman, 1999)

or otherwise modulate (Syka et al., 2005) or synchronize (Green-

berg et al., 2008) cortical excitation. Neuron search strategies

may also differ. Most studies first characterize units by their

excitatory tone response area and BF, yet many of our call-in-

hibited SUs did not have excitatory tonal responses (18/25;

Table 1); a ‘‘best’’ frequency for all SUs was instead based on

the surrounding populations’ response to tones (i.e., LFP BF).

Even when inhibited SU responses to natural calls have been

reported in an awake animal, though (Recanzone, 2008), the

fraction of neurons has been very small, and has varied accord-

ing to the call (0%–10%). Hence, a final possibility is that single-

frequency ultrasonic calls may be more likely to evoke pure

inhibition than the broadband calls used in other studies.

Robust Plasticity in Inhibition Rather than Excitation
Our data suggest this inhibition may be functionally relevant for

detecting pup calls because it systematically changed in its

timing and strength, particularly in the lateral band, in a manner

that correlated with the call’s behavioral significance. These

results were observed both directly in the SU data (Figures 2B

and 5B, insets) and indirectly through associated changes in

the surrounding local network (Figures 3B, 4B, and 5B). Although
Neuron 62, 705–716, June 11, 2009 ª2009 Elsevier Inc. 711
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Figure 6. Tone-Evoked LFP Phase Precision for Lateral Band LFP Sites

Differences between mothers and virgins were particularly enhanced for tone frequencies falling in the natural pup call range.

(A1 and B1) Comparison of 60–80 kHz (upper panels) and 30–40 kHz (lower panels) tone-evoked LFP phase precision trajectories, averaged only across lateral

band LFPs. The magnitude of phase precisions was higher for the latter frequencies, as lateral band sites should be more responsive to them. No significant

differences between mothers and virgins were found for call-excited sites for either tonal stimulus. However, mothers and virgins did differ significantly at

call-inhibited sites for both tonal stimuli. Excited Nmothers = 7, Nvirgins = 5. Inhibited Nmothers = 7, Nvirgins = 6.

(A2 and B2) Group comparison of tone-evoked LFP phase precision rise times. Bars depict the mean and standard error of the rise times for each group. No

significant differences between mothers and virgins were found for call-excited sites, regardless of the frequency of tonal stimulation (60–80 kHz: Mann-Whitney,

U = 13, Nmothers = 7, Nvirgins = 5, p > 0.05, two-tailed; 30–40 kHz: Mann-Whitney, U = 14, Nmothers = 7, Nvirgins = 5, p > 0.05, two-tailed). The same was true for

call-inhibited sites (60–80 kHz: Mann-Whitney, U = 14, Nmothers = 7, Nvirgins = 6, p > 0.05, two-tailed; 30–40 kHz: t test, t = 0.78, df = 11, p > 0.05, two-tailed).

(C) Frequency dependence of tone-evoked LFP phase precision enhancement in mothers compared to virgins for call-excited (blue) and -inhibited (red) sites.

Each point pooled trials from five logarithmically spaced tone frequencies centered on that point. Population-averaged phase precision trajectories were

computed separately for call-excited and -inhibited SU sites from each animal group. The average difference (solid lines) between trajectories (mother–virgin)

over the duration of the tone quantified the precision enhancement relative to virgins. Shaded bands represent 95% confidence intervals computed by bootstrap-

ping across sites. We found a significant increase only for LFPs at call-inhibited SU sites, with the greatest differences for frequencies falling in the natural pup call

range (dashed vertical lines). A smaller but still significant difference was also apparent for tone frequencies above �30 kHz.
inhibitory plasticity for vocalization selectivity has been reported

in developing bats (Razak and Fuzessery, 2007; Razak et al.,

2008), we are not aware of prior studies demonstrating inhibitory

plasticity in adult auditory cortex that would impact call detec-

tion. Whether the changes here arise from pup experience,

hormonal changes associated with pregnancy or lactation, or

attention remains to be investigated.

Despite the robust plasticity in evoked SU inhibition, our data

did not demonstrate a significant change between virgins and

mothers in pooled SU excitation (Figure 2A) for either the high-

ultrasonic or lateral frequency bands (Figure 5A, insets), although

there may be a trend toward greater strengths for high-ultrasonic

SUs in mothers. In other words, enhancing the ‘‘average’’ excita-

tion per ‘‘typical’’ SU may not be necessary to improve the

detection of pup calls. Distributed excitation may serve

a different role in communication processing, such as discrimi-

nating calls.

There are two qualifications to this. First, cortical neurons are

not all identical, and we likely do not record equally from all

types. In particular, our high-impedance tungsten electrodes

may be less sensitive to spikes from smaller interneurons than
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to larger pyramidal cells (Gold et al., 2006; Towe and Harding,

1970). The latter is likely the ‘‘typical’’ SU that we detect, as

they make up 70%–80% of cortical neurons (DeFelipe and

Farinas, 1992). Such a recording bias may explain why we did

not see a systematic change in SU excitation timing arising

from inhibitory interneurons that presumably generate the earlier

inhibition we reported here. In support of this, when we used

lower-impedance electrodes to record (under anesthesia)

thresholded MU activity, which likely has a greater contribution

from interneurons, we found an earlier onset of excitation only

in the lateral band (Figure 1 of Liu and Schreiner, 2007). That

would coincide here with the stronger SU (e.g., pyramidal cell)

inhibition and earlier rise in LFP phase precision (e.g., reliable

interneuron depolarization) only at laterally tuned sites

(Figure 5B).

Second, lack of change in ‘‘average’’ excitation does not

preclude differential plasticity that depends on systematic varia-

tions within our pool of ‘‘typical’’ SUs. This may be especially

relevant for high-ultrasound-tuned excitatory neurons. For

example, in addition to one statistically excluded outlier (see

Experimental Procedures), two other SUs in mothers had
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noticeably higher normalized spike rates (affecting the PSTH in

Figure 2A3 and the box plot in the inset of Figure 5A2). These

may be part of a specialized neuronal subcategory that emerged

in mothers. The high variability in types of excitation makes it

difficult to distinguish these. Thus, we did not further subclassify

SUs based on their excitatory response time courses, because

sample sizes would have been too small to make reliable conclu-

sions. In support of possible subtle changes in excitation that

elude our current methods, Figure 2A2 does show potentially

more offset (latency > 40 ms) and sustained (duration > 50 ms)

SUs in mothers. Furthermore, individual excitatory receptive

fields may also be changing, which could improve call discrimi-

nation. This could occur without affecting overall evoked excita-

tion and call detection.

In parallel with these SU results, our LFP data did not show

changes in the network activity associated with SU excitation,

although it did for inhibition (Figures 3 and 4). Although this is

a serendipitous finding for our plasticity analysis, it is not entirely

clear why a coarse measure of neural activity such as the LFP

would show different changes depending on the response of

a corecorded SU. A detailed study of the relation between the

SU and LFP is needed, but beyond the current scope (E.E.G.-L.

and R.C.L., unpublished data). Instead, we mention here two

possible, nonexclusive scenarios. First, there may be spatial

clustering in SU response types, as has been reported for vocal-

ization responses in the anesthetized guinea pig (Wallace et al.,

2005). Second, the dominant sources contributing to the LFP

may arise from a spatially restricted region (Katzner et al.,

2009), and these sources differ depending on whether the

Figure 7. Hypothesized Model to Enhance a Pup Call’s Neural

Contrast

CN, cochlear nucleus; SOC, superior olivary complex nuclei; IC, inferior

colliculus; MGB, medial geniculate body. See text for details.
corecorded SU is inhibited or excited. For example, inhibition

of a pyramidal cell can come from fast perisomatic inhibition

by nearby basket cells (Freund and Katona, 2007). Each basket

cell initiates synchronous inhibitory postsynaptic potentials in

many pyramidal cells within its localized region of innervation

(Miles et al., 1996). Such currents may be less consistent or

weaker around pyramidal cells that are excited by calls. If plas-

ticity occurs primarily in the inhibitory network, the LFP around

excited SUs might not then easily reveal this.

A difference between excitation and inhibition was also

apparent in how the LFP phase precision correlates with the

strength of SU spiking, irrespective of the plasticity between

animal groups. Phase precision measures response variability

across trials, which can arise here from either random neural

noise for each call or systematic variation for acoustically

different calls (Figure S1). If different calls elicit similar neural

responses, then the latter component is minimized. This is the

case for call-inhibited but less so for -excited SU sites. Most

of our call-inhibited SUs were uniformly inhibited by most

(Figure 1C), if not all (Figures S2M and S2N), the calls, whereas

the response to different calls by call-excited SUs was typically

more varied (Figure 1B; Figures S2O and S2P). Hence, our

pooled phase precision at call-inhibited SU sites reflects neural

noise more directly, and reveals an intriguing correlation with

the strength of SU inhibition: LFP trajectories, which include

both synaptic and spiking contributions, become less variable

as the corecorded SU’s spiking drops to zero. This relation justi-

fied interpreting increases in tone-evoked phase precision as

indicative of enhanced inhibitory strength (Figure 6). In further

support of this, differences between virgins and mothers were

similar even when we compared average call-specific (instead

of call-pooled) phase precision trajectories (data not shown).

This suggests that mean response differences across calls

were not a major contribution to the LFP variability at call-in-

hibited sites. For call-excited SUs, systematic variations in the

pattern of mean firing for individual calls could degrade a site’s

pooled LFP phase precision, independent of the SU’s excitatory

strength. Thus, these measures were uncorrelated at call-

excited sites.

Hypothesized Role of Enhanced Inhibition
in the Lateral Band
How might a more robust inhibitory response at the population

level functionally improve communication sound detection?

Accumulating evidence suggests the auditory cortex changes

to more powerfully represent sounds that acquire behavioral

meaning (Fritz et al., 2003; Weinberger, 2004). Inhibitory plas-

ticity may help achieve this by enhancing the neural contrast in

a sound’s distributed cortical code. A cartoon model based on

our results illustrates how this might work (Figure 7). An emitted

pup call (upper right) excites the ultrasound region of the basilar

membrane, and is transduced into a neural signal that feeds

forward through subcortical stations to the auditory cortex,

evoking a distributed response spanning both the high-ultra-

sonic (solid bars) as well as lateral (hatched bars) frequency

bands. In each region, (presumed) pyramidal cell activity is

divided into call-excited or -inhibited classes. Normalized

evoked spike rates (relative to spontaneous activity) for a virgin
Neuron 62, 705–716, June 11, 2009 ª2009 Elsevier Inc. 713
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(gray) or mother (black) are represented by bar heights. If pooled

spike rates are not significantly different between groups, rates

are depicted as equal for simplicity. Hence, only the call-inhibited

sites in the mother’s lateral band are shown as significantly lower.

Assuming simple one-to-one integration of call-excited and -in-

hibited activity in a frequency band-specific fashion, this would

produce a downstream representation with a greater contrast

in mothers between the frequency region that should represent

the pup call (high-ultrasound) and lateral frequency areas.

Why would enhancement of population-level contrast be

advantageous for call processing? If calls were emitted in the

presence of broadband background noise, call-evoked lateral

band inhibition could help suppress this noise, helping the neural

activity in the high-ultrasonic band to stand out more clearly. In

fact, we actually found some generalization in mothers of the

enhanced inhibition at laterally tuned sites for lower frequencies

as well (Figure 6). Whether this inhibition can add to the call-

evoked inhibition must be tested in future two-tone or masking

experiments. Finally, such a coding scheme is reminiscent of

attention-related gain changes of auditory cortical neurons

during a tone-in-broadband noise detection task in ferrets (Atiani

et al., 2009). That study observed stronger suppression of excit-

atory activity for neurons tuned to sites ‘‘far’’ from the target

frequency. On the other hand, our main effect was stronger inhi-

bition at these sites to the target sound (pup call) alone. In both

scenarios, the hypothesized outcome would be enhanced neural

contrast for the target.

EXPERIMENTAL PROCEDURES

The Emory University Institutional Animal Care and Use Committee approved

all procedures. Experiments were carried out on eight virgin female and seven

mother CBA/CaJ mice, all between 14 and 24 weeks old at the time of surgery.

All mothers had their pups weaned within the 2 weeks prior to surgery. Animals

were housed under a reversed light cycle (14 hr light/10 hr dark), and had

access to food and water ad libitum.

Acoustic Stimulation

Stimuli were generated using Tucker-Davis Technologies (Alachua, FL, USA)

System 3 Gigabit hardware and software and presented through the Brainware

application via modules programmed in the RPvdsEx environment. Noise

bursts, frequency sweeps, and tones were used as search sounds to locate

auditory responses. Tuning curves were derived at �60 dBSPL by playing

a set of 40 tones, 60 ms long plus 10 ms cos2 onset and offset, with logarith-

mically spaced frequencies ranging from 6.4 to 95 kHz presented. Different

frequencies were randomly selected every 600 ms and repeated 5 or 15 times.

Eighteen pup calls (Figure S1) were drawn from a large library of natural

ultrasonic CBA/CaJ vocalizations for playback (Liu et al., 2003). Sound snip-

pets were high-pass filtered in software (25 kHz corner, 8-order Butterworth

filter, MATLAB, The MathWorks, Natick, MA, USA), spectrally denoised

(Liu et al., 2003), and then Hilbert transformed to extract the instantaneous

frequency and amplitude envelope. These were used to resynthesize a clean

version of each pup call, which were then multiplied by a 0.5 ms cos2 onset

and offset function and scaled to a target root-mean-square (RMS) amplitude

corresponding to 65 dBSPL.

A maximum of 50 trials (600 ms long) of each pup call along with a blank

stimulus was presented in random order, with sound onset usually beginning

at 200 ms after trial onset. Occasionally, a single unit would drift sufficiently in

amplitude that it could no longer be isolated, in which case the call stimuli were

terminated with fewer trials. Recordings of adult CBA/CaJ calls were also

played back, but were not analyzed in this work.
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Extracellular Recordings

To record neural activity in completely awake, restrained mice, we developed

a protocol for relatively short (up to�3 hr) but chronic (up to�1 week) electro-

physiology sessions. The details are presented in Supplemental Data. All

recording experiments were conducted during an animal’s dark phase. SUs

(high-pass filtered at 300 Hz, low-pass filtered at 3 or 6 kHz) and LFPs (high-

pass filtered at 2 Hz, low-pass filtered at 300 Hz, with a notch filter at 60 Hz)

were recorded off single 4–6 MU tungsten electrodes (FHC, Bowdoin, ME,

USA). Recordings were performed between 300 and 700 mm. Both SU and

LFP signals were sampled at a rate of 24,414.0625 samples/s. Offline, the

LFP was despiked, decimated (keeping every 24th point), low-pass filtered

(MATLAB Parks-McClellan optimal equiripple FIR filter, transition band

between 90 and 100 Hz) forward and backward (filtfilt) to eliminate traces of

action potentials without introducing phase delays. The initial despiking could

be accomplished either (1) by subtracting the (dynamically updated) ‘‘average’’

spike at each spike time, or (2) by simply deleting a [�0.5, 4] ms window around

each spike and replacing it with a spline-interpolated signal; the two yielded

similar results, so (2) was used for simplicity. This procedure effectively atten-

uated the residual power leaking into the low-frequency region from large-

amplitude spikes.

The targeting of recording sites was guided by our intent to record high-

quality SUs. Details of this isolation are described in Supplemental Data. We

generally focused on recording at sites with SU responses to high-frequency

tones above �20 kHz (either excitation or inhibition), as this range has shown

more prominent responses to the �64 kHz pup sounds (Liu and Schreiner,

2007). On a few occasions, initially isolated SUs would be lost, leaving the

SU and its corresponding LFP sites incompletely characterized by either the

pup calls or tones. Alternatively, new SUs could appear after characterization

had already begun. Thus, the sites with pup calls or tone responses did not

always agree (see Table 1).

SU Analysis

To assess offline whether an SU exhibited any kind of response to ultrasound

vocalizations, we took the majority decision from independent classifications

by three individuals of each SU response to pup calls. The set of call-ordered

rasters (e.g., as in Figure S2, right column) and overall pup call PSTH was

deemed excited if any consistent (over trials) increase in spiking beyond the

spontaneous level was evident around the time of the calls for any of the calls;

inhibited if only a consistent decrease in spiking was apparent; and nonre-

sponsive if neither excitation nor pure inhibition was clearly discernible. If the

PSTH showed both excitation and inhibition, the SU was classified as excit-

atory. Most classifications were unanimous across observers (57/86). Exam-

ples from each category are shown in Figure S2. Because of occasionally

complex response structure to different calls, we decided a manual majority

rather than automated pattern recognition algorithm would provide a more

robust classification for the purposes of this paper.

SU response latency was determined by finding the half-max or half-min of

the smoothed spike rate (convolution of individual spikes with a Gaussian

smoothing function, 5 ms standard deviation). The half-max (half-min) was

determined based on the spike rates at stimulus onset and at the maximum

(minimum). The response latency was the time relative to stimulus onset for

the smoothed, pooled spiking response to reach the halfway point. The dura-

tion of SU inhibition was the time over which the smoothed spike rate stayed

below the half-min value. Similarly, the duration of SU excitation was the time

over which the smoothed spike rate stayed above the half-max value.

To determine whether there were differences between mothers and virgins

in the pooled spike rate for call-excited or -inhibited SUs, we normalized each

smoothed, time-dependent spike rate function by the average spontaneous

rate during the blank trial and then averaged the SUs together. We quantified

the strength of SU excitation or inhibition by integrating the actual spike count

over a period from 205 to 265 ms (accounting for the shortest neural delay

to the auditory cortex, and the longest-duration pup call, 60 ms). One high-

ultrasound SU in a mother was removed from SU normalized rate analyses

by Peirce’s criterion for statistically detecting outliers (4 standard deviations

greater than the mean), although its inclusion would not change our results

(Peirce, 1852).
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Wide-Band LFP Analysis

The LFP is usually analyzed in spectral bands—such as theta (�4–10 Hz), beta

(�10–35 Hz), and gamma (�35–90 Hz)—consistent with an oscillatory view of

neural activity. We took a complementary approach by instead studying the

wide-band (2–100 Hz) signal. Although our LFP was spectrally peaked around

4–10 Hz, this nevertheless better preserves the shape of transients, such as

those induced by the acoustic stimulation (Shah et al., 2004). Our analysis

applied the Hilbert transform to each LFP trace to generate its unique analytic

signal in the complex domain (Boashash, 1992; Pikovsky et al., 2001). We

focused on the Hilbert phase trajectory, where specific phases approximately

correspond to specific shape features in the signal (Figure S4). See Supple-

mental Data for further details and discussion about this mathematical trans-

formation.

LFP phase precision is defined at each time point by the mean resultant

length of the trial-by-trial wide-band Hilbert phases over the N trials:

RðtÞ=
�����
1

N

XN

k = 1

eifk ðtÞ

�����:

This quantity has also been called ‘‘phase concentration’’ (Lakatos et al.,

2005), and is algebraically related to the circular variance (Mardia and Jupp,

2000) or phase reliability (Montemurro et al., 2008).

Phase precision rise time was calculated as the delay from stimulus onset to

the half-max, and the duration was the time it exceeded this level. For tone

responses, the percentage increase in tone-evoked phase precision over

the virgin was defined as

% increase =

R275

205

RmothersðtÞ dt �
R275

205

RvirginsðtÞ dt

R275

205

RvirginsðtÞ dt

:

The integration period was from 205 to 275 ms to account for the duration,

including onset/offset ramps, of the tone. To determine whether there was

a significant increase in the integrated phase precision, we performed a boot-

strap. We sampled each distribution of sites for mothers and virgins sepa-

rately with replacement 1000 times and found the 95% confidence interval.

Differences were taken as significant when the confidence bound did not

include 0.

Statistical Tests

Statistical tests were carried out in MATLAB. When justified, we preferred

parametric statistical tests. In testing the differences between two popula-

tions, we first performed a two-tailed Lilliefors goodness-of-fit test for

normality and a two-tailed F test for variance, using a p < 0.05 level for signif-

icance. If one population was statistically different from a normal distribution

or if the two populations had unequal variances, we used a Mann-Whitney

U test to assess whether the medians of two data sets were the same. If

both populations were not statistically different from a normal distribution

and had equal variances, we used a two-tailed t test for equal means. When

comparing two time traces from different animal groups, we used an N-way

analysis of variance followed by multcompare using Fisher’s least significant

difference method for correcting for multiple pairwise t test comparisons at

each time point. Correlations were tested using corrcoef at a p < 0.05 signifi-

cance level.

Significance of the phase precision was computed by the Rayleigh statistic

(Fisher, 1993), and depended only on the number of trials. For pup calls and

responses to tones, at a significance level of p % 0.05,

R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�logðpÞ

.
N

r

should be larger than 0.058 for N = 900 trials, and 0.199 for N = 75 trials,

respectively. We discarded the phase precision for an LFP site if it did not

exceed this significance level during the stimulus period. Finally, a z test for

two proportions assuming equal variances was used to assess whether our

SU classification percentages differed between mothers and virgins.
SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and four

figures and can be found with this article online at http://www.cell.com/

neuron/supplemental/S0896-6273(09)00352-3.
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