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a b s t r a c t

The popular angular defect schemes for Gaussian curvature only converge at the regular
vertex with valence 6. In this paper, we present a new discrete scheme for Gaussian
curvature, which converges at the regular vertex with valence greater than 4. We show
that it is impossible to build a discrete scheme for Gaussian curvature which converges
at the regular vertex with valence 4 by a counterexample. We also study the convergence
property of other discrete schemes for Gaussian curvature and compare their asymptotic
errors by numerical experiments.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of intrinsic geometric invariants is important in a number of applications such as in computer vision, computer
graphics, geometric modelling and computer aided design. It is well known that Gaussian curvature is one of the most
essential geometric invariants for surfaces. However, in the classical differential geometry, this invariant is well defined
only for C2 smooth surfaces. In the field of modern-computer-related geometry, one often uses C0 continuous discrete
triangular meshes to represent smooth surfaces approximately. Hence, estimation of accurately Gaussian curvature for
triangular meshes is demanded strongly.
In the past years, a wealth of different methods for estimating Gaussian curvature have been proposed in the vast

literature of applied geometry. These methods can be divided into two classes. The first class is for computing Gaussian
curvature based on the local fitting or interpolation technique [1–5], while the second class is for giving discretization
formulas which represent the information about the Gaussian curvature [6–9]. In this paper, our focus is on the methods
in the second class and our main aim is to present a new discretization scheme for Gaussian curvature which has better
convergence property than the previous discretization schemes.
LetM be a triangulation of the smooth surface S in R3. For a vertex p ofM, suppose that {pi}ni=1 is the set of the one-ring

neighbor vertexes of p. The set {pippi+1}(i = 1, . . . , n) of n Euclidean triangles forms a piecewise linear approximation of S
around p. Throughout the paper, we use the following conventions pn+1 = p1 and p0 = pn. Let γi denote the angle 6 pippi+1
and let the angular defect at p be 2π −

∑
i γi.

A popular discretization scheme for computingGaussian curvature is in the formof (2π−
∑
i γi)/E, where E is a geometric

quantity. In general, one takes E as A(p)/3 and obtains the following approximation

G(1) :=
3(2π −

∑
i
γi)

A(p)
, (1)
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where A(p) is the sum of the areas of triangles pippi+1. In [6], another scheme

G(2) :=
2π −

∑
i
γi

Sp
(2)

is given, where

Sp :=
∑
i

1
4 sin γi

[
ηiηi+1 −

cos γi
2

(η2i + η
2
i+1)

]
is called the module of the mesh at p. In [10,11], the discretization approximation G(1) is modified as

G(3) :=
2π −

∑
i
γi

1
2

∑
i
area(pippi+1)− 1

8

∑
i
cot(γi)d2i

, (3)

where di is the length of edge pipi+1. There are different viewpoints for explaining the reasonwhy the angular defect closely
relates to the Gaussian curvature, including the viewpoints of the Gaussian–Bonnet theorem, Gaussian map and Legendre’s
formula (see the next section in details).
Asymptotic analysis for the discretization schemes have been given in [4,6,9]. In [4], the authors show that the

discretization scheme G(1) is not always convergent to the true Gaussian curvature for the non-uniform data. In [6], the
authors prove that the angular defect is asymptotically equivalent to a homogeneous polynomial of degree two in the
principal curvatures and show that the scheme G(2) converges to the exact Gaussian curvature in a linear rate provided
p is a regular vertex with valence six. Moreover, in [6], the authors show that 4 is the only value of the valence such
that the angular defect depends upon the principal directions. In [9], Xu proves that the discretization scheme G(1) has a
quadratic convergence rate if the mesh satisfies the so-called parallelogram criterion, which requires valence 6. Therefore,
one hopes to construct a discretization scheme which converges over any discrete mesh. But in [12], Xu et al. show that
it is impossible to construct a discrete scheme which is convergent over any discrete mesh. Hence, we have to be content
with the discretization schemes which converge under some conditions. According to past experiences [6,12,13], we regard
a discretization scheme as desirable if it has the following properties:

(1) It converges at regular vertexes, at least for sufficiently large valence (the definition of the regular vertex will be given
in Section 2);

(2) It converges at umbilical points, i.e., the points satisfying km = kM where km and kM are two principal curvatures.

As stated before, the previous discretization schemes, including G(1),G(2) and G(3), only converge at the regular vertex
with valence 6. In [6], a method for computing the Gaussian curvature at the regular vertex with valence unequal to 4
is described. But the method requires two meshes with valences n1 and n2 (n1 6= 4, n2 6= 4, n1 6= n2). In this paper,
we will construct a discretization scheme which converges at the regular vertex with valence not less than 5, and also at
umbilical points with any valence. Moreover, the discretization scheme requires only a single mesh. Hence, the new scheme
is more desirable. Furthermore, we show that it is impossible to construct a discretization scheme which is convergent at
the regular vertex with valence 4. Therefore, the convergence problem remains open for the regular vertexes with valence
3. Here, it should be noted that the pointwise convergence discussed in this paper is different from the convergence in norm
as discussed in [14,15].
The rest of the paper is organized as follows. Section 2 describes some notations and definitions and Section 3 shows

three viewpoints for expressing the relation between the angular defect and Gaussian curvature. In Section 4, we study the
convergence property of a modified discretization Gaussian curvature scheme.We present in Section 5 a new discretization
scheme and prove that the scheme has a good convergence property, which is the central result of the paper. In Section 6,
for the regular vertex with valence 4, we show that it is impossible to build a discretization scheme which is convergent to
the real Gaussian curvature. Some numerical results are given in Section 7.

2. Preliminaries

In this section, we introduce some notations and definitions used throughout the paper (see also Fig. 1). Let S be a given
smooth surface and p be a point over S. Suppose that the set {pippi+1}, i = 1, . . . , n, of n Euclidean triangles forms a
piecewise linear approximation of S around p. The vector from p to pi is denoted as −→ppi. The normal vector and tangent
plane of S at the point p are denoted by n andΠ, respectively. We denote the projection of pi ontoΠ as qi, and define the
plane containing n, p and pi asΠi. Then we let κi denote the curvature of the plane curve S ∩Πi at p. The distances from p
to pi and qi are denoted as ηi and li, respectively. Let γi and βi denote 6 pippi+1 and 6 qipqi+1. The two principal curvatures
at p are denoted as km and kM . Let η = maxi ηi. The following results are presented in [6,9,13]:

li
ηi
= 1+ O(η), βi = γi + O(η2), (4)
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Fig. 1. Notations.∥∥∥∥∥∑
i

wi
−→ppi

∥∥∥∥∥ =∑
i

wiκiη
2
i

2
+ O(η3), (5)

wherewi ∈ R.
Nowwe give the definition of the regular vertex using the notations introduced above. Similar definitions also appear in

[6,13].

Definition 1. Let p be a point of a smooth surface S and let pi, i = 1, . . . , n be its one-ring neighbor. The point p is called a
regular vertex if it satisfies the following conditions:
(1) the βi = 2π

n ,
(2) the ηi’s all take the same value η.

Remark 1. We can replace (1) in Definition 1 by requiring that the γi’s all take the same value. Since βi = γi + O(η2), all
the results in this paper hold also for the alternative definition.

3. The angular defect and Gaussian curvature

In this section, we summarize three different viewpoints for expressing the relation between the angular defect and
Gaussian curvature. These viewpoints have been described in the literature [4,9]. We collect them here.

3.1. Gaussian–Bonnet theorem viewpoint

Let D be a region of the surface S, whose boundary consists of piecewise smooth curves Γj’s. Then the local
Gaussian–Bonnet theorem is as follows∫ ∫

D
G(p)dA+

∑
j

∫
Γj

kg(Γj)ds+
∑
j

αj = 2π,

where G(p) is the Gaussian curvature at p, kg(Γj) is the geodesic curvature of the boundary curve Γj and αj is the exterior
angle at the jth corner point pj of the boundary. If all the Γj’s are the geodesic curves, the above formula reduces to∫ ∫

D
G(p)dA = 2π −

∑
j

αj. (6)

Let M be a triangulation of the surface S. For the vertex p, each triangle pippi+1 can be partitioned into three equal parts,
one corresponding to each of its vertexes. We let D be the union of the part corresponding to p of triangles pippi+1. Note
that

∑
i γi =

∑
j αj. Assuming G(p) is a constant on D, and using (6), we can see that G(p) can be approximated by G

(1)(p),
where G(1)(p) is the discrete Gaussian curvature obtained using G(1) at p.

3.2. Spherical image viewpoint

We now introduce another definition of Gaussian curvature. Let D be a small patch of area A including point p on the
surface S. There will be a corresponding patch of area I on the Gaussian map. Gaussian curvature at p is the limit of ratio
limA→0 IA .
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Let us consider a discrete version of the definition. TheGaussianmap image, i.e. the spherical image, of the trianglepippi+1
is the point (p−pi)×(p−pi+1)

‖(p−pi)×(p−pi+1)‖
. Join these points by a great circle forming a spherical polygon on the unit sphere. The area of

this spherical polygon is 2π −
∑
i γi. Similarly to the above, each triangle is partitioned into three parts, one corresponding

to each vertex. Then the Gaussian curvature can be approximated by G(1)(p).

3.3. Geodesic triangle viewpoint

Let T = ABC be a geodesic triangle on the surface S with angles α, β, γ and geodesic edge lengths a, b, c . Let A′B′C ′ be a
corresponding Euclidean triangle with angles α′, β ′, γ ′ and edge lengths a, b, c . Legendre presents the following formula

α − α′ = area(T )
G(A)
3
+ o(a2 + b2 + c2),

where area(T ) is the area of the geodesic triangle ABC and G(A) is the Gaussian curvature at A.
Using Legendre’s formula for each triangles with p as a vertex, we arrive at the estimating formula G(1)(p) again.

4. Convergence of angular defect schemes

In [9], Xu gives an analysis about the scheme G(1) and proves that the scheme converges at the vertexes satisfying the
so-called parallelogram criterion. In [6], the authors give an elegant analysis about the angular defect and they show that
the angular deficit is asymptotically equivalent to a homogeneous polynomial of degree two in the principal curvatureswith
closed form coefficients if the vertex p is regular. Moreover, they present another angular scheme G(2) := 2π−

∑
i γi

Sp
. In fact,

using the law of cosine, we have
1
2

∑
i

area(pippi+1)−
1
8

∑
i

cot(γi)d2i =
∑
i

[
1
4
ηiηi+1 sin γi −

1
8
cos γi
sin γi

(η2i + η
2
i+1 − 2ηiηi+1 cos γi)

]
=

∑
i

1
4 sin γi

[
ηiηi+1 −

cos γi
2

(η2i + η
2
i+1)

]
= Sp.

This shows that G(2) and G(3) are equivalent, which means that these two schemes output the same value for the same
triangular mesh.
In [9], the author proves that the discretization scheme G(1) has quadratic convergence rate under the parallelogram

criterion. In the following theorem, we shall show that the discretization scheme G(3) has also quadratic convergence rate
under the same criterion.

Theorem 1. Let p be a vertex of M with valence six, and let pj, j = 1, . . . , 6 be its neighbor vertexes. Suppose that p and
pj, j = 1, . . . , 6 are on a sufficiently smooth parametric surface F(ξ1, ξ2) ∈ R3, and there exist u and uj ∈ R2 such that

p = F(u), pj = F(uj) and uj − u = (uj−1 − u)+ (uj+1 − u), j = 1, . . . , 6.

Then
2π −

∑
i
γi

1
2A(p, r)−

1
8

∑
i
cot(γi(r))d2i (r)

= G(p)+ O(r2),

where, G(p) is the real Gaussian curvature of F(u) at p,

A(p, r) :=
∑
i

area[pi(r)ppi+1(r)], pi(r) := F(ui(r)),

and ui(r) = u+ r(ui − u), i = 1, . . . , 6.
Proof. Let

A(p, r) = a0r2 + a1r3 + O(r4) (7)

and
A(p, r)
2
−
1
8

∑
i

cot(γi(r))d2i (r) = b0r
2
+ b1r3 + O(r4)

be the Taylor expansions with respect to r . According to Theorem 4.1 in [9],

3(2π −
∑
i
γi)

A(p, r)
= G(p)+ O(r2).
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Hence, to prove the theorem, we need to show that b0 = a0/3 and b1 = a1/3. According to [9], we have a1 = 0, which
implies that we only need to prove b0 = a0/3 and b1 = 0.
Note that the u and uj, j = 1, . . . 6, satisfy the parallelogram criterion. Without loss of generality, we may assume

u = [0, 0]T and u1 = [1, 0]T. Then there exist a constant a > 0 and an angle θ such that

u2 = [a cos θ, a sin θ ]T.

Hence, u3 = [a cos θ − 1, a sin θ ]T and uj+3 = −uj, j = 1, 2, 3. Let

uj = sjdj = sj[gj, lj]T, j = 1, . . . , 6,

where sj = ‖uj‖ and ‖dj‖ = 1. Then, we have

s1 = 1, s2 = a, s3 =
√
a2 − 2ac + 1, s4 = s1, s5 = s2, s6 = s3,

g1 = 1, g2 = c, g3 = (ac − 1)/s3, g4 = −g1, g5 = −g2, g6 = −g3,
l1 = 0, l2 = t, l3 = at/s3, l4 = −l1, l5 = −l2, l6 = −l3,

where (c, t) := (cos θ, sin θ). Note that

A(p, r) =
1
2

6∑
j=1

√
‖pj(r)− p‖2‖pj+1(r)− p‖2 − 〈pj(r)− p, pj+1(r)− p〉2, (8)

cot(γj(r)) =
〈pj(r)− p, pj+1(r)− p〉√

‖pj(r)− p‖2‖pj+1(r)− p‖2 − 〈pj(r)− p, pj+1(r)− p〉2
, (9)

and

d2j (r) = ‖pj(r)− p‖2 + ‖pj+1(r)− p‖2 − 2〈pj(r)− p, pj+1(r)− p〉. (10)

Let Fkdj denote the kth order directional derivative of F in the direction dj. Then using the Taylor expansion with respect to r ,
we have that

‖pj(r)− pj‖
2
= s2j r

2
〈Fdj , Fdj〉 + s

3
j r
3
〈Fdj , F

2
dj〉 +

1
4
s4j r
4
〈F2dj , F

2
dj〉

+
1
3
s4j r
4
〈Fdj , F

3
dj〉 +

1
6
s5j r
5
〈F2dj , F

3
dj〉 +

1
12
s5j r
5
〈Fdj , F

4
dj〉 + O(r

6), (11)

and

〈pj(r)− p, pj+1(r)− p〉 = sjsj+1r2〈Fdj , Fdj+1〉 +
1
2
sjs2j+1r

3
〈Fdj , F

2
dj+1〉 +

1
2
s2j sj+1r

3
〈Fdj+1 , F

2
dj〉

+
1
4
s2j s
2
j+r
4
〈F2dj+1 , F

2
dj〉 +

1
6
sjs3j+r

4
〈Fdj , F

3
dj+1〉 +

1
6
s3j sj+1r

4
〈Fdj+1 , Fdj+1〉

+
1
12
s2j s
3
j+1r

5
〈F2dj , F

3
dj+1〉 +

1
12
s2j+1s

3
j r
5
〈F2dj , F

3
dj+1〉

+
1
24
s4j+1sjr

5
〈Fdj , F

4
dj+1〉 +

1
24
sj+1s4j r

5
〈F4dj , Fdj+1〉 + O(r

6). (12)

To compute all the inner products in the two equations above, we let

ti =
∂F(ξ1, ξ2)
∂ξi

, tij =
∂2F(ξ1, ξ2)
∂ξi∂ξj

, tijk =
∂3F

∂ξi∂ξj∂ξk
, tijkl =

∂4F
∂ξi∂ξj∂ξk∂ξl

for i, j, k, l = 1, 2, and let

gij = tTi tj, gijk = tTi tjk, eijkl = tTi tjkl, eijklm = tTi tjklm, fijklm = tTijtklm.

Since Fkdj can be written as a linear combination of ti, tij, tijk and tijkl, all the inner products in (11) and (12) can be expressed
as a linear combination of gij, gijk, gijkl, eijkl, eijklm and fijklm.
Substituting (11) and (12) into (8)–(10), and then substituting (8)–(10) into the expression 12A(p, r)−

1
8

∑
i cot(γi(r))d

2
i (r),

and using Maple to conduct all the symbolic calculations, we have

b0 = a0/3 =
√
a2t2(g11g22 − g212), b1 = 0.

The theorem follows. �
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Remark 2. The calculation of b0 and b1 involves a huge number of terms. It is almost impossible to finish the derivation
by hand. Maple completes all the computation in 26 s on a PC equipped with a 3.0 GHZ Intel(R) CPU. The Maple code
that conducts all derivations of the theorem is available at http://lsec.cc.ac.cn/~xuzq/maple.html. The interested readers
are encouraged to perform the computation.

Remark 3. It should be pointed out that there is another discretization scheme

G(4) :=
2π −

∑
i
γi

AM(p)
,

where AM(p) is the area of the Voronoi region. Since
∑
i area(pippi+1) could be approximated by 3AM(p) under some

conditions, for example the conditions of Theorem 1, G(4) is easily derived from G(1).

5. A new discretization scheme of the Gaussian curvature and its convergence

In this section, we introduce a new discretization scheme for Gaussian curvature which converges at umbilical points
and regular vertexes with valence greater than 4. This is the main result of the paper.
Before introducing the new discretization, we discuss some properties about the discrete mean curvature. Setting

αi = 6 pipi−1p and δi = 6 pipi+1p, we let

H(1) := 2

∥∥∥∥∥∥∥
∑
i
(cotαi + cot δi)−→ppi∑
i
(cotαi + cot δi)η2i

∥∥∥∥∥∥∥ , (13)

which is a popular discrete scheme for the mean curvature at vertex p (c.f. [16]). Moreover, the real mean curvature and the
real Gaussian curvature at p are denoted as H and G respectively. Then, we have:

Lemma 1. Suppose that p is a regular vertex or a umbilical point. The discrete scheme H(1) converges linearly to the mean
curvature H as η = ηi → 0.

Proof. Firstly, let us consider the regular vertex. Since p is a regular vertex, one has cotαi+cot δicotαj+cot δj
= 1+O(η2), for the different

i and j. By (5), we have∥∥∥∥∥∑
i

(cotαi + cot δi)−→ppi

∥∥∥∥∥ =∑
i

(cotαi + cot δi)η2i ki
2

+ O(η3).

Hence, one has

H(1) =
∑
i

(cotαi + cot δi)η2i∑
j
(cotαj + cot δj)η2j

κi + O(η) =
1
n

∑
i

κi + O(η) = H + O(η). (14)

Secondly, we consider the umbilical points. According to the definition of umbilical points, one has ki = kj = H for any i
and j. Hence,

H(1) := 2

∥∥∥∥∥∥∥
∑
i
(cotαi + cot δi)−→ppi∑
i
(cotαi + cot δi)η2i

∥∥∥∥∥∥∥
=

∑
i
(cotαi + cot δi)η2i ki + O(η

3)∑
i
(cotαi + cot δi)η2i

= H + O(η). (15)

Combining (14) and (15), the theorem follows. �

Now, we turn to a new discrete scheme for Gaussian curvature. Set ϕi :=
∑i
j=1 γj and

G(5) :=
2π −

∑
i
γi − 2(Sp − A)(H(1))2

2A− Sp
,

where

A :=
∑
i

1
4 sin γi

(ηiηi+1
2

(1− cos 2ϕi cos 2ϕi+1)−
cos γi
4

(η2i sin
2 ϕi + η

2
i+1 sin

2 ϕi+1)
)
,

Sp :=
∑
i

1
4 sin(γi)

[
ηiηi+1 −

cos(γi)
2

(η2i + η
2
i+1)

]
.

http://lsec.cc.ac.cn/~xuzq/maple.html
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Then, we have:

Theorem 2. Suppose that p is a regular vertex with valence greater than 4 or a umbilical point. The discretization scheme G(5)
converges towards the Gaussian curvature G as ηi → 0 at p.

Proof. We firstly consider the case where p is a regular vertex. Set θ(n) := 2π
n . Since p is a regular vertex, we have

γi = θ(n) + O(η2) for any i according to (4). After a brief calculation, we have A = A′ + O(η4) and Sp = S ′p + O(η
4),

where

A′ =
1

16 sin(θ(n))
[2n− n cos(2θ(n))− n cos(θ(n))]η2,

S ′p =
n

4 sin(θ(n))
[1− cos(θ(n))]η2.

Hence, we have(
2π −

∑
i

γi − 2(Sp − A)(H(1))2
)
/(2A− Sp) =

(
2π −

∑
i

γi − 2(S ′p − A
′)(H(1))2

)
/(2A′ − S ′p)+ O(η

2).

Note that ηmax
ηmin
= 1+ O(η). According to Theorem 3 in [6], we have

2π −
∑
i

γi = A′G+ B′(k2M + k
2
m)+ o(η

2),

where, B′ = 1
16 sin(θ(n)) [n+

n
2 cos(2θ(n))−

3n
2 cos(θ(n))]η

2.
Note that

A′G+ B′(k2M + k
2
m) = A

′G+ B′[(kM + km)2 − 2kMkm]

= A′G+ 4B′H2 − 2B′G
= (A′ − 2B′)G+ 4B′H2.

Hence, we have

2π −
∑
i

γi = (A′ − 2B′)G+ 4B′H2 + o(η2). (16)

Note that A′ = O(η2), B′ = O(η2) and A′ − 2B′ 6= 0 provided n 6= 3. Combining (16), Lemma 1 and S ′p = A
′
+ 2B′, one has

G =
2π −

∑
i
γi − 4B′H2

A′ − 2B′
+ o(1)

=

2π −
∑
i
γi − 2(S ′p − A

′)(H(1))2

2A′ − S ′P
+ o(1) = G(5) + o(1)

provided n ≥ 5. Therefore, G(5) converges to the Gaussian curvature.
Now, let us turn to the umbilical point. For umbilical points, each direction is the principal direction. According to

Lemma 4 in [6], we have

2π −
∑
i

γi = (AG+ (Sp − A)k2m)+ o(η
2)

at umbilical points. Since k2m = H
2
= G, we have

2π −
∑
i

γi = (AG+ (Sp − A)k2m)+ o(η
2)

= (AG+ 2(Sp − A)H2 − (Sp − A)G)+ o(η2).

From the equation above, we arrive at

G =
2π −

∑
i
γi − 2(Sp − A)(H(1))2

2A− Sp
+ o(1) = G(5) + o(1).

The theorem follows. �
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Fig. 2. A sequence of the regular vertexes with valence n = 4 for the function f (x, y) = x2+ xy+y2 . At these regular vertexes, it is impossible to construct
a discrete Gaussian curvature scheme which converges to the correct value.

Remark 4. Theorem2 shows that the new schemeG(5) converges at regular vertexeswith valence greater than 4. And hence
the new scheme has better convergence properties than the available scheme.

Remark 5. In [13], the authors also prove that the discrete scheme H(1) converges to the real mean curvature at regular
vertexes. However, the definition of the regular vertex in [13] is different from our definition.

Remark 6. According to the conclusions above, the Gaussian curvature and the mean curvature can be approximated at
regular vertexes with valence greater than 4. Hence, using the formulas km = H −

√
H2 − G and kM = H +

√
H2 − G, one

can approximate the principal curvatures at regular vertexes with valence greater than 4.

6. A counterexample for the regular vertex with valence 4

In [12], we have constructed a triangular mesh and shown that it is impossible to construct a discrete Gaussian curvature
scheme which converges for the mesh. But the vertex in the mesh is not regular. In this section, we shall show that it is also
impossible to build a discrete Gaussian curvature scheme which converges at regular vertexes with valence 4.
Suppose that the xy plane is triangulated around (0, 0) by choosing 4 points q1 = (r1, 0), q2 = (0, r1), q3 = (−r1, 0)

and q4 = (0,−r1). For a bivariate function f (x, y), the graph of f (x, y), i.e. F(x, y) = [x, y, f (x, y)]T, can be regarded as
a parametric surface. Let p0 = F(0, 0) and pi = F(qi), i = 1, 2, 3, 4. The set of triangles pip0pi+1 forms a triangular
mesh approximation of F at p0 and we denote the triangular mesh as Mf . When f (x, y) is in the form of x2 + cxy + y2
where c ∈ R, it is easy to prove that p0 := (0, 0, 0)T is a regular vertex with valence 4. Moreover, we can see that
p1 = (r1, 0, r21 )

T, p2 = (0, r1, r21 )
T, p3 = (−r1, 0, r21 )

T and p4 = (0,−r1, r21 )
T. Now we show that it is impossible to

construct a discretization scheme for Gaussian curvature which converges over the vertex p0 (see Fig. 2).
Suppose for the purpose of contradiction that there is a discrete scheme for Gaussian curvature, which is denoted as

G(Mf , p0; p1, p2, p3, p4) and is convergent at the regular vertex p with valence 4. It is easy to calculate that the Gaussian
curvature of F(x, y, z) at p0 is 4 − c2. According to the assumption, we have limr1→0 G(Mf , p0; p1, p2, p3, p4) = 4 − c

2.
Note that the triangular meshMf is independent of c , i.e. for any function f (x, y) which is in the form of x2 + cxy+ y2, the
triangular mesh Mf is the same. Hence, limr1→0 G(Mf , p0; p1, p2, p3, p4) is independent of c. A contradiction occurs. The
assumption of G(Mf , p0; p1, p2, p3, p4) being convergent at the regular vertex pwith valence 4 does not hold.

Remark 7. The counterexample in this section justifies the conclusion in [6], which says that 4 is the only value of valence
such that 2π −

∑
i γi depends upon the principal directions.

Remark 8. An open problem is to find a discretization scheme for Gaussian curvature which converges at the regular vertex
with valence 3.

7. Numerical experiments

The aim of this section is to exhibit the numerical behaviors of the discrete schemes mentioned above. For a vector
a = (a20, a11, a02) ∈ R3, we define a bivariate function fa(x, y) := a20x2 + a11xy + a02y2, and regard the graph of the
function fa(x, y) as a parametric surface

Fa(x, y) = [x, y, fa(x, y)]T ∈ R3.

The Gaussian curvature of Fa(x, y) at the origin is 4a20a02−a211. The domain around (0, 0) is triangulated locally by choosing
n points:

qk = lk(cos θk, sin θk), θk = 2(k− 1)π/n, k = 1, . . . , n.

Let pk = Fa(qk) and p0 = (0, 0, 0)T. Hence, the set of triangles {pkp0pk+1} forms a piecewise linear approximation of Fa
around p0. We set ek := fa(cos θk, sin θk) and select

lk =

√√√√√
1+ 4e2k(l

2
k−1 + l

4
k−1e

2
k−1)− 1

2e2k
, k ≥ 2 (17)

so that p0 is a regular vertex.
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Table 1
The asymptotic maximal error ε(i)(n).

n ε(1)(n) ε(2)(n) ε(4)(n) ε(5)(n)

4 4.6016e+ 01 3.3571e+ 01 3.3570e+ 01 3.3593e+ 01
5 8.2000e+ 00 9.3792e+ 00 9.3792e+ 00 4.1631e+ 01η
6 1.2226e+ 01η 1.2903e+ 01η 1.2903e+ 01η 1.1488e+ 01η
7 3.8464e+ 00 4.5783e+ 00 4.5783e+ 00 9.0676e− 01η
8 5.8387e+ 00 7.7628e+ 00 7.7628e+ 00 6.5630e+ 01η

Table 2
The asymptotic error ε(i) over a sphere.

N η ε(1) ε(2) ε(4) ε(5)

30 0.710 3.798e−01 1.905e−01 1.905e−01 2.126e−01
100 0.383 3.517e−01 5.480e−02 5.480e−02 1.192e−01
400 0.196 2.673e−01 1.280e−02 1.280e−02 1.730e−02
1300 0.109 2.812e−01 3.801e−03 3.801e−03 6.500e−03
5000 0.056 2.669e−01 9.648e−04 9.648e−04 2.703e−03

We let G(i)(p0 : Fa) denote the approximated Gaussian curvatures of Fa at p0, which are obtained by using the
discretization scheme G(i). Suppose thatA is a set consisting ofM randomly chosen vectors a. Then, we let

ε(i)(n) =
∑
a∈A
|G(i)(p0 : Fa)− (4a20a02 − a

2
11)|/M.

Since p is a regular vertex, each edge has the same length η. Table 1 shows the asymptotic maximal error ε(i)(n) when
M = 104. The convergence property and the convergence rate are checked by taking l1 = 1/8, 1/16, 1/32, . . . (when
k ≥ 2, lk can be obtained by (17)).
From Table 1, we can see that all methods work well on valence 6 but only new method works well for valence≥ 5.
We compute the Gaussian curvature over a randomly triangulated unit sphere by the discretization schemes to test their

convergent property at umbilical points. The vertexes of the random triangulation are uniform distribution on the sphere.
Denote the vertexes in the random triangulation as pi, i = 1, . . . ,N where N is the number of the vertexes in the random
triangulation. We let G(j)(pi) denote the approximate Gaussian curvature at the vertex pi which is obtained by the discrete
scheme G(j). Similarly to the above, we use ε(j) =

∑N
i=1 |(G

(j)(pi)− 1)|/N to measure the error of discretization scheme G(j)

and use η to denote the average length of the edges. Table 2 lists ε(j) for different N .
From these numerical results, we can draw the following conclusions: For the regular vertexes with the valence greater

than 4, or the umbilical points, the new discretization scheme G(5) converges to the real Gaussian curvature, which agrees
with the theoretical result.
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