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a b s t r a c t

In this paper, variational iterationmethod (VIM) is applied to the problem of determination
of critical buckling loads for Euler columnswith constant and variable cross-sections. VIM is
a powerful method for the solution of nonlinear ordinary and partial differential equations
and integral equations. Hence it is a suitable approach for the analysis of engineering
problems where an exact solution is difficult to obtain. This study presents the application
of VIM to various buckling cases and results are produced for columns with different
support conditions and with different variation of cross-sections. The results obtained are
accurate which show that variational iteration method is a very efficient technique in the
analysis of elastic stability problems.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

It is crucial to determine the buckling loads in structural analysis and design. Columns are basic structural forms and there
are extensive studies related to the elastic stability of columns, and their static and dynamic behaviors. In this field, Euler
pioneered the study of buckling of columns under their own weight [1]. Later on, Greenhill [2] made subtle contributions to
this field. This problem is often called Greenhill’s problem in the related literature. In the literature, it is difficult to find
the exact analytical solution for the buckling problem of a non-uniform column with arbitrary distributions of flexural
stiffness and axial distributed forces. Closed-form solutions for simple cases are given by Dinnik [3], Karman and Biot [4]
and Timoshenko and Gere [5] and others. Wang et al. [6] give exact solutions for buckling of structural members including
various cases of columns, beams, arches, rings, plates and shells.
Investigation of buckling of columns has become the center of attention and got more and more systematic during the

second half of the 20th century. Exact buckling solutions for several special types of tapered columns with simple boundary
conditions were obtained by Gere and Carter [7] in terms of Bessel functions. The problem of the buckling of elastic columns
with step varying thickness is given by Arbabei and Li [8]. Siginer [9] studied the stability of a columnwhose flexural rigidity
has a continuous linear variation along the column. Furthermore, the exact analytical solutions of a one-step bar and multi-
step bar with varying cross-section under the action of concentrated and variably distributed axial loads were obtained by
Li et al. [10–12].
Sampaio et al. [13] solved the problemof buckling behavior of inclined beam–columnusing energymethod. They showed

the exact solution using somemembers of the family of generalized hyper-geometric functions. Also some of the researchers
who studied the mechanical behavior of beams/columns are Keller [14], Tadjbakhsh and Keller [15] and Taylor [16].
A solution technique called variational iteration method (VIM) which was originally proposed by He [17–19] has been

given great importance for solving linear and nonlinear differential equations in recent years. The method can solve various
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Fig. 1. General case of column buckling.

classes of linear and nonlinear equations [20–27]. VIM is a kind of variational based analytical technique efficient for finding
solutions of nonlinear differential equations including boundary value and initial value problems, nonlinear system of
differential equations, nonlinear partial differential equations. These successful applications of the method to the various
linear and nonlinear types of problems in Physics, Mathematics and Engineering fields encourages the use of VIM in the
present problem.

2. Buckling of elastic columns

Buckling investigation of columns will be explained in this section by considering the most general case of an axially
loaded elastic column. To this aim, a moment and a shear may be assumed at each end of the column. Such a column and a
free-body of a part of this column are shown in Figs. 1 and 2.
According to the Euler–Bernoulli beam theory, moment–displacement relation for the column in Fig. 1 is given by

M = EI(x)
d2w
dx2

. (1)

The moment equilibrium equation may be written as follows in view of free-body in Fig. 2.

EI(x)w′′ − Vx+ Pw −MA = 0. (2)

Differentiating Eq. (2) twice with respect to x yields:

d2w
dx2

[
EI(x)

d2w
dx2

]
+ P
d2w
dx2
= 0. (3)

Eq. (3) is the governing equation for buckling of columns regardless of boundary conditions and covers all the cases
considered in this study.
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Fig. 2. Free-body of a part of the column.

3. VIM formulation of the problem

According to VIM, the following differential equation may be considered:

Lw + Nw = g(x) (4)

where L is a linear operator, and N is a nonlinear operator, and g(x) is an inhomogeneous term.
Based on VIM, a correct functional can be constructed as follows:

wn+1 = wn +

∫ x

0
λ(ξ){Lwn(ξ)+ Nw̃n(ξ)− g(ξ)}dξ (5)

where λ is a general Lagrangian multiplier, which can be identified optimally via the variational theory, the subscript n
denotes the nth-order approximation, w̃ is considered as a restricted variation i.e. δw̃ = 0. By solving the differential
equation for λ obtained from Eq. (5) in view of δw̃ = 0 with respect to its boundary conditions, Lagrangian multiplier
λ(ξ), is obtained as follows:

λ(ξ) =
1
6
(ξ 3 − 3xξ 2 + 3x2ξ − x3). (6)

If the above VIM formulation is applied to Eq. (3), the following iteration formula can be obtained accordingly:

wn+1(x) = wn(x)+
∫ x

0
λ(ξ)

{
w(ξ)iv + 2

[EI(ξ)]′

EI(ξ)
w̃(ξ)′′′ +

{
[EI(ξ)]′′

EI(ξ)
+

P
EI(ξ)

}
w̃(ξ)′′

}
dξ . (7)

The iteration formula given in Eq. (7), is a simple approximation which can be applied to columns of any cross-section and
it is expected to be an important contribution of VIM to the current problem.

4. Critical buckling loads for columns with constant cross-sections

Since the cross-section is constant which means that EI is constant, governing equation takes the following form:

EI
d4w
dx4
+ P
d2w
dx2
= 0 (8)

where 0 < x < L and L is length of the column.
Non-dimensional form of this equation is:

d4w̄
dx̄4
+ α

d2w̄
dx̄2
= 0 (9)

where x̄ = x/L, w̄ = w/L and α is non-dimensional critical buckling load which is

α =
pL2

EI
. (10)
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Fig. 3. Various end conditions for classical Euler Column.

Critical buckling loads will be determined for five different cases which is shown in Fig. 3. Although it is easy to obtain an
exact solution for Eq. (8) which is a linear ordinary differential equation with constant coefficients, it is a good example for
simulation of the use of VIM in the analysis of the problem. In this case iteration formulation given in Eq. (7) becomes

w̄n+1(x̄) = w̄n(x̄)+
∫ x

0

1
6
(ξ 3 − 3x̄ξ 2 + 3x̄2ξ − x̄3){w̄(x̄)iv + αw̄(x̄)′′}dξ . (11)

An initial approximation may be chosen as a cubic polynomial with unknown coefficients. Such an approximation is:

w̄0 = Ax̄3 + Bx̄2 + Cx̄+ D. (12)
This approximation includes four unknown coefficients which are supposed to be found by imposing the boundary
conditions of the problem considered. Classical boundary conditions for the non-dimensional equation (9), are given
below [6].

Pin support: w̄ = 0 and
d2w̄
dx̄2
= 0 (13)

Clamped support: w̄ = 0 and
dx̄
dx̄
= 0 (14)

Free end:
d2w̄
dx̄2
= 0 and

d3w̄
dx̄3
+ α

dx̄
dx̄
= 0 (15)

Sliding restraint:
dw̄
dx̄
= 0 and

d3w̄
dx̄3
+ α

dw̄
dx̄
= 0. (16)

The iteration formula given in Eq. (11) produces the following results as two successive iterations.

w̄1 = A
(
x̄3 − α

x̄5

20

)
+ B

(
x̄2 − α

x̄4

12

)
+ Cx̄+ D (17)

w̄2 = A
(
x̄3 − α

x̄5

20
+ α2

x̄7

840

)
+ B

(
x̄2 − α

x̄4

12
+ α2

x̄6

360

)
+ Cx̄+ D. (18)

In this study computations are conducted up to ninth iteration and four boundary conditions for each case are rewritten
by using the final approximation of iteration. Each boundary condition produces an equation containing four unknowns
coming from the initial approximation. Hence four equations may be written with respect to the boundary conditions of the
problem. These equations can be put into matrix form as follows:

[M(α)]{A} = {0} (19)
where {A} = 〈A B C D〉T. For a nontrivial solution, determinant of coefficient matrix must be zero. The problem is an
eigenvalue problem and determinant of coefficientmatrix yields a characteristic equation in terms of a. The smallest positive
real root of this equation is the non-dimensional critical buckling load for the case considered.
Critical buckling loads for five different cases shown in Fig. 3 are computed by using VIM and compared with exact

solutions [6] in Table 1. For the simplification, letters are used to define the support conditions of the column. The first letter
stands for the support at the bottom and the letter for the top. Hence, C–F is Clamped–Fixed, P–P is Pinned–Pinned, C–P is
Clamped–Pinned and C–S is Clamped–Sliding Restraint. The results shown in Table 1 are in perfect agreement with the exact
solutions. Hence VIM efficiently solves the determination of critical buckling load problemwhich is an eigenvalue problem.
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Table 1
Comparison of critical buckling loads for columns with constant cross-section.

Critical buckling load C–F column P–P column C–P column C–C column C–S column

Exact [6] 2.4674 9.8696 20.1907 39.4784 9.8696
VIM 2.4674 9.8696 20.1908 39.4916 9.8696

Table 2
Comparison of critical buckling loads for columns with exponential variation of flexural rigidity.

aL C–F P–P C–S C–P C–C
Exact VIM Exact VIM Exact VIM Exact VIM Exact VIM

0.0 2.467 2.4674 9.870 9.8696 9.870 9.8696 20.19 20.1908 39.48 39.4916
0.1 2.394 2.3945 9.380 9.3857 9.390 9.3881 19.20 19.2018 37.55 37.5499
0.5 2.110 2.1121 7.634 7.6345 7.683 7.6827 15.64 15.6399 30.60 30.5984
1.0 1.782 1.7823 5.827 5.8257 5.973 5.9728 11.99 11.9885 23.49 23.4901
1.5 1.480 1.4821 4.389 4.3889 4.633 4.6354 9.098 9.0996 17.86 17.8647
2.0 1.209 1.2176 3.264 3.2652 3.580 3.5919 6.839 6.8470 13.46 13.4652

5. Critical buckling loads for columns with variable cross-sections

5.1. Variation of flexural rigidity with exponential function

With the variation of cross-section, moment of inertia of column also changes along the height of the column. Hence, the
flexural rigidity EI(x), is not constant. In this section an exponential variation of flexural rigidity is assumed. The analytical
solutions for this case are given in [6].
The variable flexural rigidity is given in the following form:

EI(x) = αe−ax. (20)
In the equation α has the unit of EI and the unit of a is [L]−1. Hence, non-dimensional form of flexural rigidity is:

EI(x̄) =
α

pL2
e−(aL)x̄. (21)

The iteration formula is given in Eq. (7). After inserting Eq. (21) into iteration formula, nine iterations are conducted for
this case. To simplify the integration process, series expansion of exponential function with seven terms is used in the
computations. As in constant cross-section case, a characteristic equation is obtained by means of four boundary conditions
after conducting nine iterations in VIM process and normalized buckling load, PL2/α is determined from the characteristic
equation. The results are produced for the same support conditions which are previously considered in the constant cross-
section case by rearranging them with respect to variation of flexural rigidity.
Table 2 compares the results obtained fromVIMand analytical solutions. In the table, aL = 0 case corresponds to buckling

loads of uniform column. From the table it can be seen that buckling load for exponential columns can be obtained by using
VIM with a good accuracy and this proves the efficiency of VIM.

5.2. Variation of flexural rigidity with power law

In this section, variation of flexural rigidity of elastic columns is given by the following power function.

EI(x) = α(1− bx)a (22)
where α and a are positive constants and bL ≤ 1. In this equation α has the unit of EI and unit of b is [L]−1. Three analyses
are conducted by assuming a linear, a quadratic and finally a cubic power consecutively with a non-dimensional variable
flexural rigidity EI which may be given as follows:

EI(x̄) =
α

pL2
(1− bLx̄)a. (23)

Analytical solutions for comparisons are taken from Wang et al. [6]. VIM analyses are performed up to ninth iteration and
series expansionwith nine terms is used for variable coefficients in the iteration equation to simplify the integration process.
A characteristic equation is obtained as in previous cases for each assumed value of a and bL together with five different
support conditions, i.e, C–F, P–P, C–P, C–C, C–S.
The results obtained are tabulated and compared with the analytical results in Tables 3–5. Table 3 shows the results for

normalized buckling load, PL2/α, for a = 1 with bL = 0.1, 0.3, 0.5. Table 4 compares the results of VIM with analytical
solutions for a = 2 with the same bL values. Finally Table 5 compares VIM results with analytical solutions for a = 3.
From these tables, it can be easily seen that VIM produces good results for normalized buckling loads in view of analytical
solutions. The results show that VIM is an efficient and powerful method in the analysis of critical buckling load problems
of elastic columns with variable cross-sections.
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Table 3
Comparison of critical buckling loads for columns with linear variation of flexural rigidity.

bL C–F P–P C–S C–P C–C
Exact VIM Exact VIM Exact VIM Exact VIM Exact VIM

0.1 2.393 2.3928 9.372 9.3716 9.369 9.3690 19.17 19.1686 37.48 37.4804
0.3 2.235 2.2351 8.343 8.3434 8.317 8.3167 17.03 17.0354 33.27 33.2733
0.5 2.062 2.0612 7.256 7.2564 7.169 7.1732 14.74 14.7423 28.70 28.6972

Table 4
Comparison of critical buckling loads for columns with quadratic variation of flexural rigidity.

bL C–F P–P C–S C–P C–C
Exact VIM Exact VIM Exact VIM Exact VIM Exact VIM

0.1 2.319 2.3191 8.893 8.8933 8.893 8.8933 18.19 18.1893 35.56 35.5618
0.3 2.012 2.0115 7.005 7.0047 7.005 7.0042 14.29 14.2912 27.91 27.9067
0.5 1.683 1.6813 5.198 5.1992 5.198 5.2031 10.53 10.5308 20.48 20.4814

Table 5
Comparison of critical buckling loads for columns with cubic variation of flexural rigidity.

bL C–F P–P C–S C–P C–C
Exact VIM Exact VIM Exact VIM Exact VIM Exact VIM

0.1 2.246 2.2464 8.436 8.4345 8.442 8.4416 17.25 17.2517 33.73 33.7290
0.3 1.798 1.7977 5.840 5.8405 5.897 5.8983 11.92 11.9238 23.29 23.2912
0.5 1.336 1.3368 3.628 3.6278 3.758 3.7551 7.362 7.3641 14.35 14.3498

6. Discussion of results

In thiswork, application of VIM in elastic stability problems is presentedwith theproblemof determining critical buckling
loads for Euler columns with constant and variable cross-sections. Although, the governing equation for constant cross-
section columns is an ordinary linear differential equation with constant coefficients, it is a good example to illustrate
the application of the method to the problem. The results for this case are in very good agreement with the analytical
solutions which encourages the application of VIM to the buckling problems of columns with variable cross-sections. In the
variable cross-section cases, the problems are chosen for which an analytical solution exists. However, it is not possible to
obtain analytical solutions for any variation in flexural rigidity which is the consequence of variation in cross-section. Since
the column is assumed as made up of a single elastic material, its modulus of elasticity E is the same and as a result, the
variation of flexural rigidity EI depends only on variation in cross-section. In the selected cases for variable cross-sections,
some functions are selected to represent the variation along column height for which exact solutions are available and
results have shown that VIM still produces very good results for the columns with changing flexural rigidity. Although, one
cannot obtain an analytical solution for any variation in flexural rigidity, it may be easy to implement any variable flexural
rigidity into iteration formulation of VIM to obtain a solution. This is the main advantage of VIM in the current problem and
demonstrated case studies have shown that VIM is a very efficient, powerful and reliable method for obtaining the critical
buckling loads for columnswith variable cross-sections. This study figures out that VIM is a promisingmethod in the analysis
of various engineering problems.

7. Conclusion

In this study, the use of VIM for the analysis of determination of critical buckling loads for Euler columns with constant
and variable cross-sections is presented. As a demonstration of application of the method, five different columns with
constant cross-sections are analyzed first. The results for this case are accurate and show that VIM is capable of analyzing
the same problems for columns of variable cross-sections. For the variable cross-section problems, the governing equation is
a differential equation with variable coefficients and it is not easy to obtain analytical solutions for these types of problems.
However, it is easy to put those variable parameters into the iteration equation of VIM and the result can be obtained after a
few iterations. Comparisons with analytical solutions pointed out that VIM is a very efficient, powerful and reliable method
in the analysis of buckling problems of columns with variable cross-sections.
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