Effect of partial slip on hydromagnetic flow over a porous stretching sheet with non-uniform heat source/sink, thermal radiation and wall mass transfer

A.K. Abdul Hakeem a, R. Kalaivanan a, N. Vishnu Ganesh a, B. Ganga b,*

a Department of Mathematics, Sri Ramakrishna Mission Vidhyalaya College of Arts and Science, Coimbatore 641 020, India
b Department of Mathematics, Providence College for Women, Coonoor 643 104, India

Received 7 November 2013; revised 17 January 2014; accepted 23 February 2014
Available online 22 April 2014

Abstract In this work, we have investigated the effect of partial slip on hydromagnetic boundary layer flow in porous medium over a stretching surface with space and temperature dependent internal heat generation/absorption, thermal radiation and wall mass transfer (suction/blowing). The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations are converted into non-linear ordinary differential equations by means of similarity transformations. The dimensionless governing equations for this investigation are solved analytically using hypergeometric functions. The results are carried out for prescribed surface temperature (PST) and prescribed power law surface heat flux (PHF). The effect of partial slip parameter with magnetic parameter, porosity parameter, wall mass transfer parameter (suction/blowing), space and temperature dependent internal heat generation/absorption parameter, Prandtl number and radiation parameter on velocity and temperature distributions are depicted graphically and are analyzed in detail.

© 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

1. Introduction

Due to the numerous applications in industrial manufacturing processes, the problem of flow and heat transfer due to stretching surfaces has attracted the attention of researchers for the past four decades being a subject of considerable interest in the contemporary literature [1–5]. Some of the application areas are hot rolling, paper production, metal spinning, drawing plastic films, glass blowing, continuous casting of metals and spinning of fibers, etc. [6]. In all these cases, the quality of the final product depends on the rate of heat transfer at the stretching surface. Many of the flow properties were investigated by the followers [7–11] using no-slip condition on the wall. However, as stated in [12], when the fluid is particulate such as emulsions, suspensions, foams and polymer solutions, the no-slip condition is inadequate. In such cases the suitable boundary condition is the partial slip. Wang [13] discussed the partial slip effects on the planar stretching flow. Partial slip flow over a stretching sheet is investigated by many researchers [14–18].
The applied magnetic field may play an important role in controlling momentum and heat transfers in the boundary layer flow of different fluids over a stretching sheet. Fang et al. [19] found an exact solution for MHD slip flow over a stretching sheet. Yazdi et al. [20] have investigated the MHD slip flow and heat transfer over non-linear permeable stretching surface with chemical reaction and Turkyilmazoglu [21] studied the effect of heat and mass transfer of the mixed hydro-dynamic/thermal slip MHD viscous flow over a stretching sheet. Recently, Mukhopadhyay [22] has done a work on slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation.

The study of convective flow through porous media has received a great deal of research interest over the last three decades due to its wide and important applications in environmental, geophysical and industrial problems. Prominent applications include the utilization of geothermal energy, the migration of moisture in fibrous insulation, drying of a porous solid, food processing, casting and welding in manufacturing processes, the dispersion of chemical contaminants in different industrial processes, the design of nuclear reactors, chemical catalytic reactors, compact heat exchangers, solar power and many others. Hayat et al. [23] investigated the slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space.

The study of heat generation or absorption effects is important in view of several physical problems such fluids undergoing exothermic or endothermic chemical reactions. Although, exact modeling of internal heat generation or absorption is quite difficult, some simple mathematical models can express its average behavior for most physical situations. Heat generation or absorption has been assumed to be constant, space-dependent or temperature-dependent. Very recently, Abdul Hakeem et al. [24] studied the effect of heat radiation in a Walter’s liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation with out considering the partial slip effect.

A close observation of the literature reveals that, to the best of authors’ knowledge, so far no one has considered partial slip effect on MHD flow in porous medium over a stretching surface with space and temperature dependent internal heat generation/absorption, thermal radiation and wall mass transfer (suction/blowing). This fact motivates us to propose the same for the present investigation. The analytical results are carried out for prescribed surface temperature (PST) and prescribed power law surface heat flux (PHF).

2. Mathematical formulation

Consider a steady, laminar and two-dimensional radiative slip flow of an incompressible Newtonian fluid over a porous stretching sheet in the presence of transverse magnetic field of strength B_0 with space and temperature dependent heat source/sink and suction/blowing. The flow is assumed to be in the x-direction, which is chosen along the sheet and the y-axis perpendicular to it. The sheet issues from a thin slit at the origin $(0,0)$. It is assumed that the speed of a point on the plate is proportional to its distance from the slit and that the boundary-layer approximations are still applicable. Let x-axis along the surface, y-axis being normal to it. Let u...
and v are the fluid tangential velocity and normal velocity, respectively (see Fig. 1).

The equation governing the problem under consideration is given by

$$u_x + v_y = 0$$

(1)

$$u_{xx} + v_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} - \frac{\sigma B_0^2 u}{\rho} \right)$$

(2)

where θ is the kinematic viscosity, K is the permeability of the porous medium, ρ is the density, σ is the electrical conductivity and B_0 is the uniform magnetic field in the y-direction.

The boundary conditions for the velocity fields are of the form

$$u(x, 0) = ax + lu_0(y), \quad v(y, 0) = v_w, \quad u(x, \infty) = 0$$

(3)

To facilitate the analysis, we introduce the subsequent conventional similarity transformations and dimensionless variables η and $f(\eta)$$

$$u = ax f_0(\eta), \quad v = -(\alpha \theta)^{\frac{1}{2}} f(\eta), \quad \eta = \frac{(\theta_1 \theta_0)^{\frac{1}{2}}}{2}$$

(4)

Using (4), Eq. (1) is trivially satisfied and Eqs. (2) and (3) take the form

$$f_{\eta\eta} + f_{\eta} = f_x + \lambda f_{\eta\eta} - Mw f_{\eta} = 0$$

(5)

with corresponding boundary conditions

$$f(\eta) = s, \quad f_{\eta}(\eta)|_{\eta = 0} = 1 + L f_{\eta}(0) \quad \text{at} \quad \eta = 0$$

$$f_{\eta}(\eta) \rightarrow 0 \quad \text{as} \quad \eta \rightarrow \infty$$

(6)

Here the subscript η denotes differentiation with respect to η, s is the wall mass transfer [$s < 0$ (blowing), $s > 0$ (suction)], $\lambda = \frac{a}{\theta_1}$ is the porosity parameter, $Mw = \frac{E_{\theta}}{\rho \theta_1}$ is the magnetic parameter and $L = \frac{1}{a} \sqrt{\lambda}$ is the partial slip parameter. The solution of Eq. (5) with boundary condition (6) is obtained as,

$$f(\eta) = s + X \left(1 - e^{-\eta} \right)$$

(7)

where

$$X = \frac{1}{Lx + 1}$$

$$z = \frac{1 - Lx}{3L} - \frac{(2)^{\frac{1}{2}} x_1}{3L (2^{3} + 4 x_1^{2} + x_2^{2})^{\frac{1}{2}}} + \frac{\left(2^{3} + 4 x_1^{2} + x_2^{2}\right)^{\frac{1}{2}}}{(2)^{\frac{1}{2}} 3L}$$

and

$$x_1 = L^3 (-3 M w - 3 s - \eta^2) - L s - 1$$

$$x_2 = L^3 (9 s x_1 + 9 M w n + 2 \eta^3) + L^2 (27 + 18 M w n + 18 \eta + 3 s^2)$$

$$- 3 L s - 2$$

Using the solution (7) in Eq. (4), the velocity components obtained in the form

$$u = ax (X e^{-\eta}) \quad \text{and} \quad v = -a \theta \left(s + X \left(1 - e^{-\eta} \right)\right)$$

(8)

The wall shearing stress on the surface of the stretching sheet is given by

$$\tau_w = \left[v \left(\frac{\partial u}{\partial y} \right) \right]_{y=0}$$

(9)

The local skin-friction coefficient or the frictional drag is given by

$$C_f = \frac{\tau_w}{\frac{1}{2} \rho u_{\infty}^2} = 2 Re_s^{-1/2} f_{\eta \eta}(0)$$

(10)

where $Re_s = \frac{u_{\infty} \theta_1}{\theta_0}$ is the Reynolds number.

3. Heat transfer analysis

The governing thermal boundary layer equation in the presence of non-uniform internal heat source/sink and thermal radiation for two dimensional flow problem is given by

$$\rho c_p (u T_w + v T_y) = k T_{yy} - q''$$

(11)

where k is the thermal conductivity, ρ is the density, T is temperature, c_p is the specific heat of constant pressure and q'' is the space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink) [24] which can be expressed in simplest form as

$$q'' = \left(\frac{k u_{\infty}(x)}{x^{\sigma}}\right)[A'(T_\infty - T_{\infty})/\theta_0 + B'(T - T_{\infty})]$$

(12)

where A' and B' are parameters of the space and temperature dependent internal heat generation/absorption. It is to be noted that $A' > 0$ and $B' > 0$ correspond to internal heat generation while $A' < 0$ and $B' < 0$ correspond to internal absorption.

The Rosseland approximation for radiation [25] heat flux has given by

$$q_r = -\frac{4 \kappa r}{3 \sigma} T^4$$

(13)

where κr is the Stefan–Boltzmann constant and k^* is the mean absorption coefficient. Further, we assume that the temperature difference within in flow is such that T^4 may be expanded in a Taylor series. Hence expanding T^4 about T^∞ and neglecting higher order terms we get

$$T^4 \approx 47 T^4 - 37 T^4$$

(14)

Using Eqs. (13) and (14) in (11), we obtain

$$\rho c_p (u T_w + v T_y) = k T_{yy} - \frac{16 \kappa r T^4}{3k^*} T_{yy} + q''$$

(15)

The solution of Eq. (15) is found using the two types of general heating processes such as prescribed surface temperature (PST) and prescribed power law of surface heat flux (PHF), condition as described below.

3.1. The prescribed surface temperature (PST CASE)

The boundary condition in the PST case is given by

$$T = T_w = T_{\infty} + A \left(\frac{Y}{T}\right)^2 \quad \text{at} \quad y = 0$$

$$T \rightarrow T_{\infty} \quad \text{as} \quad y \rightarrow \infty$$

(16)

where T_w is the temperature of the sheet, T_{∞} the temperature of the fluid far away from the sheet and l is the characteristic length.
Define the non-dimensional temperature $\theta(\eta)$ as
\[
\theta(\eta) = \frac{T - T_\infty}{T_u - T_\infty}
\]
(17)

Now, we make use of the transformations given by Eqs. (4), (12) and (17) in Eq. (15). This leads to the non-dimensional form of temperature equation as follows:
\[
\omega\theta_{\eta\eta} + Pr\theta_{\eta} - 2Prf_0 \theta + \alpha' \beta \theta + \beta' \theta = 0
\]
(18)

where $Pr = \frac{P}{c_p}$ is the Prandtl number, $N = \frac{1}{2\pi} \frac{c_p}{c_v}$ is radiation parameter and $\omega = (3N + 4)(3N)^{-1}$.

Consequently, the boundary condition Eq. (16) takes the form,
\[
\theta(\eta) = 1 \text{ at } \eta = 0
\]
\[
\theta(\eta) \to 0 \text{ as } \eta \to \infty
\]
(19)

The solution of Eq. (18), subject to boundary condition of Eq. (19) can be obtained in terms of hypergeometric function as
\[
\theta(\eta) = c_1 e^{-\frac{\eta^2}{2}} M\left(\frac{p + q - 4}{2}, 1 + q, -\frac{Pr}{2\omega} X e^{-\eta}\right)
\]
\[
- c_2 e^{-2\eta} - c_3 e^{-\eta}
\]
(20)

where
\[
p = Pr\left(\frac{s}{\omega x} + \frac{X}{2\omega^2}\right)
\]
\[
q = \sqrt{p^2 - \frac{4}{\omega^2}}
\]
\[
c_1 = (1 + c_3 + c_2) M\left(\frac{p + q - 4}{2}, 1 + q, -\frac{Pr}{2\omega} X\right)^{-1}
\]
\[
c_2 = \frac{X\beta}{\omega x^2 (1 - p + \frac{Pr}{\omega^2}) (4 - 2p + \frac{2Pr}{\omega^2})}
\]
\[
c_3 = \frac{X\alpha A'}{\omega x^2 (1 - p + \frac{Pr}{\omega^2}) (4 - 2p + \frac{2Pr}{\omega^2})}
\]

The relation $\frac{\omega x}{4} \leq p^2$ must be satisfied in order to have real value of q. The non-dimensional wall temperature gradient obtained from (21) as:
\[
\theta_x(0) = -c_1 \left(\frac{p + q}{2}\right) M\left(\frac{p + q - 4}{2}, 1 + q, -\frac{Pr}{2\omega} X\right)
\]
\[
+ c_1 \frac{prX}{\omega x^2} \left(\frac{p + q - 4}{2(1 + q)}\right) M\left(\frac{p + q - 2}{2}, 2 + q, -\frac{Pr}{2\omega} X\right)
\]
\[
+ 2\alpha c_3 + c_2 x
\]
(21)

The local heat flux can be expressed as
\[
q_{u} = -k(T_x)_{y=0} = -k\sqrt{\frac{u}{\theta}}(T_u - T_\infty)\theta_{\theta}(0)
\]
(22)

3.2. Prescribed power law of surface heat flux (PHF CASE)

The boundary condition in case of PHF is given by
\[
-kT_{y} = q_{u} = D\left(\frac{X}{l}\right)^{2} \text{ at } y = 0, \ T \to T_\infty \text{ as } y \to \infty
\]
(23)

where D is constant, k and l are defined earlier.

We now define a dimensionless, scaled temperature $g(\eta)$ as
\[
g(\eta) = \frac{T - T_\infty}{T_u - T_\infty}
\]
(24)

and make use of the transformation given by Eq. (4). This leads to the following non-dimensional form of Eq. (15) for temperature
\[
\omega g_{\eta\eta} + Prf_0 g - 2Prf_0 \alpha' \beta \eta + \beta' \eta = 0
\]
(25)

The corresponding boundary condition takes the form
\[
g_{(\eta)} = -1 \text{ at } \eta = 0
\]
\[
g(\eta) \to 0 \text{ as } \eta \to \infty
\]
(26)

The analytic solution of Eq. (26), subject to the boundary condition Eq. (27), is obtained in the following form of hypergeometric function of the similarity variable
\[
g(\eta) = c_4 e^{-\frac{\eta^2}{2}} M\left(\frac{p + q - 4}{2}, 1 + q, -\frac{Pr}{2\omega} X e^{-\eta}\right)
\]
\[
- c_2 e^{-2\eta} - c_3 e^{-\eta}
\]
(27)

Here p, q, c_2 and c_3 are as defined earlier in the PST case and c_4 is given by
\[
c_4 = \frac{1}{\frac{\omega^2}{4}} \left(\frac{p + q}{2}\right) M\left(\frac{p + q - 4}{2}, 1 + q, -\frac{Pr}{\omega^2} X e^{-\eta}\right)
\]
\[
- c_2 e^{-2\eta} - c_3 e^{-\eta}
\]
(28)

Table 1: Comparison of values of $-\theta_{\theta}(0)$ and $g(0)$ in PST and PHF cases.

<table>
<thead>
<tr>
<th>Mn</th>
<th>Pr</th>
<th>$-\theta_{\theta}(0)$</th>
<th>Present value with $L = \lambda = 0, s = A' = B' = 0$ without radiation</th>
<th>$g(0)$</th>
<th>Present value with $L = \lambda = 0, s = A' = B' = 0$ without radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>3.31648</td>
<td>3.31648</td>
<td>3.31648</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30152</td>
<td>0.20846</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4.79687</td>
<td>4.79687</td>
<td>4.79687</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20846</td>
<td>0.31179</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.21577</td>
<td>1.21577</td>
<td>1.21577</td>
<td>0.82252</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.20721</td>
<td></td>
<td>0.82252</td>
<td>0.21321</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.69021</td>
<td></td>
<td>0.21321</td>
<td>0.21321</td>
</tr>
</tbody>
</table>
The expression for wall temperature in dimensional form is:

\[T_w = T_\infty + \frac{q_w}{k}\sqrt{\frac{\beta}{\alpha}}g(0) \] \hspace{1cm} (29)

4. Result and discussion

In the present work, we have analyzed the effect of partial slip on hydromagnetic boundary layer flow over a porous stretching sheet with space and temperature dependent internal heat generation/absorption, thermal radiation and suction/blowing effects. Analytical solutions are obtained in terms of hypergeometric function. Thermal transport is analyzed for prescribed surface temperature (PST) and prescribed power law surface heat flux (PHF) cases. In order to validate our present work, we have compared our results with those of Turkyilmazoglu [21] for \(-\theta_\eta(0)\) and \(g(0)\) for PST and PHF cases respectively, in the absence of partial slip parameter (L), Porosity parameter (\(\lambda\)), mass transfer parameter (s), non-uniform heat source/sink parameter (\(A', B'\)) and radiation parameter (N). The comparison in the above cases is found to be in excellent agreement as shown in Table 1.

The effect of magnetic parameter (Mn) with partial slip parameter (L) on the velocity profile \(f_v(\eta)\) is presented in Fig. 2. It is noted that the rising of magnetic parameter reduces the velocity profile. This is due to the fact the increase in Mn, Lorentz force increases and it produces more resistance to the flow.

\[\text{Figure 2: Effect of slip parameter } L \text{ with magnetic parameter } Mn \text{ on velocity profile.} \]

\[\text{Figure 3: Effect of slip parameter } L \text{ with porosity parameter } \lambda \text{ on the velocity profile.} \]

\[\text{Figure 4: Effect of slip parameter } L \text{ with wall mass transfer parameter } s \text{ on velocity profile.} \]

\[\text{Figure 5a: Effect of slip parameter } L \text{ with magnetic parameter } Mn \text{ on the temperature profile in PST case.} \]
flow. The presence of transverse magnetic field leads to decrease the momentum boundary layer thickness. The velocity profile of the fluid increases as partial slip parameter decreases. When slip occurs, the flow velocity near the sheet is no longer equal to the stretching velocity of the sheet. With the increase in L, such slip velocity increases and consequently fluid velocity decreases because under the slip condition, the pulling of the stretching sheet can be only partly transmitted to the fluid. The presence of transverse magnetic field and the partial slip lead to decrease the momentum boundary layer thickness.

Fig. 3 depicts the effect of partial slip parameter with porosity parameter on $f_0(\eta)$. It is clear from the figure the velocity profile decreases with the increasing of porosity parameter and the partial slip parameter. The presence of a porous medium causes higher restriction to the fluid flow which, in turn, slows its motion. Increasing of both the parameters lead to thinning of the momentum boundary layer.

The effect of wall mass transfer (s) parameter with partial slip parameter on velocity profile is shown in Fig. 4. It is observed that velocity decreases significantly with increasing suction parameter whereas fluid velocity is found to increase with blowing. It is observed that, when the wall suction ($s > 0$) is considered, this causes a decrease in the boundary layer thickness and the velocity field is reduced. Opposite
behavior is noted for blowing ($\gamma < 0$). The velocity profile decreases as slip parameter increases.

Figs. 5a and 5b demonstrate the effect of magnetic parameter with the partial slip parameter on the temperature profile in PST and PHF cases respectively. The presence of magnetic parameter and partial slip parameter lead to increase the temperature profile in both PST (Fig. 5a) and PHF (Fig. 5b) cases. The combined effects of magnetic and slip parameters lead to increase the thickness of hydromagnetic boundary layer. The fluid becomes warmer in the presence of magnetic field.

The effect of porosity parameter with partial slip parameter on the temperature profiles for both PST and PHF cases is presented in Figs. 6a and 6b. The increasing of the partial slip parameter and the porosity parameter increases the dimensionless temperature profile in both PST (Fig. 6a) and PHF (Fig. 6b) cases. The effect of porosity parameter with partial slip parameter has the same effect as the magnetic parameter with partial slip parameter on the hydromagnetic boundary layer.

The effect of space and temperature dependent heat source/sink with partial slip parameter on PST and PHF cases are
illustrated in Figs. 7 and 8. The temperature rises in the case of space \((A' > 0, \text{Fig. 7a})\) and temperature dependent \((B' > 0, \text{Fig. 8a})\) heat source and gets reduce in the case of space \((A' > 0, \text{Fig. 7b})\) and temperature dependent heat sink in both PST and PHF cases. The combined effect of slip parameter with space and temperature dependent heat source/sink parameters always lead to thickening of the thermal boundary layer.

Figs. 9 and 10 demonstrate the effects of radiation parameter and Prandtl number with ‘\(L\)’ on temperature profile in PST and PHF cases respectively. The temperature profile decreases with the increasing values of radiation parameter in both PST and PHF case (Figs. 9) and same trend is observed on the Prandtl number (Figs. 10). This is due to the fact that the thermal boundary layer thickness decreases as radiation and Prandtl number increases. The combined effect of both the parameters with partial slip parameter reduces the temperature in both PST and PHF cases.

The variation in surface velocity gradient \(f_{g0}(0)\) with \(L, Mn, s\) and \(\lambda\) is presented in Table 2. The non-dimensional surface velocity gradient \(f_{g0}(0)\) increases with \(L\) and decreases with the increasing values of \(Mn, s\) and \(\lambda\). The values of wall temperature gradient \(\theta_{w}(0)\) and wall temperature \(g(0)\) for various values of parameters governing the flow are calculated and tabulated in Table 3. This table reveals that the wall temperature gradient \(\theta_{w}(0)\) and the wall temperature \(g(0)\) get increase with the increasing values of \(L, Mn, \lambda, A'\) and \(B'\) and get decrease with \(s, Pr\) and \(N\).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>(f_{g0}(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>1</td>
<td>-0.766771</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.743609</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.302384</td>
</tr>
<tr>
<td>(Mn)</td>
<td>0</td>
<td>-0.753734</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.766771</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.777505</td>
</tr>
<tr>
<td>(s)</td>
<td>-1</td>
<td>-0.622797</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-0.675282</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.724318</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>1</td>
<td>-0.737278</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.766771</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-0.786588</td>
</tr>
</tbody>
</table>

Note: While studying the effect of individual parameter the following value are assumed \(L = 1, \lambda = 3, s = 2\) and \(Mn = 1\).
Effect of partial slip on hydromagnetic flow over a porous stretching sheet

An analysis has been carried out to study the effect of partial slip on hydromagnetic boundary layer flow over a porous stretching sheet with space and temperature dependent internal heat generation/absorption, thermal radiation and wall mass transfer (suction/blowing). The dimensionless governing equations for this investigation are solved analytically using hyper-geometric functions. The conclusions derived from the present study are given below

- The velocity profile decreases with the increasing values of magnetic parameter, porosity parameter, suction parameter and increases with blowing parameter.
- The presence of partial slip parameter leads to decrease the velocity profile. The combined effect of partial slip parameter with other parameters always decreases the thickness of the momentum boundary layer.
- The increasing values of porosity, magnetic parameter and the partial slip parameters increase the temperature of the fluid in both PST and PHF cases and in turn the fluid temperature decreases when ever radiation and the Prandtl number get increase.
- The temperature of the fluid rises in the case of space and temperature dependent heat source and decreases in the case of heat sink.

Table 3: Values of $\theta_g(0)$ and $g(0)$ for various values of the governing parameter in PST and PHF cases respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>PST $\theta_g(0)$</th>
<th>PHF $g(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1</td>
<td>-1.09552</td>
<td>0.91327</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.09527</td>
<td>0.94422</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.04460</td>
<td>0.95740</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
<td>-1.10502</td>
<td>0.90552</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.08803</td>
<td>0.91948</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.07683</td>
<td>0.92894</td>
</tr>
<tr>
<td>s</td>
<td>-2</td>
<td>-0.09697</td>
<td>9.08958</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.09552</td>
<td>0.91327</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.18093</td>
<td>0.45923</td>
</tr>
<tr>
<td>Pr</td>
<td>2</td>
<td>-1.09552</td>
<td>0.91327</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.69666</td>
<td>0.50979</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.27724</td>
<td>0.44054</td>
</tr>
<tr>
<td>A^*</td>
<td>-1</td>
<td>-1.12094</td>
<td>0.89019</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-1.10139</td>
<td>0.90794</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-1.08184</td>
<td>0.92569</td>
</tr>
<tr>
<td>B^*</td>
<td>-0.5</td>
<td>-1.27812</td>
<td>0.78333</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-1.17105</td>
<td>0.85466</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>-1.03772</td>
<td>0.96386</td>
</tr>
<tr>
<td>N</td>
<td>0.2</td>
<td>-0.38820</td>
<td>2.06838</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>-0.85612</td>
<td>1.08993</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>-1.19855</td>
<td>0.79819</td>
</tr>
</tbody>
</table>

Note: While studying the effect of individual parameter the following value are assumed $L = 1$, $\lambda = 3$, $s = 2$, $Mn = 1$, $Pr = 2$, $A^* = B^* = 0.3$ and $N = 0.5$.

5. Conclusion

The surface velocity gradient decreases with the magnetic parameter and porosity parameter and increases with partial slip parameter. The values of wall temperature gradient and wall temperature get increase with the increasing of the slip parameter, magnetic parameter, porosity parameter, space and temperature dependent heat source parameter and decrease with Prandtl number, radiation parameter, space and temperature dependent heat sink parameter.

- The partial slip parameter always leads to thickening of the thermal boundary layer.

Acknowledgements

The author wish to express his sincere thanks to the honorable referees and the editor for their valuable comments and suggestions to improve the quality of the paper. One of the authors (N.V.G) gratefully acknowledges the financial support ofUGC, India under F1-17.1/2012-13/RGNF-2012-13-SC-TAM-16936 for pursuing this work.

References

A.K. Abdul Hakeem is born and brought up in the district of Coimbatore, Tamil Nadu, India. He obtained the M.Sc. and M.Phil degrees in Mathematics from Bharathiar University, Coimbatore. He was awarded Ph.D. degree in Fluid Dynamics by Bharathiar University in 2008. He is serving the Department of Mathematics, Sri Ramakrishna Mission Vidhyalaya College of Arts and Science, Coimbatore Affiliated to Bharathiar University, as an Assistant Professor since 2008. Besides teaching he is actively engaged in research in the field of Fluid mechanics particularly in Heat transfer in cavities, boundary layer flows, Nanofluid Flow through Porous media and Slip flow model.

R. Kalaivanan is a research scholar in Department of Mathematics in Sri Ramakrishna Mission Vidhyalaya College of Arts and Science, Coimbatore, Tamilnadu, India. He is currently doing M.Phil under the guidance of Dr. A.K. Abdul Hakeem.

N. Vishnu Ganesh is a research scholar in Department of Mathematics in Sri Ramakrishna Mission Vidhyalaya College of Arts and Science, Coimbatore, Tamilnadu, India. He is currently doing Ph.D with F1-17.1/2012-13/RGNF-2012-13-SC-TAM-16936 UGC grant India under the guidance of Dr. A.K. Abdul Hakeem.

B. Ganga is born and brought up in the district of the Nilgiris, Tamil Nadu, India. She obtained M.Phil and Ph.D degrees in Mathematics from Bharathiar University, Coimbatore. She is currently working as an Assistant Professor in Department of Mathematics, Providence college for women, Coonoor, Affiliated to Bharathiar University. Besides teaching she is actively engaged in research in the field of Fluid mechanics particularly in boundary layer flows, Nanofluid Flow through Porous media and Slip flow model.