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Abstract

The need for image restoration arises in many applications of various scientific disciplines, such as medicine and astronomy and, in
general, whenever an unknown image must be recovered from blurred and noisy data [M. Bertero, P. Boccacci, Introduction to Inverse
Problems in Imaging, Institute of Physics Publishing, Philadelphia, PA, USA, 1998]. The algorithm studied in this work restores the
image without the knowledge of the blur, using little a priori information and a blind inverse filter iteration. It represents a variation of
the methods proposed in Kundur and Hatzinakos [A novel blind deconvolution scheme for image restoration using recursive filtering,
IEEE Trans. Signal Process. 46(2) (1998) 375-390] and Ng et al. [Regularization of RIF blind image deconvolution, IEEE Trans.
Image Process. 9(6) (2000) 1130—1134]. The problem of interest here is an inverse one, that cannot be solved by simple filtering since
itisill-posed. The imaging system is assumed to be linear and space-invariant: this allows a simplified relationship between unknown
and observed images, described by a point spread function modeling the distortion. The blurring, though, makes the restoration
ill-conditioned: regularization is therefore also needed, obtained by adding constraints to the formulation. The restoration is modeled
as a constrained minimization: particular attention is given here to the analysis of the objective function and on establishing whether
or not it is a convex function, whose minima can be located by classic optimization techniques and descent methods. Numerical
examples are applied to simulated data and to real data derived from various applications. Comparison with the behavior of methods
[D. Kundur, D. Hatzinakos, A novel blind deconvolution scheme for image restoration using recursive filtering, IEEE Trans. Signal
Process. 46(2) (1998) 375-390] and [M. Ng, R.J. Plemmons, S. Qiao, Regularization of RIF Blind Image Deconvolution, IEEE
Trans. Image Process. 9(6) (2000) 1130-1134] show the effectiveness of our variant.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Blind restoration is the process of estimating both the original image and the blur from the observed picture, using
partial information on the imaging system. Assuming linearity and space-invariance of the image formation system,
the distorted noise-free image can be expressed as the convolution of the true image with the blurring function. If the
blur is known, the Fourier Transform (FT) can be used to invert the degradation process and compute the deconvolution
that will yield the original image.
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The blind restoration method analyzed here aims to recover the image without the knowledge of the blur, using a
priori constraints and an inverse filter. The algorithm is called Non-negative, Support and PSF constrained Recursive
Inverse Filtering and represents a variation of the methods proposed in [9] (derived from the Master’s thesis [8]) and
[10]. A prototype software has been realized [12] to test our algorithm and the methods in [9,10] both on simulated
and real data.

This paper is organized as follows. In Section 2 the restoration problem is outlined and the difficulties that arise
in solving it are summarized. Section 3 contains a description of our algorithm, that will be denoted by the acronym
NSH-RIF. Convexity issues are considered in Section 4. After restoration, a Total Variation regularization (TV) tech-
nique can be used to sharpen the image, as recalled in Section 5. Related to the case of astronomic imaging, a procedure
to obtain an initial approximation for the unknown blurring function is given in Section 6. Section 7 collects numerical
examples that show the effectiveness of our algorithm.

2. Background

Let f(x) be the original image to be reconstructed. For simplicity, we consider first the one-dimensional (1D) case,
but all concepts can be extended to the two-dimensional (2D) case [4]. The observed image g(x) can be written as

50 = /R A x, £O0) A+ 5(x), (1)

where %((, x, f) is the point spread function (PSF), modeling the blur in a general nonlinear and space-dependent
imaging situation, and Jd(x) is the randomly distributed noise. If the image formation system is linear and space-
invariant—a condition that can be assumed to hold in most practical cases—(1) simplifies to

g(x)=(ho f)(x)+ o(x)
=g(x) +0(x), @)
where o denotes the convolution operator, /(x) is the PSF representing the linear and space invariant blur, and g(x) is
the blurred noise-free image.

In a discretized imaging problem, let a real n-dimensional vector { store the positive values (i.e., the pixel intensities)
of f(x), while } is a real vector whose 2m + 1 components represent the values of the unknown function % (x). The
discrete analog of the convolution operator (2) can be efficiently computed using FTs (see Definition 2.1). In order to
avoid overlapping in the direct and inverse transforms, it is necessary to extend both { and [ at least to the dimension
2m + n:

Om><n 0(m+1)><m Im+l
=1 L |, h=|0w-nxm Ou—)xm+n |D. 3)

Oan Im 0m><(m+l)

The integers n and m are, respectively, called the support of f and h, which now have dimensions 2m + n. The
discretization of g(x), g(x) and d(x) in (2) are represented by real vectors g, g and 4, all of dimension 2m + n.

Definition 2.1. The direct and inverse discrete Fourier transforms # and Z ~! are defined as

n
y=F ), vj = (n)—l/Z Z ukeZTci(k—l)(j—l)/n7
k=1

n
w=7"0). u=m)""? Z pje2mk=DG=D/n,
j=1

wherev = (vy,...,vj,..., vn)T andu = (ul,...,uk,...,u,,)T are complex vectors.

The discrete convolution g = h o f can be expressed as

g=2m+n7 YT () x Z (),
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Fig. 1. Example of noise amplification: (a) Function k; (b) Noise d; (c) Error}—f.

where the symbol x denotes the componentwise multiplication of two vectors. In matrix form
g=Hf=WDW~,

where H is the circulant matrix of the entries of &, D is the diagonal matrix of the direct FT of the first column of H,
while W is the symmetric matrix of the eigenvectors of H. It can be shown that the application of W to a vector w is
equivalent to computing Z ~! (w), while W' w yields 7 (w).

Given g and h, the original image f can then be recovered

f=Cm+n"27 Y (7 (@) ~ 7 h)), 4)

where the symbol = denotes the componentwise division of two vectors.

Unfortunately (4) cannot be easily exploited. Image restoration is a hard problem, belonging to the class of the
so called inverse problems, that may not have a (unique) solution or may possess a solution that is very sensitive to
perturbation of the input data [1,3]. Noise can prevent the existence of the solution, since it may modify the observed
image so that it can no longer be expressed as a convolution: noise undermines the relationship among f, g and A,
making an exact restoration impossible.

In practical situations d is not known and so we are forced to consider g instead of g in (4). By the linearity property
of the Fourier transform [4]

f=Cm+n)"27 W F @)~ F0)
=Cm+n)""PF N FGS+g) = Fh)

=Cm+n)"PF N F©O) + F ) +f,

where f € R is the image that has been restored from g.

If some of the entries of % (k) are much smaller in magnitude than the corresponding entries in % (J), then some
components of the error f — f can have very large magnitude, leading to noise amplification in the restored image.
Fig. 1 shows the amplified error that may occur, when applying the deconvolution described in Section 3 to the noise
component of a signal. Regularization [1,2] is used to control this amplification. Constraints are then imposed which
follow physical requirements, such as the observation that both image and PSF values should be positive, as well
as restrictions on the integer supports n and m. The fact that the PSF is band-limited is employed in a thresholding
procedure, by giving low weight or even ignoring those components of i from which noise amplification may stem.

The Conjugate Gradient iteration can be viewed as a restoration method, because low frequency image components
converge much faster than high frequency components.

The drawback in suppressing high frequency information lies in the consequent loss of image contrast and resolution.
A post-processing procedure, described in Section 5, is applied to improve the quality of the reconstructed data.
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3. Blind deconvolution algorithm

‘Blind’ deconvolution refers to recovering both the original image and the PSF from the observed image, trying to
avoid noise amplification. This is harder than the so-called classic deconvolution (in which h is known) and generally
requires the introduction of a priori information. Fundamental to our NSH-RIF algorithm is the knowledge of the
support of the true image; when the exact support is not known at the initial iteration, it is estimated from the observed
image and used as an input.

The algorithm seeks a solution that satisfies:

non-negative and image support constraints;
noise amplification constraints;

energy conservation constraints;

PSF support constraints.

By enforcing these constraints an inverse filter is computed, namely s € R2?*!, with 2p + 1<2m + n. The vector s is
called “inverse filter’ because its extension and rearrangement s € R*"*" can be interpreted as the inverse of the PSF
with respect to the convolution operator

s=Qm+n) "' 7 e+ F(h)), ®)
wheree = (1,1,..., 1)T € R¥"*" The integer p is called the support of s. Setting g = (2m + n) — 2p, the extension
from s to s is performed as follows:
0(p+1)><p Ip+l
def
s=7s, 7= Og-xp Og-Dxp+1) |- (6)
Ip 01!7X(p+1)

Given g and computed s, the estimated imagef can be expressed as a convolution and efficiently recovered
F=2m +nZ YF @) x Z(s)). @)

In further iterations, both PSF and image estimate are updated together.
To take into account all constraints, a non-negative cost function is constructed

Jo.u(®) = (o) + Wy, 1, (8) + 1y, (8) + 0y (9), (®)

where p = (1, Uy, Uz, ,u4)T collects four real non-negative parameters, that will be used to tune the constraints: they
are effectively regularization parameters.

The value of Jz ,,(s) measures the quality of the inverse filter s. Locating a small value of the cost function means
that the corresponding restored image satisfies the constraints and represents an acceptable approximation of the true
image, in a way that becomes more and more stringent with the decrease of Jg, M(s).

Each term in (8) will now be described.

3.1. Non-negative and image support constraint

The first term (,i)g (s) corresponds to non-negative and support constraints; these have been proposed in [9] and used
also in [10]. Let n be the estimated support of the restored image, that is to say that only the central n elements of
=1 foman)® may be non-zero; furthermore, they should not assume negative values since they represent the
intensity of the beams captured by the instruments. Given n and (2m 4+ n) in such a way that m is a positive integer, we
can define a square real matrix V of order (2m + n) as

0 ifk=jand m<k<(m+n) andfk>0,
V = (), vk,j={

1 otherwise,
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and define a vector of dimension 2m + n as
Zsupp = VF-
Recalling (6) and (7), the first term in the cost function depends on s and is given by
$3(5) = lIZsupp I3, ©)

which is a continuous, convex, but not everywhere differentiable function.

3.2. Noise amplification constraint

In Section 2 we saw that the small magnitude components of 7 (h) can lead to noise amplification. From (5) it
follows that

F ()= Cm +n)" (e = F (h)).

In order to penalize those elements of % (h) of small magnitude, we must penalize the elements of % (s) whose
magnitudes are larger than a given threshold p; >0. This can be accomplished by introducing the matrix

0 if k=j and [(F ()il <py,
W = (wy, ), wk,jz{ )
1 otherwise,
and constructing a (2m + n)-dimensional vector as
Zreg = WF (5).

Recalling (6), the second term in the cost function can be defined as

‘//,ul,uz(s) = ﬂz“zreg”%, (10)

where 1, > 0. The two real parameters u; and p, are estimated heuristically and used to adjust the control on the noise
amplification.

Constraints (10) has been proposed in [10] as convex ones but, as shown in Section 4, the function Lt (s) is
quasi-convex (see Definition 4.1) and has a number of discontinuities of the order of the size of s.

3.3. Energy conservation constraint

The term y m (s) forces the inverse filter to be conservative, that is to say the energy of the restored image must be
equal to the energy of the observed image. At the same time it avoids the trivial solution $ = 02, 1. To achieve these
goals, Luy (9) is defined as

2p+1

@ =m| Y s—1]. (11)

k=1

where the real parameter x5 >0 has to be estimated heuristically. The function y,, (s) is infinitely differentiable and
convex. A similar approach has been proposed in [9,10]. ‘

3.4. PSF support constraint
The last term @, (s) imposes constraints on the support of the extended PSF, which is estimated from (5) as follows:

h=0Cm+n)"'Z e~ F)).
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Only the first (m + 1) and the last m elements of £ may be non-zero. By constructing

0 ifk=jand m+1)<k<(m+n),
U= (uxj), ukrj= {

1 otherwise,

and building a vector with 2m + n components as
zpsF = Uh,
we can force the estimated & to converge to the desired form, during the minimization, by defining
Opy (8) = pallzse 13- (12)

The real parameter 11, >0 is used here to tune the PSF support constraint. The function w,, () is convex and continuous.

These PSF support constraints were introduced to try and force additional convexity to the cost function. Their
effectiveness in improving the convergence properties of our algorithm, when compared with the methods in [9,10], is
shown by the numerical experiments of Section 7.

4. Convexity analysis

Certain choices of the parameters p;, iy, iz and y, yield restoration methods that already have been discussed in
the literature. For instance, setting 1, = uy = 0 is equivalent to considering the NAS—RIF technique described in [9],
while choosing p4 = 0 yields the NSR-RIF method proposed in [10]. The conditions under which these methods are
globally convergent are related to the Hessian of the cost function being positive definite.

The use of the noise amplification constraint (10), employed by our method and NSR-RIF, may cause the cost
function Jz ,,(s) to be only locally convex. This can be seen by considering a simplified case in which the inverse filter
is a scalar s € R. In this case, Jz ,: R — R and also ¢y, ,,:R — R Aplotof y, , (5)for uy =2and y, = 1, is
given in Fig. 2: there exist two points of discontinuity and v s (s) is quasi-convex [6].

Definition 4.1. A function y: R > Ris quasi-convex if for all v, w € Rfandt € [0, 1]
Yty + (1 — )w) < max {y(v), y(w)} .

Now consider the case of s € R?, e R? — R*, with y; =3 and u, = 1. Fig. 3(a) shows a plot on the domain
[—6, 6] x [—6, 6]. For fixedv,w € RZands € [0, 1], the expression l//u ™ (tv+ (1 — t) w) represents the intersection
of the surface lp (5) with the plane containing the points (vy, va, 0T, (wy, wa, 0)T and parallel to the vertical axis,
as illustrated in F1g 3(b). The result of this operation is a piecewise convex (not quasi-convex) function, depicted in
Fig. 3(c). Depending on the choice of y; and pu,, therefore, ¥ 1.1, (8) may be a non-convex (not even quasi-convex)
function.

This behavior is inherited by the cost function Jg,1(5). We are then faced with a choice of which minimization
algorithm to employ. In this work a Conjugate Gradient (CG) iteration is used (see Section 4.1) and the solution is not
guaranteed to be a global minimum, but rather a local one.

15
12.5
10
7.5
5
2.5

-4 2 2 4

Fig. 2. Non-continuity and quasi-convexity of i/ uron (%).
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Fig. 3. Piecewise convexity of i/ :R? — RT with t; =3 and » = 1: (a) Plot of

INCE (b) Intersection with a plane; (c) Resulting curve.
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4.1. Minimization issues

The Polak—Ribiere CG iteration [11] is employed to compute the optimal inverse filter. At each iteration, the gradient
VJz u(8) of Jg ,,(s) with respect to s must be computed; from (8) it follows:

Vg u(®) =Vg(s) + Vih, 1 (8) + Vi, (8) + Vo, (s).
Letting

0m X (m—4n) Im )

P=(pr1 O2pt+iyx(g-1)), M= (
Im+n 0(m+n)><m

and recalling the matrix Z in (6), it can be shown that
Vg(s) =2v2m +nPF N F (M) x F (zsupp)).
Vlﬁ,ul,/,tz (8) =2, Re(zTg_l (Zreg)),

2p+1

Vo, () =213 Z si—1]e,
i=1

Vo, (s) = —2u,Cm + ) ZVF (7 L @zpsp) + (F(5) x F(5))).

One of the local minima of Jg ,(s) is taken as the inverse filter that provides the best approximation to f. In the
minimization procedure, at each step of CG we consider the restriction

. + _ 7
Jgpp R R Jg (@), = Jgpus +od),

where s,d € R*’*!; in particular, d represents a descent direction. Fig. 4 shows a case of piecewise convexity of
Jg, Ploa and thus of Jg ,,.

CG is able to find the global minimum of Jg ,,(s) only if J; ,, (%) is strictly convex, but we have seen that imposing
constraint (10), while controlling the noise, might prevent the convexity of the cost function.

Numerical results show, however, that the solution found is always acceptable. In practice we have observed that CG
is able to move rapidly toward the region of convexity, without getting too close to the points of discontinuity that might
occur along a descent direction, taking a step that allows jumping over such discontinuities. This ability is improved
by the additional convexity provided by the PSF support constraints (12).

The convergence characteristics of our algorithm are inherited by those of CG. The computational cost of each
iteration is of the order [ (2m + n) log(2m + n)] arithmetic floating point operations, where (2m + n) is the problem
dimension.
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Fig. 4. Example of piecewise convexity of the cost function.

5. Total variation regularization

TV regularization can be used to sharpen an image, increase its contrast and reduce some artifacts that may be due to
noise [1,10]. It can be applied, as a final step, to improve the quality of the restored image computed by our algorithm.

Once the unextended | € R" has been formed from the restored image f € R*"*", then the TV regularized image
r=01, .0, gy onn, rn)T is the solution to the following minimization problem:

—1
. 1 2 s 2
min | =[|f—r|5+ 7 e —r +10), 13
min (2||f 53 1;:1\/(1( k+1)" + 12 (13)

where 71 >0 and 12 >0 are real parameters; in particular, 7, is used to avoid division by zero when computing the
gradient of the function being minimized.

TV regularization can be a very effective tool to visually improve the image. Its drawback is the added computational
cost involved in solving the nonlinear minimization in (13).

6. Inverse filter estimation

To overcome the fact that the PSF is unknown, the identity operator (with respect to the convolution operator) may
be used to form an initial A.
In the 2D case, for example, the matrix s stores the values of an initial (2p, + 1) x (2p, + 1) null estimate for the
inverse filter, created by means of the Dirac delta function:
1 ifi=py+1and j=p,+1,
s=(sij), %ij= { ) (14)
0 otherwise.
In between classic and blind deconvolutions, there also exists the so-called myopic deconvolution, in which some
estimate of the PSF is available from a previous observation (see for example Section 6.1). Our algorithm can also be
viewed as a myopic deconvolution algorithm.

6.1. Astronomical imaging

The atmosphere of the Earth and the instruments of observation both constitute a source of distortion. It is not possible
to prepare a reference model, when trying to assess what kind of degradation is in the picture of a distant planet or
an object in space. In astronomy applications, though, it is often possible to make use of the a priori PSF information
given by a guide star (a bright isolated point source).

A guide star g, € R is a reference image, natural or artificially created, observed under atmospheric circum-
stances similar to those under which g was observed. The true image f;,, of the guide star is a white small point in a
black background and its total energy is assumed to be unity. As a consequence, the effect of f,, in the convolution
with the PSF can be assumed to be very close to that of the identity operator and thus g, ~ k. In other words, g,
can be used as an estimate of the initial PSF or, equivalently, to form an estimate of the initial inverse filter

s=Cm+n)"'F e=1), (15)



G. Spaletta, L. Caucci / Journal of Computational and Applied Mathematics 197 (2006) 29—-43 37

where A=A, ..., 24, ..., )L2m+n)T is defined as
_ (y(gstar))k if |(<97(gstar))k| =P, (16)
k= e=2mimk—=D/@m+n)  otherwise.

and the role of the real threshold p > 0 can be interpreted as follows.

The randomly distributed noise affecting g, may lead to a poor quality inverse filter estimate, yielding large relative
perturbations to those spectral components of /& that are small (in modulo). By employing .7 (g,,), a threshold p > 0
is computed, which corresponds to the value at which the Fourier coefficients stagnate, indicating that the noise starts
to dominate.

Only the least perturbed spectral components of g, are taken into account in estimating the initial inverse filter, while
its remaining components are set as in the case in which no guide star is available. In (16) the term ¢~ 27" Kk—1)/CGm+n)
represents the kth Fourier component of an initial estimate defined as in (14).

7. Numerical examples

A package BDrestoration, collecting the restoration routine together with auxiliary routines, has been originally
developed in the Release 4.1 of Mathematica [12] and recently extended to Version 5.1. A multiframe extension and
upgrade of the code to Version 5.1 is also under development [13].

All experiments are carried out on a Pentium III 800 MHz processor with 128 Mb of RAM, running Red Hat Linux
operating system release 9. Floating point double precision arithmetic is used to obtain approximatively 16 decimal
digits of precision.

7.1. Simulated data

Our algorithm is tested here on a blurred and noisy image, obtained from a synthetic 2D image that is first convolved
with a Gaussian PSF and then added with Poisson noise. The notation used is the same as for the 1D case, but now
variables denote matrices instead of vectors.

The discrete PSF is stored in a (2my + 1) x (2my + 1) matrix b:

e [k=1=my)+(j—1-m)*1/c

=0t ), b= .
h = (b, ;) Dk, j ZigH ig“e—[(a—l—my)2+(b—l—m.v)zl/c‘

a7)

Fig. 5(a) shows the PSF corresponding to values my, =m, =7, and ¢ = 10.

The original monochromatic image { has dimensions ny, X n,. Here we choose n, x n, =15 x 45, so that its extension
S, shown in Fig. 5(b), has dimensions (2my + ny) x (2my +ny) =29 x 59.

The image f is convolved with the PSF to obtain a blurred image.

Random noise 4 is then added to the convolution, in such a way as to ensure that the components of the simulated
observed g remain non-negative. The noise follows a Poisson statistical distribution, with mean £, and is scaled by 7.

Fig. 5. Simulated data: (a) PSF; (b) Original image.

(2)
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Fig. 6. First test on simulated data: (a) Observed g; (b) Restoredf; (c) Regularized r.
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Fig. 7. Behavior of the algorithm during the iterations (test on simulated data): (a) Cost function; (b) Relative variation; (c) Relative error.

A common way to measure noise is by the signal to noise ratio expressed in decibels (dB):

2my+ny 2my+n, 2
DI Dric Rl T
SNR & 2010g,, | =221 j=1 ok

. 1
2m,"+n," 2my+ny 52 ( 8)
k=1 2j=1 Ok

As the noise increases, the SNR decreases. Setting the noise parameters to the values f =5 and y = 1073 results in a
SNR of approximately 35 dB, which affects the g shown in Fig. 6(a).

An initial estimate of the support of the inverse filter is needed, to form the initial matrix s of dimensions (2p, +
1) x (2px + 1) and created as in (14). Here we choose p, = p, = 10.

We now apply the restoration algorithm to s and g. In this first test the exact image support ny X ny =15 x 45 is
employed. The regularization parameters are set to the values p; =5, uy =1 and 3 = py = 1/10. Fig. 6(b) shows the
restored image obtained after 50 iterations; the computational time is 69's.

As a final optional step, TV regularization can be applied to the restoration to obtain a sharper image: the TV
parameters are set to the values 71 = % and 73 = 1077, The time for this last step is 19 s. The final result is shown in
Fig. 6(c).

7.2. Implementation details

A ‘log’ information file is available that is useful to analyze the behavior of the algorithm throughout the iterations
(see Fig. 7). Our algorithm returns:

e the value of the cost function Jz ,,(s) at each iteration;
o the relative variation between the values of J; ,(s) at two consecutive iterations;
e the relative error between restored and true image, which is available here as we are considering simulated data.

The stopping criterion is based on a maximum number of iterations and on default tolerances on both the value of
Jg,1u(5) and its relative variance. Default values are 100 iterations and tolerances of 107, but they can be set by
the user.

7.3. Comparison with NAS—RIF and NSR-RIF

In this section we summarize the results of comparing our algorithm with two other methods, namely NAS—RIF [9]
and NSR-RIF [10], that are well known in the field of blind deconvolution and from which our method stems.
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Table 1
Error and timing results on the simulated data, for fixed SN R = 35 and varying values of p

I NAS err NSR err NSH err NAS time NSR time NSH time
(1750, 1, 1/10, 1/10) 0.133914 0.136902 0.119281 48.29 67.59 92.94
(5, 1, 1710, 1/10) 0.133914 0.133914 0.116076 48.46 57.07 75.57
(372, 120, 1/20, 1/20) 0.133783 0.133783 0.114359 47.89 57.30 71.05
(5, 1715, 1, 1) 0.156673 0.156673 0.129859 44.00 52.19 74.32
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Fig. 8. Work per unit time needed by methods NAS—RIF (split line), NSR-RIF (continuous line) and NSH-RIF (dotted line) to reach an acceptable
approximation to a minimum: (a) Fixed SNR, varying p; (b) Fixed pt, varying SNR.

Table 2

Error and timing results on simulated data, for fixed u = (1/50, 1, 1/10, 1/10)T and varying SNR

SNR NAS err NSR err NSH err NAS time NSR time NSH time
46 0.129514 0.153257 0.126122 47.96 65.14 83.38

37 0.135149 0.140971 0.115590 46.58 77.65 94.76

35 0.133914 0.136902 0.119281 48.46 67.59 92.94

25 0.174132 0.174021 0.173740 45.86 95.90 90.79

22 0.168675 0.168381 0.166636 47.62 99.70 102.11

16 0.204495 0.204845 0.201857 45.60 107.90 132.03

The problem setting is that described in Section 7.1, related to the simulated data. For the fixed value 35dB of the
SNR, we examine the behavior of the three methods of interest, varying the regularization parameters as shown in
Table 1.

While performing in a way similar to that of NAS—RIF and NSR—-RIF, with respect to the quality and locality of
convergence, our algorithm is almost always able to reach a smaller error value. The price to pay for this improvement
is the higher computational cost. By measuring the work per unit time that is necessary to reach an acceptable approx-
imation to a minimum, though, we can show that this cost is lowest for our method. The behavior shown in Fig. 8(a)
is computed for the results of Table 1, but it holds for all the numerical tests performed.

We now carry out another comparative experiment. The problem setting is, again, that of the simulated data in Section
7.1; here, though, we fix a quadruple of regularization parameters and study the behavior of the three restoration methods
of interest, as the SNR varies.

Let = (1, 4y, U3, ,u4)T = (1/50,1,1/10, 1/10)T and let the SNR assume different values corresponding to
different levels of noise affecting the observed image. Table 2 confirms that our method reaches a smaller error value
than NAS—-RIF and NSR-RIF, but it requires a higher computational time. As before, the work per unit time is lowest
for our method. The behavior shown in Fig. 8(b) is computed with the results of Table 2, but it holds for all the numerical
tests performed.

Perhaps more interesting is to observe the convergence quality of the three methods. As the SNR decreases in
Table 2, the problem solved by the three restoration methods has increasing complexity and worsening conditioning.
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Fig. 9. Error behavior on the simulated data, with SNR =37 and p = (%, 1, %, %)T: (a) NAS—-RIF; (b) NSR-RIF; (c) NSH-RIF.

Fig. 10. Images of Jupiter: (a) Observed image; (b) Support estimation; (c) Restored image.

This situation does not affect the time taken by NAS—RIF to compute a solution. We recall that for this method the
conditions for the convexity of the cost function are satisfied.

The comparison, here, is therefore mostly between NSR—RIF and our method, since both of them do not satisfy the
convexity conditions. By introducing the constraints (12) on the PSF support, our algorithm adds further convexity
to the cost function and in this way improves the convergence of the CG iteration. Fig. 9 illustrates how the better
convexity features of our algorithm, over those of NSR—RIF, can help in avoiding discontinuities.

The quality of convergence remains obviously local, but the extra constraint allows our method to generally reach a
somewhat smaller error than NAS—RIF and NSR-RIF, as illustrated by the error results in Tables 1 and 2.

7.4. Real astronomical data

As a more realistic example, we consider a real life image of Jupiter in Fig. 10(a): this 512 x 512 image is stored in
the matrix g. The support values n, =430 and n, = 428 of the desired original image are chosen heuristically, with
the visual aid obtained by plotting a dashed white rectangle (the estimated support region) around g, as illustrated in
Fig. 10(b).

An estimate of the rectangular support of s is used (px = py = 17) to define the initial inverse filter as in (14). The
minimization parameters are p; = 10, u, =5, u3 = 10 and u, = 1. The restored image after three iterations is shown
in Fig. 10(c); the time taken is 537 s.

7.5. Guide star

The aim of this experiment is to test the effectiveness of the restoration when an inverse filter estimate is available
by means of a guide star, as described in Section 6.1. In this case a PSF is available in the form of a real life data image;
it has dimensions 255 x 255, that are also the dimensions of all the images occurring in this example.

The reference image for the guide star is rendered as a white point in a black background; its observed image is
simulated by the convolution with the given PSF and by the addition of approximately 25 dB of noise (following a
Poisson distribution, with parameter = 5, and scaled by y = 107%/5). This observed image of the guide star is used
to form an initial estimate for the inverse filter, using (15) and (16).
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Fig. 12. Brain MRI image: (a) Original image; (b) Observed image; (c) Support estimate.

The reference image for the satellite is a real life data image, shown in Fig. 11(a). Its observed image is simulated
by the convolution with the given PSF and by the addition of approximately 25 dB of noise (following a Poisson
distribution, with parameter =4, and scaled by y=1073). The result is shown in Fig. 11(b). The estimated rectangular
support 137 x 111 of the image is given as input. The minimization parameters are p; = %, Uy =120, py = 21—0 and

Uy = %. The restored image after five iterations is shown in Fig. 11(c); the time taken is 250s.

7.6. Medical data

Magnetic resonance imaging (MRI) is an imaging technique used to produce high quality images of the inside of
the human body; it allows the imaging of soft tissue and the metabolic processes therein, providing both morphologic
and functional information on the body (in particular, the brain) [5,7]. MRI stems from the application of nuclear
magnetic resonance (NMR) to radiological imaging: it is based on the principles of NMR, a spectroscopic technique
used by scientists to obtain microscopic chemical and physical information about molecules. In MRI images the PSF
is unknown.

We simulate a real situation, applying our algorithm to the blurred and noisy image g of dimensions 100 x 83,
depicted in Fig. 12(b); the original image is a gray-scale image of a human brain, as shown in Fig. 12(a).

The blur is simulated via a PSF defined as in (17) with m, = m, =7, ¢ = 25. The Poisson noise has parameter
=20 and is scaled by y = %, approximatively yielding an SNR of 33 dB. The support ny, x n, =80 x 70 is visually
estimated from the degraded image and shown in Fig. 12(c).

The restoration algorithm is started on the degraded image: the vector p of the regularization parameters is set to
(1, 11—0, 10, 1)T and use, as estimated inverse filter, a 15 x 15 matrix created by means of the Dirac delta function: the
elements of this matrix are 1 in position (7, 7) and O elsewhere. The image obtained after six iteration, together with
its TV regularization, is shown in Fig. 13.

Fig. 14 shows that few iterations are sufficient to obtain a reconstruction that is acceptable in the presence of high
noise. The behavior shown in Fig. 14 occurs quite often in real applications and in high dimension problems. Early
truncation of the restoring procedure, in fact, can be used as an additional regularization method.
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Fig. 13. Results of the restoration of the brain MRI image: (a) Sixth iteration; (b) TV regularization.
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Fig. 14. Behavior of the algorithm during the iterations on MRI data: (a) Cost function; (b) Relative variation; (c) Relative error.

8. Conclusions

The NSH-RIF blind deconvolution algorithm is outlined. A prototype for the restoration of images is implemented
in Mathematica [14], with which it is possible to construct simulated data for numerical testing as well as processing
real data images.

Numerical experiments show the effectiveness of the algorithm in returning good quality images. Images can have
high dimensions, leading to a large number of unknowns, given for example by the color of the pixels. The computing
time required by the NSH-RIF procedure obviously depends on the dimensions of the target image, but are always
acceptable, being of the order of a few minutes in the case of real images.

A comparison with two other methods, namely NAS—RIF [9] and NSR-RIF [10], has been given. While performing
in a way similar to that of the two methods mentioned, our algorithm is generally almost always able to reach a smaller
error. By introducing a constraint on the PSF support, our algorithm adds further convexity to the cost function and in
this way improves the convergence.

Sometimes k > 1 different images {g'V, .. ., 2%} of the same object f, subject to different noises (60, ..., 60,
are available. In such a case a multiframe extension of the NSH-RIF should be considered and is currently under
development [13]. Preliminary tests indicate that this approach is effective when the noise is high, since it prevents
noise amplification.

The use of a globally convergent procedure for the minimization of the cost function will also be evaluated in the
future: the effectiveness of quasi-Newton methods for this kind of optimization problem is under investigation.
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