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S-Boxes are important security components of block ciphers.
We provide theoretical results on necessary or sufficient criteria
for an (invertible) 4-bit S-Box to be weakly APN. Thanks to
a classification of 4-bit invertible S-Boxes achieved independently
by De Cannière and Leander–Poschmann, we can strengthen our
results with a computer-aided proof. We also propose a class of
4-bit S-Boxes which are very strong from a security point of view.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider block ciphers acting on a vector space (F2)
n . It is important to identify conditions

on the components of the cipher that may ensure its security. There are many competing notions of
security, hence several kinds of security criteria, and some of them focus on the role of the S-Boxes.
For a large class of nowadays block ciphers, the S-Boxes are bijective vectorial Boolean functions
f : (F2)

m → (F2)
m , hence they are functions from the finite field (F2)

m to itself.
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In this paper we focus on 4-bit S-Boxes, as used for example in SERPENT [2] and PRESENT [4],
although we present also a theorem for the general case. Several security criteria are affine-invariant
and this justifies the work done to achieve the classification of 4-bit S-Boxes in affine-equivalence
classes, due to De Cannière [8] and Leander and Poschmann [9] (these classifications have been ob-
tained independently).

There is a new security criteria for S-Boxes which is affine-invariant, the weakly differential uni-
formity. Particularly interesting is the concept of weakly APN. We determine several conditions (some
computational and some theoretical), which are either sufficient or necessary for a 4-bit Boolean per-
mutation to be weakly APN.

Our paper is structured as follows. In Section 2 we introduce and motivate the notion of weakly
APN function, highlighting the case of dimension four. In Section 3 we present our theoretical results,
including a theorem for any dimension. In Section 4 we discuss our computational results. Finally, in
Section 5 we provide further computations that may be interesting and we draw our conclusions.

2. Preliminaries on weakly APN functions

We provide some standard notation and terminology to be freely used in the sequel.
If X is any set, then |X | denotes its cardinality, while if V is a vector space over F2, then dim(V )

denotes its dimension.
If p is a polynomial in F2[x1, . . . , xm] then deg(p) denotes its total degree.
Without loss of generality, we consider only vectorial Boolean functions (v.B.f.) f : (F2)

m → (F2)
m

such that f (0) = 0.
If v ∈ (F2)

m , then the function 〈 f , v〉(x) is defined by 〈 f (x), v〉, where 〈, 〉 denotes the standard
scalar product in (F2)

m .
Two permutations f , g : (F2)

m → (F2)
m are affine equivalent, f ∼ g , if there exist two invertible

linear m × m matrices A, B and two constants a,b ∈ (F2)
m such that g(x) = B( f (A(x) + a)) + b.

If a property of a v.B.f. is invariant under the action of the affine group, then it is called affine-
invariant.

We also write Du( f )(x) := f (x + u)+ f (x) (the derivative of f ) and Im( f ) = { f (x) | x ∈ (F2)
m} (the

image of f ).
A notion of non-linearity for S-Boxes that has received a lot of attention is the following.

Definition 1. The v.B.f. f is δ-differentially uniform if for any u ∈ (F2)
m \ {0} and for any v ∈ (F2)

m ,
|{x ∈ (F2)

m: Du( f )(x) = v}| � δ.
If f is 2-differentially uniform, then it is called an Almost Perfectly Non-linear (APN) function.

The property of being δ-differentially uniform is affine-invariant. W.r.t. differential uniformity, the
best S-Boxes are the APN S-Boxes. APN functions are indeed a very hot research topic (see for instance
the recent contributions [3] and [5]). Unfortunately, for some even dimensions, no APN permutation
exists. This is the case for dimension m = 4, which has cryptographic significance at least for SERPENT
and PRESENT. In this case, the best we can have is δ = 4.

There is a natural generalization of differential uniformity presented recently in [7], which we
recall in the following definition.

Definition 2. The v.B.f. f is weakly δ-differentially uniform if for any u ∈ (F2)
m \ {0} we have

|Im(Du( f ))| > 2m−1/δ.
If f is weakly 2-differentially uniform, then it is called a weakly Almost Perfectly Non-linear (weakly

APN) function.

By [7, Section 4, Fact 3], a δ-differentially uniform map is weakly δ-differentially uniform, and it is
easy to check that weak δ-differential uniformity is affine-invariant.

The significance for the previous definition lies in [7, Theorem 4.4]. In order to appreciate it, we
need another definition.
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Definition 3. A v.B.f. f is strongly l-anti-invariant if for any two subspaces V , W � (F2)
m such that

f (V ) = W then either dim(V ) = dim(W ) < m − l or V = W = (F2)
m .

The cryptographic significance of the previous definition becomes clear provided that f is a per-
mutation: the greater l, the larger the non-linearity of f .

An iterated block cipher is obtained by the composition of several rounds (or round functions), i.e.,
key-dependent permutations of the message/cipher space. To avoid potential weaknesses of a given
cipher C , it is desirable that the permutation group Γ∞(C) generated by its round functions with the
key varying in the key space is primitive (for instance, a way to construct a trapdoor using imprimi-
tivity is presented in [11]). Translation-based ciphers (see [7, Definition 3.1]) form an interesting class
of iterated block ciphers containing AES [10], SERPENT, PRESENT. According to Theorem 4.4 in [7], if
C is a translation-based cipher and each brick γ ′ of every parallel S-Box γ used in the proper round
under consideration is both weakly 2r -differentially uniform and strongly r-anti-invariant for some r
with 1 � r � m/2, then Γ∞(C) is primitive. It may seem that Theorem 4.4 in [7] requires too strong
conditions in order to ensure primitivity, but indeed they turn out to be quite natural, as shown in [7,
Section 5]. In the case of 4-bit S-Boxes, we have only two possibilities: r = 1, requiring every γ ′ to be
both strongly 1-anti-invariant (which always holds if it is maximally non-linear, see for instance [7,
footnote 4 on p. 347]) and weakly APN; or r = 2, requiring every γ ′ to be both weakly 4-differentially
uniform (which always holds if it is 4-differentially uniform) and 2-strongly-anti-invariant.

3. Theoretical results on weakly APN functions

Generally speaking, two different r′ > r give logically independent hypotheses in the statement
of Theorem 4.4 in [7], because weakly 2r -differential uniformity implies weakly 2r′

-differential uni-
formity, while r′-anti-invariance implies r-anti-invariance. Our first result is to show that for 4-
differentially uniform functions the case r = 2 of Theorem 4.4 in [7] is just a sub-case of the case
r = 1.

Proposition 1. Let f : (F2)
4 → (F2)

4 be an invertible v.B.f. such that

(i) f is 4-differentially uniform,
(ii) f is strongly 2-anti-invariant.

Then f is weakly APN.

Proof. Assume by contradiction that |Im(Du( f ))| � 4. Then from (i) we deduce that |Du( f )−1(y)| = 4
for every y ∈ Im(Du( f )). Hence we have Du( f )−1( f (u)) = {0, u, x, u + x} for some x, in particular
Du( f )−1( f (u)) is a 2-dimensional vector subspace. On the other hand, Du( f )(x) = Du( f )(u) implies
f (x + u) = f (u) − f (x). It follows that f ({0, u, x, u + x}) is a 2-dimensional vector subspace, contra-
dicting (ii). �

In other words, Proposition 1 provides some sufficient conditions for a 4-bit S-Box to be weakly
APN. Other sufficient conditions are presented in the next proposition and are based on the following
non-linearity measures:

ni( f ) = ∣∣{v ∈ (F2)
m \ {0}: deg

(〈 f , v〉) = i
}∣∣ (1)

and

n̂( f ) = max
u∈(F2)m\{0}

∣∣{v ∈ (F2)
m \ {0}: deg

(〈
Du( f ), v

〉) = 0
}∣∣. (2)
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Proposition 2. Let f : (F2)
4 → (F2)

4 be a v.B.f. such that n̂( f ) = 0.
Then f is weakly APN.

Proof. Let (F2)
4 = {x1, . . . , x16} and given u ∈ (F2)

m \ {0} let M = (mij) ∈ (F2)
4×16 with mij :=

(Du( f ))i(x j). By definition, f is weakly APN if and only if |Im(Du( f ))| > 4, hence if and only if
M has more than 4 distinct columns.

Assume by contradiction that M has n � 4 distinct columns and let M ′ ∈ (F2)
4×n be the corre-

sponding submatrix.
If M ′ has rank 4, then we may write (1,1,1,1) as a linear combination (over F2) of the rows

of M ′:

(1,1,1,1) = aM ′
1 + bM ′

2 + cM ′
3 + dM ′

4.

Since all the other columns of M are equal to the columns of M ′ , we may write (1, . . . ,1) ∈ (F2)
16 as

the same linear combination of the rows of M:

(1, . . . ,1) = aM1 + bM2 + cM3 + dM4.

Hence the function 〈Du( f ), (a,b, c,d)〉 is the constant 1, contradiction.
If instead M ′ has rank at most 3, then we may write (0,0,0,0) as a non-zero linear combination

of the rows of M ′:

(0,0,0,0) = aM ′
1 + bM ′

2 + cM ′
3 + dM ′

4.

Since all the other columns of M are equal to the columns of M ′ , we may write (0, . . . ,0) ∈ (F2)
16 as

the same linear combination of the rows of M:

(0, . . . ,0) = aM1 + bM2 + cM3 + dM4.

Hence the function 〈Du( f ), (a,b, c,d)〉 is the constant 0, contradiction. �
The following partial converse to Proposition 2 gives necessary conditions and holds for any m � 2.

Theorem 1. Let f : (F2)
m → (F2)

m be a weakly APN function.
Then n̂( f ) � 1.

Proof. Let f = ( f1, f2, . . . , fm) with f i : (F2)
m → F2 and assume by contradiction that both

〈Du( f ), v1〉 and 〈Du( f ), v2〉 are constant for some u, v1 
= v2 ∈ (F2)
m \ {0}. Up to a linear trans-

formation sending v1 to (1,0,0, . . . ,0) and v2 to (0,1,0, . . . ,0), without loss of generality we may
assume that both the first component (Du( f ))1 and the second component (Du( f ))2 of Du( f ) are
constant. It follows that |Im(Du( f ))| � 2m−2 and f is not weakly APN, contradiction. �

As an application of Theorem 1, we obtain the following:

Proposition 3. Let f : (F2)
4 → (F2)

4 be a weakly APN permutation.
Then deg( f ) = 3 and n3( f ) ∈ {12,14,15}.

Proof. It is well known that deg f � 3 (see for instance [15]). If

∣∣{v ∈ (F2)
4 \ {0}: deg

(〈 f , v〉) � 2
}∣∣ � 5

then our claim holds, since {v ∈ (F2)
4 \ {0}: deg(〈 f , v〉) � 2} ∪ {0} is a vector subspace of (F2)

4.
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Let f = ( f1, f2, f3, f4) with f i : (F2)
4 → F2 and assume by contradiction that deg(S) � 2 for 6

different linear combinations S = ∑4
i=1 vi f i . From the basic theory of quadratic Boolean functions

(see for instance [6, Section 2.2]), it follows that the derivative Du(S) is constant for every u ∈ V (S) ⊆
(F2)

4, where V (S) is a vector subspace and its dimension is 0 if and only if S is bent, 4 if and only
if S is linear (affine), and 2 otherwise. Now, S is not bent since it is balanced (see for instance [1])
and bent functions are never balanced (see for instance [12]). Thus dim V (S) � 2 for every S and
|V (S) \ {0}| � 3, in particular 6 sets V (S) \ {0} ⊆ (F2)

4 \ {0} cannot be disjoint. Hence there is u ∈
(F2)

4 \ {0} and two different non-zero linear combinations S1 and S2 such that both Du(S1) and
Du(S2) are constant and this contradicts Theorem 1. �
4. Computational results on weakly APN function

The problem of classifying (invertible) S-Boxes f : (F2)
m → (F2)

m (w.r.t. affine-equivalence) was
solved in [8,9] in the case m = 4 and has been recently checked in [13,14]. By a direct check on the
class representatives, we may draw a series of consequences, that we call Facts.

First of all, we see that three of our theoretical results cannot be inverted, as follows.

Fact 1. The converse of Proposition 1 does not hold.

Proof. (0,1,2,13,4,15,14,7,8,3,5,9,10,6,12,11) is weakly APN but is not 4-differentially uni-
form. �
Fact 2. The converse of Proposition 2 does not hold.

Proof. (0,1,2,13,4,15,14,7,8,3,5,9,10,6,12,11) is weakly APN but n̂ = 1. �
Fact 3. The converse of Theorem 1 does not hold.

Proof. For f = (0,1,2,7,4,10,15,9,8,3,13,14,12,5,6,11) we have n̂( f ) = 1 but f is not weakly
APN. �

Next, we can strengthen Proposition 3:

Fact 4. Let f : (F2)
4 → (F2)

4 be a weakly APN permutation. Then deg( f ) = 3 and n3( f ) ∈ {14,15}.

Unfortunately, the previous fact cannot be inverted:

Fact 5. The converse of Fact 4 does not hold.

Proof. For f = (0,1,2,7,4,10,15,9,8,3,13,14,12,5,6,11) we have deg( f ) = 3 and n3( f ) = 14, but
f is not weakly APN. �

Finally, we want to provide some sufficient conditions (for f to be weakly APN), involving also the
following classical concept of non-linearity:

Definition 4.

Lin( f ) = max
a∈(F2)m,b∈(F2)m\{0}

∣∣〈 f ,b〉W (a)
∣∣,

where W denotes the Walsh coefficient (see for instance (1) in [9]).
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Since for m = 4 we have that Lin( f ) � 8, we find of interest the following result:

Fact 6. Let f : (F2)
4 → (F2)

4 be a Boolean permutation such that

Lin( f ) = 8, f is 4-differentially uniform, n3( f ) � 14.

Then f is weakly APN.

Regrettably, the assumptions of Fact 6 cannot be weakened. We provide two (affine-independent)
counterexamples:

• with f = (0,1,2,12,4,13,11,10,8,15,5,9,6,14,7,3) we have Lin( f ) = 8 and n3( f ) = 14, but
f is not weakly APN,

• with f = (0,1,2,12,4,6,14,5,8,3,13,10,9,7,15,11) we have that f is 4-differentially uniform
and that n3( f ) = 14, but again f is not weakly APN.

5. More computational results and conclusions

Let we recall from [9] the further measures of non-linearity:

– Lin1( f ) = maxa,b∈(F2)m,w(a)=w(b)=1 {|〈 f ,b〉W (a)|},
– Diff1( f ) = maxa,b∈(F2)m,w(a)=w(b)=1 {|Da( f )−1(b)|}.

Then we introduce a new class of S-Boxes suitable for block ciphers construction:

Definition 5. We say that an invertible v.B.f. f : (F2)
4 → (F2)

4 is a strong S-Box if f is weakly APN,
4-differentially uniform, and

Lin( f ) = 8, Diff1( f ) = 0, Lin1( f ) = 4, n3( f ) � 14.

Moreover, we say that f is very strong if it is strong and strongly 2-anti-invariant.

Note that a very strong function is in particular both optimal [9, Definition 1] and Serpent-type
[9, Definition 2], and also it satisfies Theorem 4.4 of [7]. A direct computation (see [13]) allows us to
conclude:

Fact 7. There are 55 296 strong S-Boxes and 2304 very strong ones.

Remark 1. As in the rest of the paper, all statements in this section assume f (0) = 0. So Fact 7 implies
that there are actually 55 296 ∗ 16 = 884 736 invertible 4-bit S-Boxes equivalent via a translation to
strong S-Boxes, therefore sharing their security robustness. The same goes for 2304 ∗ 16 = 36 864
S-Boxes equivalent to very strong S-Boxes.

Following [9], we have tested the properties of the S-Boxes used in SERPENT, denoted by
S0, S1, . . . , S7 (for details see [13]), and we get:

Fact 8. The S-Boxes S3, S4, S5, S7 are strong. None of the Si ’s is very strong.

In conclusion, we have considered the link between the recent notion of weakly APN function and
several more traditional non-linearity properties, such as differential uniformity, algebraic degree and
classical non-linearity. We obtained both theoretical and computational results. In particular, sufficient
conditions for an S-Box to be weakly APN are presented in Propositions 1 and 2 and Fact 6; while
necessary ones can be found in Theorem 1, Proposition 3 and Fact 4.
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