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Abstract

Let (Ut , Vt ) be a bivariate Lévy process, where Vt is a subordinator and Ut is a Lévy process formed by
randomly weighting each jump of Vt by an independent random variable X t having cdf F . We investigate
the asymptotic distribution of the self-normalized Lévy process Ut/Vt at 0 and at ∞. We show that all
subsequential limits of this ratio at 0 (∞) are continuous for any nondegenerate F with finite expectation
if and only if Vt belongs to the centered Feller class at 0 (∞). We also characterize when Ut/Vt has a
non-degenerate limit distribution at 0 and ∞.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction and statements of two main results

We begin by defining the bivariate Lévy process (Ut , Vt ) , t ≥ 0, that will be the object of our
study. Let F be a cumulative distribution function [cdf] satisfying

∞

−∞

|x | F (dx) < ∞ (1)
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and Λ be a Lévy measure on R with support in (0,∞) such that 1

0
yΛ(dy) < ∞. (2)

We define the Lévy function Λ (x) = Λ (x,∞) for x ≥ 0. Using Corollary 15.8 on page 291
of Kallenberg [10] and assumptions (1) and (2), we can define via F and Λ the bivariate Lévy
process (Ut , Vt ) , t ≥ 0, having the joint characteristic function

E exp (iθ1Ut + iθ2Vt ) =: φ (t, θ1, θ2)

= exp


t

(0,∞)


∞

−∞


ei(θ1u+θ2v) − 1


Π (du, dv)


, (3)

with

Π (du, dv) = F (du/v)Λ (dv) . (4)

From the form of φ (t, θ1, θ2) it is clear that Vt is a driftless subordinator.

Throughout this paper (Ut , Vt ), t ≥ 0, denotes a Lévy process satisfying (1) and (2) and
having joint characteristic function (3).

Now let {Xs}s≥0 be a class of i.i.d. F random variables independent of the Vt process. We
shall soon see that for each t ≥ 0 the bivariate process

(Ut , Vt )
D
=

 
0≤s≤t

Xs1Vs,


0≤s≤t

1Vs


, (5)

where 1Vs = Vs − Vs−. Notice that in the representation (5) each jump of Vt is weighted by an
independent X t so that Ut can be viewed as a randomly weighted Lévy process.

Here is a graphic way to picture this bivariate process. Consider 1Vs as the intensity of a
random shock to a system at time s > 0 and Xs1Vs as the cost of repairing the damage that
it causes. Then Vt , Ut and Ut/Vt represent, respectively, up to time t , the total intensity of the
shocks, the total cost of repair and the average cost of repair with respect to shock intensity.
For instance, 1Vs can represent a measure of the intensity of a tornado that comes down in a
Midwestern American state at time s during tornado season and Xs the cost of the repair of the
damage per intensity that it causes. Note that Xs is a random variable that depends on where the
tornado hits the ground, say a large city, a medium size town, a village, an open field, etc. It is
assumed that a tornado is equally likely to strike anywhere in the state.

We shall be studying the asymptotic distributional behavior of the randomly weighted self-
normalized Lévy process Ut/Vt near 0 and infinity. Note that Λ(0+) = ∞ implies that Vt > 0
a.s. for any t > 0. Whereas if Λ(0+) < ∞, then, with probability 1, Vt = 0 for all t close enough
to zero. For such t > 0, Ut/Vt = 0/0 := 0. Therefore to avoid this triviality, when we consider
the asymptotic behavior of Ut/Vt near 0 we shall always assume that Λ(0+) = ∞.

Our study is motivated by the following results for weighted sums. Let {Y, Yi : i ≥ 1} denote
a sequence of i.i.d. random variables, where Y is non-negative and nondegenerate with cdf G.
Now let {X, X i : i ≥ 1} be a sequence of i.i.d. random variables, independent of {Y, Yi : i ≥ 1}.
Assume that X has cdf F and is in the class X of nondegenerate random variables X satisfying
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E |X | < ∞. Consider the self-normalized sums

T (n) =

n
i=1

X i Yi

n
i=1

Yi

.

We define 0/0 := 0. Theorem 4 of Breiman [5] says that T (n) converges in distribution along the
full sequence {n} for every X ∈ X with at least one limit law being nondegenerate if and only
if Y ∈ D(β), with 0 ≤ β < 1, which means that for some function L slowly varying at infinity,
P {Y > y} = y−βL(y), y > 0. In the case 0 < β < 1 this is equivalent to Y ≥ 0 being in the
domain of attraction of a positive stable law of index β. Breiman [5] has shown in his Theorem
3 that in this case the limit has a distribution related to the arcsine law. At the end of his paper
Breiman conjectured that T (n) converges in distribution to a nondegenerate law for some X ∈ X
if and only if Y ∈ D(β), with 0 ≤ β < 1. Mason and Zinn [16] partially verified his conjecture.
They established the following.

Whenever X is nondegenerate and satisfies E |X |
p < ∞ for some p > 2, then T (n) converges

in distribution to a nondegenerate random variable if and only if Y ∈ D(β), 0 ≤ β < 1.
Recently, Kevei and Mason [11] investigated the subsequential limits of T (n). To state their

main result we need some definitions. A random variable Y (not necessarily non-negative) is said
to be in the Feller class if there exist sequences of centering and norming constants {an}n≥1 and
{bn}n≥1 such that if Y1, Y2, . . . are i.i.d. Y then for every subsequence of {n} there exists a further
subsequence {n′

} such that

1
bn′


n′

i=1

Yi − an′


D

−→ W, as n′
→ ∞,

where W is a nondegenerate random variable. We shall denote this by Y ∈ F . Furthermore, Y is
in the centered Feller class, if Y is in the Feller class and one can choose an = 0, for all n ≥ 1.
We shall denote this as Y ∈ Fc. The main theorem in [11] connects Y ∈ Fc with the continuity
of all of the subsequential limit laws of T (n). It says that all of the subsequential distributional
limits of T (n) are continuous for any X in the class X , if and only if Y ∈ Fc.

The notions of Feller class and centered Feller class carry over to Lévy processes. In particular,
a Lévy process Yt is said to be in the Feller class at infinity if there exist a norming function B (t)
and a centering function A (t) such that for each sequence tk → ∞ there exists a subsequence
t ′k → ∞ such that

Yt ′k
− A(t ′k)


/B(t ′k)

D
−→ W, as k → ∞,

where W is a nondegenerate random variable. The Lévy process Yt belongs to the centered Feller
class at infinity if it is in the Feller class at infinity and the centering function A (t) can be chosen
to be identically zero. For the definitions of Feller class at zero and centered Feller class at zero
replace tk → ∞ and t ′k → ∞, by tk ↘ 0 and t ′k ↘ 0, respectively. See Maller and Mason
[13,14] for more details.

In this paper, we consider the continuous time analog of the results described above, i.e. we
investigate the asymptotic properties of the self-normalized Lévy process

Tt = Ut/Vt , (6)
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as t ↘ 0 or t → ∞. The expression continuous time analog is justified by Remark 2 in [11],
where it is pointed out that under appropriate regularity conditions, norming sequence {bn}n≥1
and subsequences


n′

,


1≤i≤n′t

X i Yi

bn′

,


1≤i≤n′t

Yi

bn′

 D
−→(a1t + Ut , a2t + Vt ), as n′

→ ∞. (7)

In light of (7) the results that we obtain in the case t → ∞ are perhaps not too surprising
given those just described for weighted sums. However, we find our results in the case t ↘ 0
unexpected.

Our main goal is to establish the following two theorems about the asymptotic distributional
behavior of Ut/Vt . In the process we shall uncover a lot of information about its subsequential
limit laws. First, assuming that E |X |

p < ∞, for some p > 2, we obtain a partial solution to the
continuous time version of the Breiman conjecture, i.e. the continuous time version of the result
of Mason and Zinn [16].

Theorem 1. Assume that X is nondegenerate and for some p > 2, E |X |
p < ∞. Also assume

that Λ satisfies (2) and, in the case t ↘ 0, that Λ (0+) = ∞. The following are necessary and
sufficient conditions for Ut/Vt to converge in distribution as t ↘ 0 (as t → ∞) to a random
variable T , in which case it must happen that (E X)2 ≤ ET 2

≤ E X2.

(i) Ut/Vt
D
→ T and (E X)2 < ET 2 < E X2 if and only if Λ is regularly varying at zero

(infinity) with index −β ∈ (−1, 0), in which case the random variable T has cumulative
distribution function

P {T ≤ x} =
1
2

+
1
πβ

arctan


|u − x |
βsgn(x − u)F(du)

|u − x |βF(du)
tan

πβ

2


,

x ∈ (−∞,∞) ; (8)

(ii)Ut/Vt
D
→ T and ET 2

= E X2 if and only if Λ is slowly varying at zero (infinity), in which

case T
D
= X;

(iii)Ut/Vt
D
→ T and ET 2

= (E X)2 if and only if Λ is regularly varying at zero (infinity) with
index −1, in which case T = E X.

Remark 1. The assumption that E |X |
p < ∞ for some p > 2 is only used in the proof of

necessity in Theorem 1. For the sufficiency parts of the theorem we only need to assume that
X is nondegenerate and E |X | < ∞. In line with the Breiman [5] conjecture we suspect that

Ut/Vt
D
→ T , as t ↘ 0 (as t → ∞), where T is nondegenerate only if Λ satisfies the conclusion

of part (i) or (ii), and in the case that T is degenerate only if Λ satisfies the conclusion of (iii).

Remark 2. A special case of Theorem 1 shows that if Wt , t > 0, is standard Brownian
motion, Vt = inf {s ≥ 0 : Ws > t} and each X t in (5) is a zero/one random variable with
P{X t = 1} = 1/2, then Ut/Vt converges in distribution to the arcsine law as t ↘ 0 or t → ∞.
This is a consequence of the fact that Vt is a stable process of index 1/2, since in this case we
can set β = 1/2 and let F be the cdf of X in (8), which yields after a little calculation that T has

the arcsine density gT (t) = π−1 (t (1 − t))−1/2 for 0 < t < 1. Moreover, Ut/Vt
D
= U1/V1, for

all t > 0, which can be seen by using the self-similar property of the 1/2-stable process.
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Remark 3. Theorem 1 has an interesting connection to some results of Barlow et al. [3] and
Watanabe [22]. Suppose Vt is a strictly stable process of index 0 < β < 1 and each X t in (5)
is a zero/one random variable with P{X t = 1} = p, with 0 < p < 1. Then Theorem 1 implies
that Ut/Vt converges in distribution as t ↘ 0 or t → ∞ to a random variable Yβ,p with density
defined for 0 < x < 1, by

gYβ,p (x) =
sin (πβ)
π

p (1 − p) xβ−1 (1 − x)β−1

p2 (1 − x)2β + (1 − p)2 x2β + 2p (1 − p) xβ (1 − x)β cos (πβ)
.

Furthermore, since Vt is self-similar, one sees that Ut/Vt
D
= U1/V1, for all t > 0. Barlow et al.

[3] and Watanabe [22] show that gYβ,p is the density of the random variable

p1/βV1/


p1/βV1 + (1 − p)1/β V ′

1


,

where V1
D
= V ′

1 with V1 and V ′

1 independent. Moreover, Theorem 2 of Watanabe [22] says that if
At is the occupation time of Zs , a p-skewed Bessel process of dimension 2 − 2β, defined as

At =

 t

0
1 {Zs ≥ 0} ds,

then for all t > 0, At/t has a distribution with density gYβ,p . We point out that two additional
representations can be given for Yβ,p using Propositions 1 and 2 in the next section. For more
about the distribution of Yβ,p as well as that of closely related random variables refer to James [9].

Remark 4. Let Vt be a subordinator and for each x ≥ 0 let T (x) denote inf {t ≥ 0 : Vt > x}.
Theorem 1 is analogous to Theorem 6, Chapter 3, of Bertoin [1], which says that x−1VT (x)−
converges in distribution as x ↘ 0, (as x → ∞) if and only if Vt satisfies the necessary
assumptions of Theorem 1 for some −β ∈ [−1, 0] . The β = 0 case corresponds to Λ being
slowly varying at zero (infinity). When −β ∈ (−1, 0), the limiting distribution is the generalized
arcsine law.

Our most significant result about subsequential laws of Ut/Vt is the following. Note that in
contrast to Theorem 1 we only assume finite expectation of X .

Theorem 2. Assume that (Ut , Vt ), t ≥ 0, satisfies (1) and (2) and has joint characteristic
function (3). All subsequential distributional limits of Ut/Vt , as t ↘ 0, (as t → ∞) are
continuous for any cdf F in the class X , if and only if Vt is in the centered Feller class at 0
(∞).

Remark 5. The proof of Theorem 2 shows that if F is in the class X and Vt is in the centered
Feller class at 0 (∞), all of the subsequential limit laws of Ut/Vt , as t ↘ 0, (as t → ∞) are not
only continuous, but also have Lebesgue densities on R.

The rest of the paper is organized as follows. Section 2 contains two representations of the
2-dimensional Lévy process (Ut , Vt ). The first one plays a crucial role in the proof of Theorem 1,
while the second one points out the connection between the continuous and discrete time versions
of Vt . We provide a fairly exhaustive list of properties of the subsequential limit laws of (Ut , Vt )

in Section 3, and we prove our main results in Section 4. Appendix contains some technical
results needed in the proofs.
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2. Preliminaries

2.1. Representations for (Ut , Vt )

Let (Ut , Vt ) , t ≥ 0, be a Lévy process satisfying (1) and (2) with joint characteristic function
(3). We establish two representations for the bivariate Lévy process.

Let ϖ1,ϖ2, . . . be a sequence of i.i.d. exponential random variables with mean 1, and for
each integer i ≥ 1 set Si =

i
j=1ϖ j . Independent of ϖ1,ϖ2, . . . let X1, X2, . . . be a sequence

of i.i.d. random variables with cdf F , which by (1) satisfies E |X1| < ∞. Consider the Poisson
process N (t) on [0,∞) with rate 1,

N (t) =

∞
j=1

1{S j ≤t}, t ≥ 0. (9)

Define for s > 0,

ϕ (s) = sup


y : Λ(y) > s

, (10)

where the supremum of the empty set is taken as 0. It is easy to check that (2) and Lemma 1
below imply that for all δ > 0,

∞

δ

ϕ (s) ds < ∞. (11)

We have the following distributional representation of (Ut , Vt ).

Proposition 1. For each fixed t > 0,

(Ut , Vt )
D
=


∞

i=1

X iϕ


Si

t


,

∞
i=1

ϕ


Si

t


. (12)

It is important to note that this representation only holds for fixed t > 0 and not for the process
in t . As a first consequence of this representation we obtain that E |Ut |/Vt ≤ E |X | < ∞, in
particular, by Markov’s inequality, Ut/Vt is stochastically bounded.

Now let {Xs}s≥0 be a class of i.i.d. F random variables. Consider for each t ≥ 0 the process 
0≤s≤t

Xs1Vs,


0≤s≤t

1Vs


,

where1Vs = Vs−Vs−. The following representation reveals the analogy between the continuous
and the discrete time self-normalization.

Proposition 2. For each fixed t ≥ 0,

(Ut , Vt )
D
=

 
0≤s≤t

Xs1Vs,


0≤s≤t

1Vs


. (13)

Remark 6. Notice that the process on the right hand side of (13) is a stationary independent
increment process. Since it has the same characteristic function as (Ut , Vt ), the distributional
representation in (13) holds as a process in t ≥ 0.
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2.2. Proofs of Propositions 1 and 2

In the proofs of Propositions 1 and 2 we shall assume that Λ ((0,∞)) = ∞. The case
Λ ((0,∞)) < ∞ follows by the same methods.

First we state a useful lemma giving a well-known change of variables formula (see Revuz
and Yor [19], Proposition 4.9, p. 8, or Brémaud [6], p. 301), where the integrals are understood
to be Riemann–Stieltjes integrals.

Lemma 1. Let h be a measurable function defined on (a, b], 0 < a < b < ∞, and R a measure
on (0,∞) such that

R(x) := R{(x,∞)}, x > 0,

is right continuous and R (∞) = 0. Assume that


∞

0 |h (x)| R (dx) < ∞, and define for s > 0

ϕ (s) = sup


y : R (y) > s

,

where the supremum of the empty set is defined to be 0. Then we have
∞

0
h (x) R (dx) =


∞

0
h (ϕ (s)) ds. (14)

Proof of Proposition 1. We only consider the process on [0, 1].
Applying the Lévy–Itô integral representation of a Lévy process to our case we have that

a.s. for each t ≥ 0

(Ut , Vt ) =


R2\{0}

(u, v)N ([0, t], du, dv), (15)

where N is a Poisson point process on (0, 1) × R × [0,∞), with intensity measure Leb × Π ,
where Π is the Lévy measure as in (4).

For the Poisson point process we have the representation

N =

∞
i=1

δ(Ui ,X iϕ(Si ),ϕ(Si )), (16)

where {Ui } are i.i.d. Uniform(0, 1) random variables, independent of {X i } and {ϖi }. (At this step
we consider the Lévy process on [0, 1].) To see this, let

M =

∞
i=1

δ(Ui ,X i ,Si ),

which is a marked Poisson point process on [0, 1] × R × (0,∞), with intensity measure
ν = Leb × F × Leb. Put h(u, x, s) = (u, xϕ(s), ϕ(s)). Then ν ◦ h−1

= Leb × Π . Thus
Proposition 2.1 in Rosiński [20] implies that the sequences {Ui }, {X i }, {Si } can be defined on the
same space as N such that (16) holds.

Using (16) for N , from (15) we obtain that a.s. for each t ∈ [0, 1]

(Ut , Vt ) =

∞
i=1

(X iϕ(Si ), ϕ(Si )) 1{Ui ≤t}. (17)
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To finish the proof note that if


∞

i=1 δxi is a Poisson point process and independently {βi } is
an i.i.d. Bernoulli(t) sequence, then

∞
i=1

δxi 1{βi =1}

D
=

∞
i=1

δxi /t ,

i.e. for a Poisson point process independent Bernoulli thinning and scaling are distributionally
the same.

Since the process representation (17) can be extended to any finite interval [0, T ] (see the final
remark in [20]), this completes the proof. �

We point out that Proposition 1 can also be proved by the same way as Proposition 5.1 in
Maller and Mason [12].

Next we turn to the proof of the second representation.

Proof of Proposition 2. Let {Nn}n≥1 be a sequence of independent Poisson processes on [0,∞)

with rate 1. Independent of {Nn}n≥1 let

ξi,n


i≥1,n≥1 be an array of independent random variables
such that for each i ≥ 1, n ≥ 1, ξi,n has distribution Pi,n defined for each Borel subset of A of R
by

Pi,n (A) = P

ξi,n ∈ A


= Λ


A ∩


an, an−1


/µn,

where an is a strictly decreasing sequence of positive numbers converging to zero such that
a0 = ∞ and for all n ≥ 1, 0 < µn = Λ


an, an−1


< ∞.

The process Vt , t ≥ 0, has the representation as the Poisson point process

Vt =

∞
n=1


i≤Nn(tµn)

ξi,n =:

∞
n=1

V (n)
t .

See Bertoin [1], page 16. In this representation

V (n)
t =


0≤s≤t

1Vs1{an≤1Vs<an−1}

and

1Vs1{an≤1Vs<an−1} =


i≤Nn(sµn)

ξi,n −


i≤Nn(sµn−)

ξi,n .

Moreover if 1Vs > 0 there exists a unique pair (i, n) such that 1Vs = ξi,n . Clearly 
0≤s≤t

Xs1Vs1{an≤1Vs<an−1},


0≤s≤t

1Vs1{an≤1Vs<an−1}


D
=

 
i≤Nn(tµn)

X i,n ξi,n,


i≤Nn(tµn)

ξi,n


=:


U (n)

t , V (n)
t


, (18)

where {X i,n}i≥1,n≥1 is an array of i.i.d. random variables with common distribution function F .

Notice that the process


U (n)
t , V (n)

t


in (18) is a compound Poisson process. Keeping this in

mind, we see after a little calculation that

E exp


i

θ1U (n)

t + θ2V (n)
t
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= exp


t


[an ,an−1)


∞

−∞


ei(θ1u+θ2v) − 1


F (du/v)Λ (dv)


.

Since the random variables


U (n)
t , V (n)

t


n≥1

are independent we readily conclude that (3)

holds. �

3. Additional asymptotic distribution results along subsequences

Let id(a, b, ν) denote an infinitely divisible distribution on Rd with characteristic exponent

iu′b −
1
2

u′au +

 
eiu′x

− 1 − iu′x1{|x |≤1}


ν(dx),

where b ∈ Rd , a ∈ Rd×d is a positive semidefinite matrix, ν is a Lévy measure on Rd and u′

stands for the transpose of u. In our case d is 1 or 2. For any h > 0 put

ah
= a +


|x |≤h

xx ′ν(dx) and bh
= b −


h<|x |≤1

xν(dx).

When d = 1, id(b,Λ), with Lévy measure Λ on (0,∞), such that (2) holds, and b ≥ 0,
denotes a non-negative infinitely divisible distribution with Laplace transform

exp


−θb −


∞

0


1 − e−θuΛ (du)


.

In this section it will be convenient to use the following representation for the joint characteristic
function of the Lévy process (Ut , Vt ), t ≥ 0, satisfying (1) and (2) and having joint characteristic
function (3):

φ (t, θ1, θ2) = exp (it (θ1b1 + θ2b2))

× exp


t

(0,∞)


∞

−∞


ei(θ1u+θ2v) − 1 − (iθ1u + iθ2v) 1{u2+v2≤1}


Π (du, dv)


, (19)

where Π (du, dv) is as in (4) and

b =


b1
b2


=




0<u2+v2≤1
uΠ (du, dv)

0<u2+v2≤1
vΠ (du, dv)

 . (20)

Note that assumptions (1) and (2) ensure that (20) is well defined.
First we investigate the possible subsequential distributional limits of (Ut , Vt ). The following

theorem is an analog of Theorem 1 in [11].

Theorem 3. Consider the bivariate Lévy process (Ut , Vt ) , t ≥ 0, satisfying (1) and (2) with joint
characteristic function (19). Assume that for some deterministic sequences tk ↘ 0 (tk → ∞)
and Bk the distributional convergence

Vtk

Bk

D
−→ V (21)
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holds, where V has id(b,Λ0) distribution with Lévy measure Λ0 on (0,∞). Then
Utk

Bk
,

Vtk

Bk


D

−→(U, V ), (22)

where (U, V ) has id(0, c,Π0) distribution with Lévy measure Π0 (du, dv) = F (du/v)Λ0 (dv)
on R × (0,∞) and

c =


c1
c2


=

bE X +


0<u2+v2≤1

uΠ0 (du, dv)

b +


0<u2+v2≤1

vΠ0 (du, dv)

 , (23)

i.e. it has characteristic function

Ψ(θ1, θ2) = Eei(θ1U+θ2V )
= exp


i(θ1c1 + θ2c2)

+


∞

0


∞

−∞


ei(θ1u+θ2v) − 1 − (iθ1u + iθ2v) 1{u2+v2≤1}


F (du/v)Λ0 (dv)


. (24)

Theorem 3 has some immediate consequences concerning the subsequential limits of (Ut , Vt ).
The first part of the following corollary is deduced from Theorem 3 and classical theory,
i.e. Theorem 15.14 in [10]. The second part follows by Fourier inversion.

Corollary 1. Let (Ut , Vt ), t ≥ 0, be as in Theorem 3. For deterministic constants tk, Bk the
vector B−1

k (Utk , Vtk ) converges in distribution to (U, V ) as tk ↘ 0 (as tk → ∞) having
characteristic function (24) if, and only if tkΛ(vBk) → Λ0(v) for every continuity point of
Λ0, and

 h
0 xtkΛ(dBk x) →

 h
0 xΛ0(dx) + b for some continuity point h of Λ0. Moreover, if

Λ(0+) = ∞, or b > 0 then V > 0 a.s., and so Utk/Vtk
D

−→ U/V , and with Ψ as in (24) for all
x

P {U/V ≤ x} =
1
2

−
1

2π i


∞

−∞

Ψ(u,−ux)

u
du.

The remaining results in this section, though interesting in their own right, are crucial for the
proof of Theorem 2.

The following proposition provides a sufficient condition for (U, V ) to have a C∞ 2-
dimensional density. It also gives an alternative proof for Theorem 3 in [11]. We require the
following notation: put for v > 0,

V2 (v) =


0<u≤v

u2Λ(du). (25)

Proposition 3. Assume that (U, V ) has joint characteristic function

Eei(θ1U+θ2V )
= exp


(0,∞)


R


ei(θ1u+θ2v) − 1


F


du

v


Λ(dv)


,
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where
 1

0 vΛ(dv) < ∞ and F is in the class X . Whenever

lim sup
v↘0

v2Λ (v)
V2 (v)

< ∞ (26)

holds, then (U, V ) has a C∞ density.

As a consequence we obtain the following.

Corollary 2. Let (Ut , Vt ), t ≥ 0, be as in Theorem 3. Assume that Vt is in the centered Feller
class at zero (infinity) and F is in the class X . Then for a suitable norming function B(t) any
subsequential distributional limit of

Utk

B(tk)
,

Vtk

B(tk)


along a subsequence tk ↘ 0 (tk → ∞), say (W1,W2), has a C∞ Lebesgue density f on R2,
which implies that the asymptotic distribution of the corresponding ratio along the subsequence
{tk} has a Lebesgue density gT on R.

The following corollary is an immediate consequence of Theorem 3. Note that a Lévy process
Yt that is in the Feller class at zero (infinity) but not in the centered Feller class at zero (infinity)
has the required property.

Corollary 3. Let (Ut , Vt ), t ≥ 0, be as in Theorem 3. Suppose along a subsequence tk ↘ 0
(tk → ∞)

Vtk − A(tk)

B(tk)
D

−→ W,

where W is nondegenerate and A(tk)/B(tk) → ∞, as k → ∞. Then

Utk

Vtk

D
−→ E X, as k → ∞.

For t > 0 and ε ∈ (0, 1) put

At (ε) =


ϕ(S1/t)

∞
i=1

ϕ(Si/t)
> 1 − ε

 , (27)

and

1t =


∞

i=1
X iϕ(Si/t)

∞
i=1

ϕ(Si/t)
− X1

 .

Proposition 4. Assume that for a subsequence tk ↘ 0 or tk → ∞

lim
ε→0

lim inf
k→∞

P{Atk (ε)} = δ > 0, (28)
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then

lim
ε→0

lim inf
k→∞

P{1tk ≤ ε} ≥ δ.

Together with the stochastic boundedness of Ut/Vt this implies the following.

Corollary 4. Let (Ut , Vt ), t ≥ 0, be as in Theorem 3. Assume that (28) holds for Vt , and
P{X = x0} > 0 for some x0. Then there exists a subsequence tk ↘ 0 (tk → ∞) such that

Utk/Vtk
D

−→ T , with P{T = x0} > 0.

Put

Rt =

∞
i=1

ϕ2


Si
t




∞
i=1

ϕ


Si
t

2 . (29)

Proposition 5. Assume that R−1
t ≠ OP (1) as t ↘ 0 or t → ∞, then there exists a subsequence

tk ↘ 0 or tk → ∞ such that Utk/Vtk
D

−→ T , with P{T = E X} > 0.

The proofs of Propositions 4 and 5 are adaptations of those of Theorems 4 and 5 in [11].
Therefore we only sketch the proof of the first one, and omit the proof of the second one.

4. Proofs of results

Recall that throughout this paper (Ut , Vt ), t ≥ 0, denotes a Lévy process satisfying (1) and
(2) and having joint characteristic function (3). We start with the proof of Theorem 3 since this
result is crucial for both the proofs of Theorems 1 and 2.

4.1. Proof of Theorem 3

Recall the notation at the beginning of Section 3. Since Vt is a driftless subordinator, by
Theorem 15.14 (ii) in [10], (21) is equivalent to the convergences

tkΛ(vBk) → Λ0(v), as k → ∞, (30)

for any v > 0 continuity point of Λ0, and v

0
xtkΛ(dBk x) →

 v

0
xΛ0(dx)+ b, as k → ∞, (31)

where v > 0 is a fixed continuity point of Λ0.
Notice that using (19) we have that

Ee
i

θ1

Utk
Bk

+θ2
Vtk
Bk


= exp


i

tk
Bk
(θ1b1 + θ2b2)


× exp

 
ei(θ1u+θ2v)/Bk − 1 −

i
Bk
(θ1u + θ2v)1{0<u2+v2≤1}


tkΠ (du, dv)
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= exp


i
tk
Bk
(θ1b1 + θ2b2)


× exp

 
ei(θ1x+θ2 y)

− 1 − i(θ1x + θ2 y)1
{0<x2+y2≤B−2

k }


Πk(dx, dy)


,

where Π is the Lévy measure on (0,∞)× R defined by (4) and for each k ≥ 1,Πk is the Lévy
measure on (0,∞)× R defined by

Πk(dx, dy) = tkΠ (Bkdx, Bkdy).

Further, for each k ≥ 0 and h > 0 with Π0({x : |x | = h}) = 0, in accordance with the notation
at the beginning of Section 3, let

ah
k =


x2+y2≤h2


x2 xy
xy y2


Πk(dx, dy),

bh
k =

tk
Bk

b −


1<x2+y2≤B−2

k

(x, y)Πk(dx, dy)−


h2<x2+y2≤1

(x, y)Πk(dx, dy)

=


x2+y2≤h2

(x, y)Πk(dx, dy),

where we used (20). We set ah
:= ah

0 and bh
:= bh

0 .

To show (22), by Theorem 15.14(i) in [10] we have to prove that as k → ∞,

Πk
v

→Π0, on R2
− {0} (32)

and for some (any) h > 0 with Π0({x : |x | = h}) = 0, as k → ∞,

ah
k → ah, (33)

bh
k → bh . (34)

To establish (32) it suffices to show that for each (u, v) with u ≥ 0, v > 0, and (u, v), with
u > 0, v = 0, that when (u, v) is a continuity point of Π 0,

tkΠ (Bku, Bkv) → Π 0(u, v), as k → ∞,

and when (−u, v) is a continuity point of Π0,

tkΠ (−Bku, Bkv) → Π0(−u, v), as k → ∞;

where for u ≥ 0, v > 0,

tkΠ (Bku, Bkv) =


∞

v

F(u/y)tkΛ(dBk y),

Π 0(u, v) =


∞

v

F(u/y)Λ0(dy),

tkΠ (−Bku, Bkv) =


∞

v

F(−u/y)tkΛ(dBk y)
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and

Π0(−u, v) =


∞

v

F(−u/y)Λ0(dy).

This follows with obvious changes of notation exactly as in the proof of Proposition 1 in [11].
The proofs that (33) and (34) hold follow exactly as in Propositions 2 and 3 in [11]. It turns

out that ah converges to the zero matrix as h ↘ 0 and by (31)

bh
=

bE X +

 h

0
ψ(v)Λ0(dv)

b +

 h

0
φ(v)vΛ0(dv)

 ,
where ψ and φ are the following functions of v ∈ (0, h]:

φ (v) =



−

√
h2−v2,

√
h2−v2

 F


du

v


and ψ (v) =



−

√
h2−v2,

√
h2−v2

 uF


du

v


.

(Refer to [11] for details.) Thus

lim
h→0

bh
=


bE X

b


,

and the theorem follows with the stated constants. �

4.2. Proof of Theorem 1

The following three lemmas establish the “in which case” parts of (i), (ii) and (iii) of
Theorem 1.

Lemma 2. If Λ is regularly varying at zero (infinity) with index −β with β ∈ (0, 1), then for an
appropriate norming function Bt the random variable B−1

t (Ut , Vt ) converges in distribution as
t ↘ 0 (as t → ∞) to (U, V ), having joint characteristic function

φ (θ1, θ2) = exp


(0,∞)


∞

−∞


ei(θ1u+θ2v) − 1


F (du/v) βv−1−βdv


(35)

and thus

Tt =
Ut

Vt

D
−→

U

V
, as t ↘ 0 (as t → ∞). (36)

Moreover, the cdf of U/V is given by (8).

Proof. We can find a function Bt on [0,∞) such that

Bt = L∗ (t) t1/β , t > 0,

with L∗ defined on [0,∞) slowly varying at zero (infinity) satisfying for all y > 0,

µt (y) := tΛ (y Bt ) → Λ0 (y) = y−β , as t ↘ 0 (as t → ∞).

It is routine to show using well-known properties of regularly varying functions that for any
y > 0, as t ↘ 0 (as t → ∞)

ah
t :=


0<y≤h

yµt (dy) →
βh1−β

1 − β
=


0<y≤h

yΛ0 (dy) =: ah .
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Thus by applying Theorem 15.14(ii) in [10] we find that B−1
t Vt converges in distribution as

t ↘ 0 (as t → ∞) to V , having characteristic function φ (0, θ2). This says that V is a
subordinator with an id(0,Λ0) distribution. Theorem 3 completes the proof of (35).

Next, using Fubini’s theorem and the explicit formula for the β-stable characteristic function
(Meerschaert and Scheffler [17] p. 266), we have for an appropriate constant c > 0

(0,∞)


∞

−∞


ei(θ1u+θ2v) − 1


F (du/v) βv−1−βdv

=


∞

−∞

F(du)


∞

0


ei(θ1u+θ2)y − 1


Λ0(dy)

= −c


∞

−∞

|θ1u + θ2|
β


1 − i sgn(θ1u + θ2) tan

πβ

2


F(du).

We see now that the characteristic function of U − V x is

Eeit (U−V x)
= exp


−|t |βc


|u − x |

βF(du)

×


1 − i sgn (t) tan

πβ

2


|u − x |

βsgn(u − x)F(du)
|u − x |βF(du)


. (37)

Proposition 4 in [5] now shows that T has cdf (8). �

Lemma 3. If Λ is slowly varying at zero (at infinity), then

Tt =
Ut

Vt

D
−→ X, as t ↘ 0 (as t → ∞), (38)

where in the t ↘ 0 case we also assume that Λ(0+) = ∞.

Proof. The proof follows the lines of that of Lemma 5.3 in [12].
We shall only prove the t → ∞ case. The t ↘ 0 case is nearly identical. Now Λ slowly

varying at infinity implies that ϕ is non-increasing and rapidly varying at 0 with index −∞. (See
the argument in Item 5 on p. 22 of de Haan [8].) This means that for all 0 < λ < 1

ϕ (xλ) /ϕ (x) → ∞, as x ↘ 0.

By Theorem 1.2.1 on p. 15 of [8], rapidly varying at 0 with index −∞ implies that Λ(0+)

x ϕ (y) dy

xϕ (x)
→ 0, as x ↘ 0. (39)

By Lemma 8 in Appendix, we have

E


∞

i=2
|X i |ϕ


Si
t


ϕ


S1
t

 S1

 = E |X | E


∞

i=2
ϕ


Si
t


ϕ


S1
t

 S1


= E |X | S1

 Λ(0+)

S1/t ϕ (y) dy

S1
t ϕ


S1
t

 ,
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and by (39)

E |X | S1

 Λ(0+)

S1/t ϕ (y) dy

S1
t ϕ


S1
t

 P
→ 0, as t → ∞.

From this we can readily conclude that

∞
i=1

ϕ


Si

t


= ϕ


S1

t


(1 + oP (1)) , as t → ∞, (40)

and

∞
i=1

X iϕ


Si

t


= X1ϕ


S1

t


(1 + oP (1)) , as t → ∞. (41)

From the representation (12) and the stochastic identities (40) and (41) we see that

Ut

Vt

D
=

X1ϕ


S1
t


(1 + oP (1))

ϕ


S1
t


(1 + oP (1))

= X1 + oP (1) , as t → ∞.

Obviously Tt converges in distribution as t → ∞ to X . �

Lemma 4. If Λ is regularly varying at zero (at infinity) with index −1,

Tt =
Ut

Vt

D
−→ E X, as t ↘ 0 (as t → ∞). (42)

Proof. Since Λ is regularly varying at zero (at infinity) with index −1, we can find norming and
centering functions b (t) and a (t) such that b(t)/a(t) → 0 as t ↘ 0 (as t → ∞) and

b (t)−1 (Vt − a (t))
D

−→ W, as t ↘ 0 (as t → ∞),

where W is a nondegenerate random variable. (Here we apply part (i) of Theorem 15.14 in [10].)
From this we see that

Vt/a(t)
P

−→ 1, as t ↘ 0 (as t → ∞).

A straightforward application of Theorem 3 now shows that
Ut

a(t)
,

Vt

a(t)


P

−→ (E X, 1) , as t ↘ 0 (as t → ∞). �

Next we turn to the necessary and sufficient parts of (i), (ii) and (iii). Assume that for some
random variable T

Tt
D

−→ T, as t ↘ 0 (as t → ∞), (43)
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where in the case t ↘ 0 we assume that Λ(0+) = ∞. Our basic tool will be Proposition 1, which
says that

Tt =
Ut

Vt

D
=

∞
i=1

X iϕ


Si
t


∞

i=1
ϕ


Si
t

 . (44)

Since we assume that

E |X |
p < ∞ (45)

for some p > 2, we get by Jensen’s inequality that

E |Tt |
p

≤ E |X |
p < ∞.

(This is the only place in the proof that we use assumption (45).) Notice that (43) and (45) imply
that

ET 2
t → ET 2, as t ↘ 0 (as t → ∞). (46)

Obviously ETt = E X and a little calculation gives that

ET 2
t = (E X)2 + V ar(X)E Rt ,

where Rt is defined as in (29). Clearly, Rt ∈ [0, 1] and whenever (46) holds, then for some
0 ≤ β ≤ 1

E Rt → 1 − β, as t ↘ 0 (as t → ∞), (47)

which is equivalent to

(E X)2 ≤ ET 2
≤ E X2. (48)

It turns out that the value of 0 ≤ β ≤ 1 determines the asymptotic distribution of Tt as t ↘ 0
(as t → ∞) and the behavior of the Lévy function Λ near zero (at infinity). For instance, when
β = 1, V ar (Tt ) → 0, which implies that

Tt
P

−→ E X, as t ↘ 0(as t → ∞). (49)

In general we have the following result, which in combination with Lemmas 2–4 will complete
the proof of Theorem 1.

Proposition 6. If (47) holds for some 0 ≤ β ≤ 1, then Λ is regularly varying at zero (infinity)
with index −β. (In the case t ↘ 0 we assume that Λ(0+) = ∞.)

Proof. Recall the definition of N (t) in (9) and notice that by (29) for any t > 0 we can write

Rt =


∞

0 ϕ2 (s) N (dts)
∞

0 ϕ (s) N (dts)
2 .

Define for T > 0 its truncated version

Rt (T ) =

 T
0 ϕ2 (s) N (dts) T
0 ϕ (s) N (dts)

2 . (50)
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Given that N (T t) = n

Rt (T )
D
=

n
i=1

ϕ2(Vi )
n

i=1
ϕ(Vi )

2 ,

where V1, . . . , Vn are i.i.d. Uniform(0, T ). The same computation as in Maller and Mason [12]
gives

E Rt (T ) = t


∞

0
u

 T

0
ϕ2(s)e−uϕ(s)ds


e−t

 T
0 (1−e−uϕ(s))ds du.

Clearly Rt (T ) ≤ 1. Also Rt (T )
D
→ Rt as T → ∞ and thus

E Rt (T ) → E Rt , as T → ∞. (51)

For each T > 0 and u > 0, set

ΦT (u) =

 T

0
(1 − e−uϕ(s))ds, Φ (u) =


∞

0
(1 − e−uϕ(s))ds and

fT,t (u) = −tuΦ′′

T (u) e−tΦT (u) = tu

 T

0
ϕ2(s)e−uϕ(s)ds


e−t

 T
0 (1−e−uϕ(s))ds . (52)

Also for u > 0, set

f(t) (u) = −tuΦ′′ (u) e−tΦ(u)
= tu


∞

0
ϕ2(s)e−uϕ(s)ds


e−t


∞

0 (1−e−uϕ(s))ds . (53)

We have in this notation,

E Rt (T ) =


∞

0
fT,t (u) du. (54)

Case 1: β ∈ [0, 1). In this case we must first show that as T → ∞

E Rt (T ) =


∞

0
fT,t (u) du →


∞

0
f(t) (u) du, (55)

which by (51) implies
∞

0
f(t) (u) du = E Rt . (56)

It turns out to be surprisingly tricky to justify the passing-to-the-limit in (55). Lemma 9 and
Proposition 7 in Appendix handle this problem, and imply that expression (56) is valid for
E Rt . After this identity is established, the proof is completed by an easy modification of that
of Proposition 5.2 in [12], which is based on Tauberian theorems. Therefore we omit it.

Case 2: β = 1. In this case, it is not necessary to verify (55). Note that we have that by (47) with
β = 1

E Rt → 0, as t ↘ 0 (t → ∞).
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Therefore since

E Rt (T ) → E Rt ≥


∞

0
f(t) (u) du,

we can conclude that as t ↘ 0 (t → ∞),

− t


∞

0
uΦ′′(u)e−tΦ(u)du =


∞

0
f(t) (u) du → 0, (57)

which is all we need for the following argument to work for β = 1. Applying Lemma 1, we get

Φ(u) =


∞

0
(1 − e−ux )Λ (dx) ,

which by integrating by parts and using (2) is equal to

Φ(u) = u


∞

0
Λ(y)e−uydy.

Let q(y) denote the inverse function of Φ. From the expression for f(t) (u) in (53) and (57) we
obtain

t−1


∞

0
f(t) (u) du = −


∞

0
e−t yq(y)Φ′′(q(y))q(dy) ∼ o


t−1


,

as t → 0 (t → ∞). Using Theorem 1.7.1 (Theorem 1.7.1’) in Bingham et al. [2] we obtain

−

 x

0
q(y)Φ′′(q(y))q(dy) ∼ o (x) ,

as x → ∞ (x → 0). Changing the variables and putting x = Φ(v) we have

−

 v

0
uΦ′′(u)du = o (Φ(v)) ,

as v → ∞ (v → 0). Integrating by parts we get

−

 v

0
uΦ′′(u)du = −vΦ′(v)+ Φ(v) = o (Φ(v)) ,

which gives

vΦ′(v)

Φ(v)
→ 1,

as v → ∞ (v → 0). This last limit readily implies that

v−1Φ(v) =


∞

0
Λ(y)e−vydy

is slowly varying at infinity (zero). By Theorem 1.7.1’ (Theorem 1.7.1) in [2] we obtain that x
0 Λ(y)dy is slowly varying at zero (infinity), which by Theorem 1.7.2.b (Theorem 1.7.2) in [2]

implies that Λ is regularly varying at zero with index −1 (at infinity). �
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4.3. Proof of Theorem 2

Before we proceed with the proofs it will be helpful to first cite some results from Maller and
Mason [13–15].

Let Yt be a Lévy process with Lévy triplet (σ 2, γ, ν), i.e. Y1 has id(σ 2, γ, ν) distribution.
Theorem 1 in Maller and Mason [13] states that Yt belongs to the Feller class at infinity, if and
only if

lim sup
x→∞

x2ν{(−∞,−x) ∪ (x,∞)}

σ 2 +

|y|≤x y2ν(dy)

< ∞, (58)

and furthermore Yt belongs to the centered Feller class at infinity if and only if

lim sup
x→∞

x2ν{(−∞,−x) ∪ (x,∞)} + x
γ +


1<|y|≤x yν(dy)


σ 2 +


|y|≤x y2ν(dy)

< ∞. (59)

For the corresponding equivalences of Feller class at zero and centered Feller class at zero
replace x → ∞ by x ↘ 0, respectively; see Theorems 2.1 and 2.3 in [14].

It turns out by using the assumption that Vt is a subordinator and by arguing as in the proof of
Proposition 1 or of Proposition 5.1 in [12] we get that


R−1

t =

∞
i=1

ϕ


Si
t




∞
i=1

ϕ2


Si
t

 D
=

Vt 
0≤s≤t

(1Vt )
2
.

From this distributional equality one can conclude that


R−1
t is stochastically bounded as

t ↘ 0 (t → ∞) if and only if

lim sup
t↘0 (t→∞)

t
 t

0 xΛ(dx) t
0 x2Λ(dx)+ t2Λ(t)

< ∞ (60)

by applying Theorem 3.1 in [15] in the case t → ∞, and Proposition 5.1 in [14] (with a(t) ≡ 0
there, and a small modification) when t ↘ 0. The partial sum version of this result was proved
by Griffin [7].

Proof of Proposition 3. We first assume that X is nondegenerate and E X = 0, which implies
that there is an a ≥ 1 such that

F (a)− F (0) > 0 and F (0)− F (−a) > 0. (61)

We need the following lemma.

Lemma 5. Whenever (26) holds and X is nondegenerate and E X = 0, there exist 0 < κ < 1
and d > 0 such that with a ≥ 1 as in (61), if 2a (|θ1| ∨ |θ2|) ≥ 1, then

Re


(0,∞)


R


ei(θ1x+θ2v) − 1


F


dx

v


Λ(dv)


≤ −d


|θ1|

κ
+ |θ2|

κ

. (62)
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Proof. Notice that

Re


(0,∞)


R


ei(θ1x+θ2v) − 1


F


dx

v


Λ(dv)

=


(0,∞)


R
(cos(θ1x + θ2v)− 1) F


dx

v


Λ(dv)

≤


0≤v≤1/(2a(|θ1|∨|θ2|))


|x |≤va

(cos(θ1x + θ2v)− 1) F


dx

v


Λ(dv).

Observe that whenever |x | ≤ av with a ≥ 1 and 0 ≤ v ≤ 1/ (2a (|θ1| ∨ |θ2|)),

|θ1x | + |θ2v| ≤ (|aθ1| + |θ2|) v ≤ 1.

For some c > 0,

sup
0≤|u|≤1

cos u − 1

u2 ≤ −c,

thus 
0≤v≤1/(2a(|θ1|∨|θ2|))


|x |≤va

(cos(θ1x + θ2v)− 1) F


dx

v


Λ(dv)

≤ −c


0≤v≤1/(2a(|θ1|∨|θ2|))


|x |≤av

(θ1x + θ2v)
2 F


dx

v


Λ(dv).

Now when θ1θ2 ≥ 0 we have θ1θ2


0≤x≤va x F


dx
v


≥ 0, and we get that the last bound is

≤ −c


0≤v≤1/(2a(|θ1|∨|θ2|))


0≤x≤av


θ2

1 x2
+ θ2

2 v
2


F


dx

v


Λ(dv),

and when θ1θ2 < 0 we have θ1θ2

−va≤x≤0 x F


dx
v


≥ 0, which gives

0≤v≤1/(2a(|θ1|∨|θ2|))


|x |≤va

(cos(θ1x + θ2v)− 1) F


dx

v


Λ(dv)

≤ −c


0≤v≤1/(2a(|θ1|∨|θ2|))


−av≤x≤0


θ2

1 x2
+ θ2

2 v
2


F


dx

v


Λ(dv).

Notice that

c


0≤v≤1/(2a(|θ1|∨|θ2|))


0≤x≤av

θ2
2 v

2 F


dx

v


Λ(dv)

= c (F (a)− F (0))


0≤v≤1/(2a(|θ1|∨|θ2|))

θ2
2 v

2Λ(dv).

We get by arguing as on the top of page 968 in Pruitt [18] or in the remark after the proof
of Proposition 6.1 in Buchmann et al. [4], that for some c1 > 0 and 0 < κ < 1, whenever
2a (|θ1| ∨ |θ2|) ≥ 1

−c (F (a)− F (0)) θ2
2


0≤v≤1/(2a(|θ1|∨|θ2|))

v2Λ(dv)

≤ −
c1θ

2
2

4a2 (|θ1| ∨ |θ2|)
2 (2a (|θ1| ∨ |θ2|))

κ .
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Next,

−c


0≤v≤1/(2a(|θ1|∨|θ2|))


0≤x≤av

θ2
1 x2 F


dx

v


Λ(dv)

= −cθ2
1


0≤x≤a

u2 F (du)


0≤v≤1/(2a(|θ1|∨|θ2|))

v2Λ(dv),

which by the previous argument is for some c2 > 0, for 2a (|θ1| ∨ |θ2|) ≥ 1

≤ −
c2θ

2
1

(2a (|θ1| ∨ |θ2|))
2 (2a (|θ1| ∨ |θ2|))

κ .

Thus with c3 = c1 ∧ c2,

−c


0≤v≤1/(2a(|θ1|∨|θ2|))


0≤x≤av

(θ2
1 x2

+ θ2
2 v

2)F


dx

v


Λ(dv)

≤ −c3


θ2

1

4a2 (|θ1| ∨ |θ2|)
2 +

θ2
2

4a2 (|θ1| ∨ |θ2|)
2


(2a (|θ1| ∨ |θ2|))

κ .

Notice that

θ2
1

4a2 (|θ1| ∨ |θ2|)
2 +

θ2
2

4a2 (|θ1| ∨ |θ2|)
2 ≥

1

4a2 .

Hence when θ1θ2 > 0 and 2a (|θ1| ∨ |θ2|) ≥ 1 for some c4 > 0,

− c


0≤v≤1/(2a(|θ1|∨|θ2|))


0≤x≤av

(θ2
1 x2

+ θ2
2 v

2)F


dx

v


Λ(dv)

≤ −c4 (|θ1| ∨ |θ2|)
κ . (63)

The analogous inequality holds when θ1θ2 ≤ 0 and 2a (|θ1| ∨ |θ2|) ≥ 1, namely for some c5 > 0,
0≤v≤1/(2a(|θ1|∨|θ2|))


|x |≤va

(cos(θ1x + θ2v)− 1) F


dx

v


Λ(dv)

≤ −c


0≤v≤1/(2a(|θ1|∨|θ2|))


−av≤x≤0


θ2

1 x2
+ θ2

2 v
2


F


dx

v


Λ(dv)

≤ −c5 (|θ1| ∨ |θ2|)
κ . (64)

Note that since 0 < κ < 1 the function ρ (u) = |u|
κ is concave on (0,∞), and thus

(|θ1| ∨ |θ2|)
κ

≥

 |θ1| + |θ2|

2

κ ≥
|θ1|

κ
+ |θ2|

κ

2
,

which, in combination with (63) and (64), gives for some d > 0, whenever 2a (|θ1| ∨ |θ2|) ≥ 1,
0≤v≤1/(2a(|θ1|∨|θ2|))


|x |≤va

(cos(θ1x + θ2v)− 1) F


dx

v


Λ(dv)

≤ −d

|θ1|

κ
+ |θ2|

κ

. �

The lemma implies that whenever 2a (|θ1| ∨ |θ2|) ≥ 1, then for some d > 0 and 0 < κ < 1,Eei(θ1U+θ2V )
 ≤ exp


−d


|θ1|

κ
+ |θ2|

κ

.
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As in [18] this allows us to apply the inversion formula for densities and shows that it may
be repeatedly differentiated, from which we readily infer that (U, V ) has a C∞ density when
E X = 0. If E X = µ ≠ 0, the same argument applied to (U ′, V ) = (U − µV, V ) shows that
(U ′, V ) has a C∞ density, which by a simple transformation implies that (U, V ) does too. �

Proof of Corollary 2. Note that each Vtk/B(tk) is an infinitely divisible random variable without
a normal component with Lévy measure concentrated on (0,∞) given by tkΛ (·B(tk)) with
characteristic function

Ψk (θ) = exp


iθbk +


∞

0


eiθx

− 1 − iθx1{0<x≤1}


tkΛ(B(tk)dx)


,

where

bk =

 1

0
xtkΛ(B(tk)dx).

Since Vtk/B(tk)
D
→ W2, by Proposition 7.8 of Sato [21], W2 is infinitely divisible. Since W2 is

necessarily non-negative, it does not have a normal component and has a Lévy measure Λ0

concentrated on (0,∞). Now by Theorem 3 and its proof, necessarily
 1

0 xΛ0(dx) < ∞ and W2
has characteristic function

Ψ0 (θ) = exp


iθb +


∞

0


eiθx

− 1

Λ0(dx)


,

where b ≥ 0. By (30) and (31) in the proof of Theorem 3 for any continuity point v > 0 of Λ0,

tkΛ(vB(tk)) → Λ0(v), as k → ∞, (65)

and  v

0
xtkΛ(B(tk)dx) →

 v

0
xΛ0(dx)+ b, as k → ∞. (66)

From (66) we easily get that for any continuity point v > 0 of Λ0, v

0
x2tkΛ(B(tk)dx) →

 v

0
x2Λ0(dx) = V0,2 (v) , as k → ∞. (67)

(Recall the notation (25).) Now, since Vt is in the centered Feller class, (59) implies that for some
K > 0

lim sup
k→∞

v2 B2(tk)Λ (vB(tk))

V2 (vB(tk))
≤ K . (68)

Note that

v2 B2(tk)Λ (vB(tk))

V2 (vB(tk))
=

v2tkΛ(vB(tk)) v
0 x2tkΛ(B(tk)dx)

,

which by (65) and (67) converges to v2Λ0(v)/V0,2 (v) for each continuity point v > 0 of Λ0.
This with (68) implies that

sup
v>0

v2Λ0(v) v
0 x2Λ0(dx)

≤ K ,

so Proposition 3 applies. �
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Proof of Proposition 4. The proof is a simple adaptation of the proof of Theorem 4 in [11], so
we only sketch it here. Putting

Bt (k) =


 ∞
i=2

X iϕ(Si/t)


∞

i=1
ϕ(Si/t)

≤
E |X |
√

k

 ,
and recalling definition (27), the conditional version of Chebyshev’s inequality implies that
P{Bt (k)|At (k−1)} ≥ 1 − 1/

√
k. Noticing that on the set Bt (k) ∩ At (k−1)

1t ≤
|X1|

k
+

E |X |
√

k
,

a tightness argument finishes the proof. �

Now we are ready to prove Theorem 2.
Choose any cdf F in the class X . Corollary 2 says whenever Vt is in the centered Feller class

at 0 (∞) then every subsequential limit law of Ut/Vt , as t ↘ 0, (as t → ∞) has a Lebesgue
density on R and hence is continuous.

Suppose Vt is in the Feller class at 0 (∞), but not in the centered Feller class at 0 (∞). In
this case Corollary 3 implies that one of the subsequential limits is the constant E X and thus not
continuous. Next Proposition 5.5 in [14] in the case t ↘ 0 and Proposition 3.2 in [15] in the case
t → ∞ show that whenever Vt is not in the Feller class at 0 (∞), that is

lim sup
t↘0 (t→∞)

t2Λ(t) t
0 y2Λ(dy)

= ∞,

and (60) holds, then there exists a subsequence tk ↘ 0 (tk → ∞), such that (28) holds, which
by Corollary 4 for any X such that P{X = x0} > 0 for some x0, there exists a subsequence

tk ↘ 0 (tk → ∞) such that Utk/Vtk
D

−→ T , with P{T = x0} > 0, that is, T is not continuous.
Finally, assume that (60) does not hold, then by Proposition 5 there exists a subsequence tk ↘ 0

or tk → ∞ such that Utk/Vtk
D

−→ T , with P{T = E X} > 0, and again T is not continuous. This
completes the proof of Theorem 2.
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Appendix

To finish the proofs of Proposition 6 and thus Theorem 1 we shall require the following
technical result.
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Proposition 7. Assume that

lim inf
s↘0

sΛ(s) s
0 Λ(x)dx

> 0, (69)

then

E Rt =


∞

0
f(t) (u) du = −t


∞

0
uΦ′′ (u) e−tΦ(u)du. (70)

Proof. Clearly for each u > 0, fT,t (u) → f(t) (u), as T → ∞. Therefore by Fatou’s lemma
∞

0
f(t) (u) du ≤ lim inf

T →∞


∞

0
fT,t (u) du = lim inf

T →∞
E Rt (T ) ≤ 1. (71)

Keeping in mind (51) and (54), this implies that
∞

0
f(t) (u) du ≤ E Rt ≤ 1.

Therefore on account of (51) to prove (70) it suffices to establish (55), as T → ∞. One can
readily check using (11) that for some constants C1 > 0 and C2 > 0 and all u > 0

0 ≤ −tuΦ′′(u) ≤ t


C1 + u−1C2


.

To see this note that for each u > 0

−uΦ′′(u) = u


∞

0
x2e−uxΛ(dx)

=

 1

0
x2ue−uxΛ(dx)+ u−1


∞

1
u2x2e−uxΛ(dx),

≤ max
0≤y

ye−y
 1

0
xΛ(dx)+ u−1Λ (1)max

0≤y
y2e−y

=: C1 + u−1C2.

Thus since

fT,t (u) ≤ −utΦ′′

T (u) ≤ −utΦ′′(u),

we get by the bounded convergence theorem that for all D > δ > 0

lim
T →∞

 D

δ

fT,t (u) du =

 D

δ

f(t) (u) du.

Notice that since
∞

0
f(t) (u) du ≤ 1,

we have

lim
δ→0

 δ

0
f(t) (u) du = 0 and lim

D→∞


∞

D
f(t)(u)du = 0.

We see now that to complete the verification of (55) we have to show that

lim
δ→0

lim sup
T →∞

 δ

0
fT,t (u) du = 0 (72)
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and

lim
D→∞

lim sup
T →∞


∞

D
fT,t (u)du = 0. (73)

The first condition (72) is easy to show. Recalling (52), notice that

fT,t (u) ≤ tu


∞

0
ϕ2(s)e−uϕ(s)ds,

and so by Fubini δ

0
fT,t (u)du ≤ t


∞

0
ϕ2(s)ds

 δ

0
ue−uϕ(s)du

= t


∞

0


−ϕ(s)δe−δϕ(s)

+ (1 − e−δϕ(s))


ds

= t

Φ(δ)− δΦ′(δ)


≤ tΦ(δ),

which goes to 0 as δ → 0 and thus (72) holds.
For the second condition (73), choose D > 0. We see that for all large enough T > 0

∞

D
fT,t (u)du =

 1/ϕ(T )

D
fT,t (u)du +


∞

1/ϕ(T )
fT,t (u)du. (74)

Recall that

fT,t (u) = tu
 T

0
ϕ2(s)e−uϕ(s)ds exp


−t
 T

0


1 − e−uϕ(s)


ds


. (75)

We shall first bound the second integral on the right side of (74). For uϕ(T ) ≥ 1 and keeping in
mind that ϕ(s) ≥ ϕ(T ) for 0 < s ≤ T , we have

exp

−t
 T

0


1 − e−uϕ(s)


ds


≤ e−t (1−e−1)T

and so
∞

1/ϕ(T )
fT,t (u)du ≤ te−t (1−e−1)T


∞

1/ϕ(T )
u
 T

0
ϕ2(s)e−uϕ(s)dsdu.

Using Fubini’s theorem the last integral is easy to calculate. We get
∞

1/ϕ(T )
u
 T

0
ϕ2(s)e−uϕ(s)dsdu =

 T

0
ϕ2(s)ds


∞

1/ϕ(T )
ue−uϕ(s)du

=

 T

0


e−ϕ(s)/ϕ(T )

+
ϕ(s)

ϕ(T )
e−ϕ(s)/ϕ(T )


ds

≤ T


1 + max

y≥0
ye−y


≤ 2T .

So we obtain
∞

1/ϕ(T )
fT,t (u)du ≤ 2T te−t (1−e−1)T , (76)

which tends to 0 as T → ∞.
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Therefore to complete the verification that (73) holds and thus (55) we must prove that

lim
D→∞

lim sup
T →∞

 1/ϕ(T )

D
fT,t (u)du = 0. (77)

We shall bound fT,t (u) in the integral (77). Since 1/u ≥ ϕ(T ), and thus Λ (1/u) ≤ Λ (ϕ(T )) ≤

T , we get that the second factor of fT,t (u) given in (75) is

exp

−t
 T

0


1 − e−uϕ(s)


ds


≤ exp


−t
 Λ(1/u)

0


1 − e−uϕ(s)


ds


≤ e−t (1−e−1)Λ(1/u).

While for the first factor in fT,t (u) given in (75) we use the simple bound

tu
 T

0
ϕ2(s)e−uϕ(s)ds ≤ tu


∞

0
ϕ2(s)e−uϕ(s)ds =: tψΛ (u) .

We see that 1/ϕ(T )

D
fT,t (u)du ≤ t

 1/ϕ(T )

D
ψΛ (u) e−t (1−e−1)Λ(1/u)du

≤ t


∞

D
ψΛ (u) e−t (1−e−1)Λ(1/u)du.

Clearly (73) holds whenever for all γ > 0,
∞

1
ψΛ (u) e−γΛ(1/u)du < ∞. (78)

Lemma 6. Whenever (69) is satisfied, then for all γ > 0, (78) holds.

Proof. Recall the definition (53). Notice that by (71) for all t > 0
∞

0
f(t) (u) du < ∞. (79)

Write
∞

0
(1 − e−uϕ(s))ds =

 1/u

0
(1 − e−ux )Λ(dx)+


∞

1/u
(1 − e−ux )Λ (dx) .

We see that
∞

1/u
(1 − e−ux )Λ (dx) ≤ Λ (1/u)

and  1/u

0
(1 − e−ux )Λ (dx) = −


1 − e−1


Λ(1/u)+

 1/u

0
uΛ (x) e−ux dx

≤

 1/u

0
uΛ (x) e−ux dx ≤ u

 1/u

0
Λ (x) dx .
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By assumption (69) for some η > 0 for all u large

u
 1/u

0
Λ (x) dx ≤ ηΛ(1/u). (80)

This implies that

t


∞

0
(1 − e−uϕ(s))ds ≤ (1 + η) tΛ(1/u).

Thus for all large enough D > 0 and all t > 0
∞

D
f(t) (u) du ≥


∞

D
tψΛ (u) exp


− (1 + η) tΛ(1/u)


du,

and hence since (79) holds for all t > 0, we get that for all γ > 0, (78) is satisfied. �

We see from Lemma 6 that (78) holds whenever assumption (69) is satisfied and thus by
the arguments preceding the lemma the limit (55) is valid. This completes the proof of
Proposition 7. �

A.1. Return to the proofs of Proposition 6 and Theorem 1

We shall now finish the proof of Proposition 6. To do this we shall need three more lemmas.
Let X t be a subordinator with canonical measure Λ. Assume that X t is without drift. Define

I (x) =

 x

0
Λ(y)dy.

We give a criterion for subsequential relative stability of X at 0.

Lemma 7. Let X be a driftless subordinator with Λ(0+) > 0. There are nonstochastic sequences
tk ↓ 0 and Bk > 0, such that, as k → ∞,

X (tk)

Bk

P
−→ 1 (81)

if and only if

lim inf
x↓0

xΛ(x)
I (x)

= 0. (82)

Proof. From the convergence criteria for subordinators, e.g. part (ii) of Theorem 15.14 of [10],
p. 295, (81) is equivalent to

lim
tk→0

tkΛ(x Bk) = 0 for every x > 0 and lim
tk→0

tk

 1

0
xΛ(dBk x) = 1. (83)

Noting that I (x) =
 x

0 yΛ(dy)+ xΛ(x), we see that (83) implies

tk B−1
k I (Bk) = tk B−1

k

 Bk

0
xΛ(dx)+ tkΛ(Bk) → 1, (84)

and clearly (84) and tkΛ(Bk) → 0 imply (82). (Note that necessarily Bk → 0.)
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Conversely, let (82) hold and choose a subsequence ck → 0 as k → ∞ such that

lim
k→∞

ckΛ(ck)

I (ck)
= 0.

Define

tk :=


ck

Λ(ck)I (ck)
.

Then

lim
k→∞

tkΛ(ck) = lim
k→∞


ckΛ(ck)

I (ck)
= 0,

and

lim
k→∞

tk I (ck)

ck
= lim

k→∞


I (ck)

ckΛ(ck)
= ∞.

Then set Bk := tk I (ck), so limk→∞ Bk = 0 and limk→∞ Bk/ck = ∞. Given x > 0 choose k so
large that x Bk ≥ ck . Then

tkΛ(x Bk) ≤ tkΛ(ck) → 0. (85)

Furthermore, by writing

tk I (Bk)

Bk
=

tk I (ck)

Bk
+

tk (I (Bk)− I (ck))

Bk
= 1 +

tk (I (Bk)− I (ck))

Bk

and noting that for all large k

0 ≤
tk (I (Bk)− I (ck))

Bk
≤

Bk tkΛ(ck)

Bk
→ 0,

we also have tk B−1
k I (Bk) → 1 and thus by (85) and the identity in (84)

lim
tk→0

tk

 1

0
xΛ(dBk x) = 1

which in combination with (85) implies (81), by (83). �
To continue we need the following lemma from [12].

Lemma 8. Let Ψ be a non-negative measurable real valued function defined on (0,∞)

satisfying
∞

0
Ψ (y) dy < ∞.

Then

E


∞

i=1

Ψ (Si )


=


∞

0
Ψ (y) dy (86)

and limn→∞ E


∞

i=n Ψ (Si )


= 0.
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Lemma 9. (i) Assume that (47) holds as t ↘ 0 with β < 1. Then (69) holds.
(ii) Assume that (47) holds as t → ∞ with β < 1. Then without loss of generality we can

assume that (69) holds.

Proof. (i) We shall show that (47) implies (69). Assume on the contrary that (69) does not hold.
Then, since Vt is a driftless subordinator by Lemma 7 for some sequences Bk > 0, tk ↓ 0,

Vtk/Bk
P

→ 1. By Proposition 1 the infinite sum


∞

i=1 ϕ


Si
t


is equal in distribution to Vt and

∞

i=1 ϕ
2


Si
t


is equal in distribution to the subordinator Wt with Lévy measure Λ2 on (0,∞)

defined by

Λ2 (x) = Λ
√

x

.

From (83) in the proof of Lemma 7 above

tkΛ (x Bk) → 0 and
 1

0
tkΛ (x Bk) dx → 1, (87)

with tk → 0 and Bk → 0. Thus we easily see that

tkΛ2


x B2

k


= tkΛ

√
x Bk


→ 0

and  1

0
tkΛ2


x B2

k


dx =

 1

0
tkΛ

√
x Bk


dx = 2

 1

0
ytkΛ (y Bk) dy,

which for any 0 < δ < 1 is

≤ 2δ
 1

0
tkΛ (x Bk) dx + 2

 1

δ

tkΛ (x Bk) dx .

Clearly by (87)

lim sup
k→∞


2δ
 1

0
tkΛ (x Bk) dx + 2

 1

δ

tkΛ (x Bk) dx


= 2δ.

Thus since 0 < δ < 1 can be made arbitrarily small we get

lim
k→∞

 1

0
tkΛ2


x B2

k


dx = 0.

Hence applying Theorem 15.14 on page 295 of [10], we get Wtk/B2
k

P
→ 0 and thus

Rtk
D
= Wtk/


Vtk

2 P
→ 0,

which since Rtk ≤ 1 implies E Rtk → 0, as tk ↓ 0, which clearly contradicts to (47). So we have
(69) in this case.

(ii) We shall first assume that
∞

0
ϕ (u) du = ∞, (88)
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which by (11) implies 1

0
ϕ (u) du = ∞. (89)

Set

V (t) :=

∞
i=1

ϕ


Si

t


1


Si

t
≤ 1


and V (t) :=

∞
i=1

ϕ


Si

t


1


Si

t
> 1


.

We see that

V (t) ≥

∞
k=1

ϕ


2−k+1
 ∞

i=1

1


2−k <
Si

t
≤ 2−k+1


.

Now for each fixed L ≥ 1, as t → ∞,

t−1
L+1
k=2


ϕ


2−k+1
 ∞

i=1

1


2−k <
Si

t
≤ 2−k+1


P

→

L
k=1

ϕ


2−k


2−k−1

≥ 2−1
 1

2−L
ϕ(u)du.

Thus since L ≥ 1 can be made arbitrarily large, on account of (89),

t−1V (t)
P

→ ∞, as t → ∞. (90)

Next, using (86), we get

t−1 EV (t) = t−1


∞

t
ϕ(y/t)dy =


∞

1
ϕ(u)du < ∞,

which implies that

t−1V (t) = OP (1) , as t → ∞. (91)

Hence by (90) and (91)

V (t) /Vt
P

→ 0, as t → ∞. (92)

We get then that

Vt =

∞
i=1

ϕ


Si

t


= V (t) (1 + o (1)) , as t → ∞. (93)

Now set

Wt :=

∞
i=1

ϕ2


Si

t


, W (t) :=

∞
i=1

ϕ2


Si

t


1


Si

t
≤ 1



and W (t) :=

∞
i=1

ϕ2


Si

t


1


Si

t
> 1


.

Clearly

t−1 EW (t) = t−1


∞

t
ϕ2(y/t)dy =


∞

1
ϕ2(u)du < ∞,
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which says that t−1W (t) = OP (1) as t → ∞. Hence by (92), W (t) /Vt
P

→ 0 as t → ∞, which
when combined with (93) gives

Rt =
Wt

V 2
t

=
W (t)

V 2 (t)
+ oP (1), as t → ∞. (94)

Notice that V (t) is a Lévy process with canonical measure Λ1 defined via

Λ1 (x) = Λ (x) , for x ≥ ϕ (1) , and Λ1 (x) = Λ (ϕ (1)) for 0 < x < ϕ (1) .

Set ϕ1(s) = ϕ(s)1{s < 1}. Note that we have

ϕ1 (s) = sup


y : Λ1(y) > s

, s > 0,

where the supremum of the empty set is taken as 0. Let R(1)t be defined as Rt with ϕ replaced by
ϕ1, that is,

R(1)t =
W (t)

(V (t))2
=

∞
i=1

ϕ2
1


Si
t




∞
i=1

ϕ1


Si
t

2 .

Since Rt (1) = R(1)t , we see by formula (54) that

E R(1)t =


∞

0
f1,t (u) du. (95)

Next from (94), we get R(1)t − Rt
P

→ 0, as t → ∞, which implies that

lim
t→∞

E Rt = lim
t→∞

E R(1)t .

Clearly the tail behavior conclusions about Λ1(x), as x → ∞, will be identical to those for Λ(x),
as x → ∞. Moreover, since Λ1(0+) is finite (69) trivially holds for Λ1. Therefore in our proof
in the case t → ∞ we can without loss of generality assume that (69) is satisfied.

The case µ :=


∞

0 ϕ (u) du < ∞ cannot occur when β < 1 in (47). In this case it is easily
checked that

tΛ (xµt) → 0 for all x > 0 and
 1

0
tΛ (xµt) dx → 1.

Therefore by proceeding exactly as above we get that E Rt → 0 as t → ∞, which forces
β = 1. �

Returning to the proof of Proposition 6, in the case t ↘ 0, Lemma 9 shows that the assumption
of Proposition 7 holds and, in the case t → ∞, it says that we can assume without loss
of generality that it is satisfied. This completes the proof of Proposition 6 and hence that of
Theorem 1. �
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[6] P. Brémaud, Point Processes and Queues, Martingale Dynamics, Springer-Verlag, New York, 1981.
[7] P.S. Griffin, Tightness of the Student t-statistic, Electron. Comm. Probab. 7 (2002) 171–180.
[8] L. de Haan, On Regular Variation and Its Application to the Weak Convergence of Sample Extremes,

in: Mathematical Centre tract, vol. 32, Mathematisch Centrum, Amsterdam, 1975.
[9] L.F. James, Lamperti-type laws, Ann. Appl. Probab. 20 (2010) 1303–1340.

[10] O. Kallenberg, Foundations of Modern Probability, second ed., Springer, New York, 2001.
[11] P. Kevei, D.M. Mason, The asymptotic distribution of randomly weighted sums and self-normalized sums, Electron.

J. Probab. 17 (1–21) (2012) 1–21.
[12] R. Maller, D.M. Mason, Convergence in distribution of Lévy processes at small times with self-normalization, Acta.
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