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Ozeki [6] has defined the Chern class of a finitely generated projective module
as an element of the de Rham cohomology of the ring. His resulting classes are
stable invariants, but the functorial properties do not seem to be clear from the
definition. On the other hand, he made no attempt to define Euler classes for
projective modules. ‘

According to the Chern—Weil theory of characteristic classes, for a given
differentiable oriented bundle over a manifold, one can define its Euler class
[2,4, 5]. This is the cohomology class of a differential form constructed by
taking the Pfaffian of the curvature form of a connection compatible with a
Euclidean metric on the bundle. Since the set of differentiable cross sections to
a bundle is a f.g. projective module over the ring of differentiable functions on
the base manifold and the Euclidean metric defines a symmetric bilinear form
on this module, it is only natural to ask whether the above construction can be
generalized to any f.g. projective module.

Following R.G. Swan’s ideas we have defined Euler classes for inner product
modules. By considering the connection forms as Kihler differentials of the ring
we can easily derive the functorial properties of these classes.

Let (P, &) be an inner product module, i.e., P is a f.g. projective module over a
ring R, and % is a symmetric nondegenerate bilinear form on P. In Section 1,
we prove the existence of a connection V on P compatible with 4. In Section 2,
we define cohomology groups HE (P, %) associated to (P, k), by using a complex
ARy ® AP, where 2 is the module of Kahler differentials of R and n =
rank P [1; 3]. In the next section, we define the Euler class (P, %, V) as the
cohomology class of the Pfaffian of the curvature of V. In Section 4, we show that
e(P, h, V) is independent of the connection V. In Section 5, we exhibit the func-
torial and multiplicative properties of these classes. We also establish the connec-

* This paper contains the substance of the author’s dissertation, submitted to the
Department of Mathematics of the University of Chicago in August 1976. The dissertation
was written under the direction of Professor Richard G. Swan of that Department; the
author expresses his most grateful thanks to Professor Swan for proposing the theme
and providing constant guidance and inspiration.
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tion with the differentiable Euler classes. Finally, in Section 6, we compute
Euler classes for some inner product modules and, as an application, we show
the nontriviality of the tangent bundle to the affine 2-sphere defined over an
Archimedean ordered field.

1. ConnecTIONS ON INNER PrODUCT MODULES

Let R be a commutative K-algebra. Let @7 denote the rth exterior product
of the module @, of Kihler differentials of R over K. Then we have a complex

K R4,

whose cohomology groups Hfz(R/K) are called the de Rham groups of R/K.
If @: M x N — L is a bilinear map of R-modules, then there exists a unique
bilinear map

A=Ag 22 QM X 2 QN — Qv+t QL

which satisfies (0 @ m) A (0 1) =w Ao @ Plm,n), for al welr,
e meM,neN.
We consider the following examples:

Examrre 1. @R x M — Mistheproduct O(r, ;) = rm{r e R,me M),
then we have the bilinear maps
A: QP x 28 Q) M — Qv R M,
(0,0 @m)r>w A w ®nm

Exampii 2. If @: A"M X AsM — A™sM is the exterior product map
{x, ¥) > x A ¥, then we have the bilinear products

A: Q7 @ ATM % 24 ® AM —> Qe @ Ar+sM.

These products are associative and satisfy w A ' == (—1)?"w" A @, if
wel? QAM, o e ® AM.

Examrre 3. If A: M X M — R is a bilinear form, then we have bilinear
maps £ = 4,: Q? @ M X £ @ M — Q7 If we assume that £ is a sym-
metric map then A(w, o) = (—1)"%h(w’, »), for we 2! @ M, o € @ M.

For convenience, we write 4 instead of /.

DEFINITION. A connection on an R-module M is a map Vi M — L2 QM
such that
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(1) V is K-linear,
(2) V(rm) =dr Q@ m -+ rV(m) (reR,me M).
In this case, we can define the K-linear maps V = V?: 22 @Q M — Q?H @ M
by
Vo w @ m) = do @ m -+ (—1)?w A V(m) (w e 2%, me M),

and the curvature K, of V by VIV: M — Q* @ M.

Levma 1.1, If we QP ¢y Q M, then
V(w An) =dwAn -+ (—1)°w A V.
This is obvious.

CoroLLARY 1.2. For any connectionV on M we have K € Homg(M, 22 @) M).
Proof. LetreRand me M. Applying Lemma 1.1, we get

K (rm) = V(V(rm)) = V(dr @ m -+ rVm)
= —dr AVm +dr A Vim 4 rVVm = rK(m).

DrFiNitioN. Let &t M X M — R be a symmetric bilinear form on M. A
connection V on M is said to be compatible with h in case A(Vzx, y) -+ h(x, Vy) =
d(h(x, v)) holds for all x, y € M.

Recall that an inner product module over R is a finitely generated projective
R-module together with a symmetric bilinear product which is nondegenerate.

Tueorem 1.3. Suppose L e K. Then, for any inner product module (P, k)
over R, there exists a connection V compatible with h.

Proof. First we assume that P is a free module. Choose a basis {¢, ,..., ¢,} for
Pand let C = (¢;;) € M (R), c;; = ke, , ;). Let w;; €  be defined by (w;;) =
3C-14(C) e M,(£2). Define

n n n n
\Y (Z riei) =>dr®e+ Y Y rw; Qe (r;eR).
=1 =1 i=1j=1
Then, it is clear that V is a connection on P compatible with A.

In the genecral case, we can choose an inner product module (Q, k) so that
P @ Q is a free module. In fact, if T is an R-module such that P @ T is free,
then using P ~ P¥*, since / is nondegenerate, we can see that P@Q P D T D T*
is free; here M* = Homg(M, R), for a module M. Now, if we take Q =
P@T®T* and K(p, 1 1¥), (py, 1, ™) = B p, p2) + 15(t) + 17(2), we
obtain (Q, %) as we have required.
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Next, let V' be a connection on P D O compatible with A | & Let i: P~

P @ Q be the canonical injection and m: P (@ @ — P, the first projection map.
Then

Ve (1@ eVoi: P PRQ-I>0QP®0) 00 P,
is a connection on P compatible with Z.

Remark. From now on, we make the assumption § € K.

2. Tue De Ruam Conomorocy Grours HE (P, k)

Derivrion. If V: P— 2 ® P is a connection on P, we define V1 A%P —
2 3 AP by

k
Viloog Avs Axg) =3 % A AV A Ay
2=l

for xy ,..., 2,6 P.
This is clearly well defined. In fact, we can see that

Virog A axg) =dr @ A amp - rV{ag Ao A sy {reR).

ProrosiTioN 2.1.

(1) Vi 4P — Q ® A¥P is a connection on AFP.
(2) If wefd @ AP and o' € R AP, then

Vi A @) = Vi) A o + (—1) A TIw).
Remark. For brevity we often write V instead of V,2.

ProrosrTioN 2.2, Let (P, k) be an inner product module and let by, be the
bilinear form induced on A*P so

By A A a1 A A ) = det(Blx; , 35), %,y;,€P.

IfV is a connection on P compatible with h, then V,, on AXP is compatible with kb, .

Proof. Let x;,y,€P, 1,f = 1,..., k. Denote by m;; the cofactor of h{x;, v}
in det(A{w;, ;). Then, for & = %, A *** A %y, =, A - Ay, we have

h(VE, m) = Z h(Vx;, yiyma;
i

(€, V) = 2 B{(x; , Vyymy;

.3
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and

dhy(é,m) = Z dh(x; , y;yms; .

Hence, the compatibility condition of V with respect to 4 gives the desired
conclusion.

ProposiTION 2.3. (1) If V is a connection compatible with h, then the curvature
K, satisfies h(Kyx, y) + h(x, K, y) = 0 for all x,y e P.
(2) Suppose that rank P = n. Then, for any f< Homy(P, £2* Q P) which
satisfies h(fx,y) -- h(x, fy) = O for all x,yc P, it holds that Y , % A - A
f@) A Axy =0, forall x; ..., %, € P.

In particular, if n = 1, then f = 0.
Proof. (1) Letx, yeP. We claim that

WK, 5) = d((Vx, ) + K(Vx, V).

To see this, let Vo = Y w; ® #;, with w; € £, x; € P. Then using the definition
of K and substituting (Vs , y) = dh(x;, y) — h(x; , Vy) yields the claim.

Observing that A(x, K, y) = (K ¥, ) and applying the above relation gives

WK, 3) -+ h(x, Ky y) = dd(h(x, y)) = 0.

(2) After localizing we can assume that P is a free module. Take a basis
{ey ,..., €y} for P and write

fle) = Z wi; @e, wy; €% c;=Hhe,e), o=(vy), and C = (c)

It is easy to see that A(fx, ¥) + A(x, fy) = 0 for all x, y € P, is equivalent to
Cw + (Cw): = 0. Since C is nonsingular, we get w' = —CwC-' and so
Trace wt = —Trace w. Thus Trace w = 0. On the other hand, it can be
easily verified that

n

S oag A Af(o) At A X, = (Trace w)x; A = A X,

i

TreoreM 2.4. If (P, h) is an inner product module with rank P = 1, then

there is a unique connection V compatible with b and it has K, = 0. In particular,
we have a complex

Po>QRP->QPRQP— -
i.e., VV = 0, and we define the cohomology groups
HER(P, k) = Ker V¥/Im Vi1,
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Proof. Since VV(w @ %) = w A K(x) holds for any wel?, xeP, it is
enough to prove the first statement. But this follows from Proposition 2.3
applied when # = 1.

DerintrioN.  Let (P, k) be an inner product module with rank P = #.
Define the kth de Rham cohomology group of (P, k) by HE (P, B) = HE (AP, 1),
where the last group is the one defined in Theorem 2.4.

If V is a connection compatible with 4, then by Proposition 2.2 and Theorem
2.4, V,, is the unique connection compatible with %, , so that by definition

HER(P, B) = Ker V,*/Tm VE,

In particular, we observe that these groups are independent of the choice of
the connection V.

Remarks. (1) Ifrank P = 1, then P has a nondegenerate bilinear form if and
only if P av P*. These are necessarily symmetric,

(2) Ifrank P == 1 and du = 0 for all units u of R, for example, if U(R) =
K, then all nondegenerate bilinear forms give the same connection. In fact,
if &' and % are two such forms, then there exists a unit % in B such that 2’ = 44,
and if V is the connection compatible with %, using du = 0, we can see that ¥V
is also compatible with 2.

3. Tue EuLer CLASS OF AN INNER PropuctT MODULE

Let (P, %) be an inner product module. Define the following R-modules
(1) L{P) = Endg(P).
(2) L(P, By ={feL(P)| M fx,y) -+ h{x, fy) =0, for all 5,y € P}.
(3) AHP) = Homg(P, 2* ) P).
(4) AXP, h) = {fe A¥P) | h(fx, y) + b(x, fy) = 0, for all », y € P}.

Then A¥P, k) is a submodule of AF(P). Observe that A%P) = L(P) and
AYP, k) = L(P, k).

We also define K-linear maps d: A*(P) — A*(P), for a given connection
V on P, by the rule

do(f) =VEef—(T ®f)V  (fedHP))
where I (X f denotes the composite map

Q®P-%% 0 ®(QF® P)—— Q1 QP
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ProrosrrioN 3.1.
(1) dy(f)e A¥HP) for all fe AXDP).
(2) IfV is compatible with h, then d, maps AP, h) into A*(P, h).
Proof. (1) LetreR, x€P. Then we have
Aol f)rx) = V(f(rs)) — (I © F)(V(rs)
— dr A f(®) + V() — (I © F)dr ® x + 1V3)
= 1Vf(x) — 1 @ f) V&
= rdy(f)x).

(2) First we prove the following relation

hdy f(x), y) = dh(fx, y) + (—1)*h(fx, Vy) + W(Va, fy)
for fe AXP, k), %, y € P. Write
@)=Y 0, Q%, wel xeP
Ve =Y6Qy, 62 yeP.
From the definition of 4 we get
Wdef (30, 3) = 3 deogh(xs, 3) + (—1)F Y o5 A B(Vas, ) — 3 65 A (F(35), 905

then, substituting A(Vx,, y) = a’h(xZ , ¥ — hlx;, Vy) and A(f(y;), ¥) =
—h(;, () yields

hdyf(%), y) = ) dwh(x;, 3) + (=1 Y w; A dh(x; , y)
+ (1Y w; A B{x; V) + 305 A B(y;, ()
= dh(fx, y) + (— 1) b(fx, Vy) + H(Vx, fy).

Finally, we have k(x, dy f(3)) = h(d,, f(¥), x) and using the above relation
we obtain

kdy, f(x), ) + h(x, do, f( )
= [dh(fx, y) + dh(fy, x)]
+ [(—=1)+h( fx, Vy) -+ BV, fx)] -+ [(— D8 fy, Vx) -+ W(Vx, )],

which is 0 because each bracket is Q.

TuroreM 3.2. Let V be a connection compatible with h. Then we have
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(1) The map AP L LLP, k), which sends aab into wuyy, P> P,
1,0(%) == Ala, )b — Wb, x)a, x € P, is an isomorphisu.

(2) The map Q¥ @ L(P) > AMP), 0 @ fi> Vogys » Vups(®) = 0 ® f(#),
x € P, is an isomorphism. Moreover, v maps Q% & L{P, ) isomorphically onio
AXP, k).

(3) In the diagram

a2p YLomep-B.egaer s
| |
ol n v} veli®u) o} vo{IQu}

AP B — s AP, B s AP R) ——
all squares are commutative, and the vertical maps are isomorphisms over R.

Proof. (1) and (2). By localizing we can assume that P is a free module.
Let {e,,..., e, be a basis for P, and C == {(A(e;, ¢;)). Identify A*(P) with the
module M, (£2*) of n-square matrices with entries in £% by means of this basis,
ie., fe A’“(P) goes to w = (wy;) € M, (%), where fle,) = Z] @iy ® e . Then
AP, B) = {we M, (2% | Co + (Ca)* == 0}. Let 8% be the module of skew-
symmetric matrices in M, (£2%); oz A¥(P, k) -~ S*, the isomorphism ofw) = Cu,
and B: & ® % — S§%, the isomorphism 8l & {4;)) = (wea;;). Then we have
a commutative diagram

Q° QL(P, h) —2~ A¥P, h)
I®o| vho
QRS s S
from which it readily follows that # is an isomorphism.

Let {¢;*} be the dual basis of {¢;} and let E;; € L{P) for which E;{e;) = 85, .
Then §¢ <> AP, E;; — E;; > e A e;%, is an isomorphismi, and the composite
map

AP —% (P, h) —%— S® —L— A%P*

is the isomorphism A* A 2%, where A*: P = P¥, x> B{x, —). Whence # is
an isomorphism.

(3) Let we Q¥ a,b, xc P. Then by straight computations we see that the
following relations hold

vo(l & uw AVanb)x) = w A {k(Va, ) @b — Vah{x, B)};  (3.1)
& @l ®@ulw®aab)Ve = (—1Yw A {ila, V)b — (b, Vaya}; (3.2)
V(ttg(%)) = d(a, x) @ b - k(x, a) Vb — dh(b, %) @ @ — h(x, B)Va.  (3.3)
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Now, by definition and (3.1) we have

[ve (I @ u)oVyHw & a A b)](x)
= do> & tg(x)
+ (—1Yw A {h(Va, x) ® b — Vah(x, b) — k(Vb, x) ® a - Vbh(x, a)}

and substituting A(Va, x) = dh(a, x) — k(a, Vx), and similarly A(Vb, x), yields

— o ® a(#) — (—1)w A {h{a, Vx) ® b — (b, Vx) @ a}
+ (—1)w A {dh(a, x) ® b + k(x, a) Vb — dh(b, x) ® a — h(x, b) Va}

so that, by (3.2) and (3.3), this becomes

= do @ teu(*) — [ & (@e (I @ u)(w @ @A b)) Va + (—1) e A V(u,(¥))
=dy(vo(l ® uw @ a A b))x).

Levma 3.3 (Bianchi’s identity). For any connection V on a module P we have
do(Ky) = 0.

Proof. For xe P write Ve = Y w; ® %;, w; €82, x,€ P. Then
V2o Ko(x) = V2 (Z dw; @ %; — ¥ w; A in)
=Y dw; AV, — Y dw; A Va; + ) w; A V'Vx
=3 w; A Ky(x) = (I ® Ky) (Z w; & xz)
= (I ® Ky) o V(x).
Thus d(K) = V2o K, —~(I ® K)oV = 0.

DeriniTION.  Let (P, 2) be an inner product module of rank # = 2k. Let V
be a connection on P compatible with 4. Let 6, = (vo (I ® u))™(K) e 2 ®
AP. By the Bianchi identity and Theorem 3.2(3), we know that V,%(f.) = 0.
Thus, by Proposition 2.1(2), A% € Q" & AP is a cocycle. Define

e(P, h, V) = the Euler class of (P, h, V) = {(2k)\[k! A*0P} € HG (P, ),
where {n} denotes the cohomology class of 7.

The coeflicient (2k)?/k? allows us to avoid the division by integers in the proof
of the invariance theorem.
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4. INVARIANCE OF THE EULER (CLASSES

We show that e(P, £, V) is independent of V.

We use the isomorphism A2P -1-} L{P, h) to define an action of £% & A%P
on * @ A*P. Let [, ] be the unique bilinear map 2° & 2P x & Q AP —
Qo+% ) A*P such that

k

lw®cAad o @ag A Al =wAa @) % A A ag(%) A Ay,
=

holds for w e 2% o' € £, ¢, d, x; € P.

Prorosition 4.1, We kave the following
() fwels ® AP, w; e 2% R A¥P (i = 1, 2), then
[w, w1 A ] = [w, w] A wy + (1) w; A [, ws].
(2) If rank P = n, then all maps
[,]: 80 & AP x & Q AP — Qo+ & AP

are 2ero.

(3) Ifk + %k, = n = rank P, and w; € 2% & AMP ({ = 1, 2), then

[, 3] A @y = (1) 0y A [0, a]

Jor any w € £2* R A%P.

4) Ifwel ® A2P, we A%P, then

[osn] = (DU @ @) 77— I RF) &,

where 7] denotes v o (I & u)(n) € AYP, h).

Proof. (1) This can be checked directly.
2y If ¢ d, % ,..., x, € P, then Proposition 2.3 (2} gives 3 2, A = A
Uoaa(®) A 0 A &, = 0, since u,,5 € L{P, ) by Theorem 3.2(2).
(3) follows from (1) and (2).
4) let w=0;®crd, =29 Kxry with o, e, p e and

¢, d, %, y € P. Then, for any p € P we have
lo, 7)(p) = ve (L @u)(wy A my @ e A d, % A YI)P)
= wp Ay @u(fe A d, 2 A y)(p) {4.1)
= Wy Ay ® [ucAd ’ um/\y](P)’
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since u([c A d, ¥ A ¥]) = [#opg » Uzpy], Where the last bracket is the usual com-
mutator in L(P).
But we also have the following relations

(I @ @) o) p) = (—1)%wy A 11 & Uerg(thaon{ D)) (4.2)
(I @) o p) = wy A ny & Upp(thyral P))- 4.3)
From (4.1), (4.2), and (4.3) we get (4).
ProrositioN 4.2. Let V be a connection on P compatible with h. Then, for
we R R AP, we have
(1) Viw, 0] = 2w, Vo],
(2) V-V(w) = —[|o, gv], where § = K,
3) [o, [w, w]] = 0.

Proof. We use the fact that the isomorphism = vo (I (¥ %) commutes
with V and d, (Theorem 3.2(3) and Proposition 4.1(4)).

(1) We have

V[w, w] = ——2[9), Vo] < Viw, 0] = —2[w, Vo] < dy|w, o]
= €I R d) o Vo — (I @ Vo) @} < —2d((I ® @)d)
=20 ®a)odyd — (I Q dyo) o &3},

since [w, 0] = —2(I ¥ @) ° @.
Thus, it suffices to show that

AT ®f)of) =UIQf)edyf =T ®dyf)f,  fed(P)
First, we show that
I®dyf)e f=TRHVf =V (I Rf)ef) (4.4)
Let x € Pand write f(x) = ¥ w; ® &, , w, € 2, x; € P. Then
I ®f) Vi) :Zi:dwz- Af(x¢)~§wi/\ I ®f) Vx,

and

Vo (T ®1) o f)w) = Y dos; A fw) — Y. w0 A Vf ().
Subtracting these gives

Y @i ndof(x) = (I @dof) (L o @ x) = T @ def)F).
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Next, from (4.4) and the definition of 4, we have

(TRf)edof —UQdyf)ef =V (I Rf)o /) —URf) TR [} V. (45

But the right-hand side of (4.5) is precisely d(( & f) o f), since it is easy to
see that

TROURN S V=UB)o TRf)V.
(2) Similarly, if 9V = K, then
Vo V(o) = —[w, 6] = dy o dy(@) = —{ © &) o Ky — (I ® Ko) o ),
and so, it suffices to prove that

dyodglf) = I @ f) o Ky + (I QKg)of, for feA(P).
But the following relations can be checked directly from definition
dyod(f) =VoVof—Vo(IRf)eV—-UIRVf)eV
TFIRUS)V)eV,
VeVof=(I® VW,
and

~(I®[f)e V==V IR IRV +IX (T ®F)V):

(3) follows from a similar argument.

Treorem 4.3. Let (P, h) be an inner product module over R with
rank P = n == 2k. Then, for any pair of comnections V and V, compatible with
h, e(P, h, V) = e(P, h, V,V in H(P, ).

Proof. Let f =V, —Ve AP, h) and write § = K, 6, = K , & = f,
with w2 @ A2P, 0, 6, € 2A?P. Then, we have Ky = Ky +dof — (I ®f) /)
and s0 8, = 8 - Vo + 9, where 9 = Lo, v]. Thus

6f = Y (Riyl iyl dl) 6 (Ve) o, (4.6)

IR

where, for brevity, we are writing 4B instead of 4 A B.
Recall the following relations

Vy = —[w, Vw], by Proposition 4.2(1) (A.7)
VW = —[w, 0], by Proposition 4.2(2). (4.8)

V6 = 0, by Bianchi’s identity (4.9)
[w, 7] = 0, by Proposition 4.2(3). (4.10)

481/49/1-19
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Define the following differential forms
Wiy = O (Vo) i ,0,5 20andé, +4, 443> 1,
Biyigi, = w0V{(Vew)'2}y™, ifiy 2 land 4,43 >0,
Visigiy = WO (Ve)? V(5),  ifig > 1and 4,4, >0,

and set them equal to O for other values of 4;, 75, 7, > 0. Then o, ; ; €022 R AP,
172738
Biiyi, € 204D @ AXHOP and y, , , € QD @ AP, wherer =iy -+ iy + 1y -

Lemma 4.4.  Suppose that i, 4 i, + &5 - 1 = k = (rank P)/2. Then
(1) @+ D + DBy,
= —25(t5 + D¥ypia,05-1,5001 — falfe — 1Vir1.ip-2.501 5
(@) (G + D0 + 2Wigiy, = — 250t + 2%, 6041.0, — LabaBi1.i0+2.55-1 5
(3) V(w“i,izia) = Ogiatliy T Biﬂm = Yigisig

Proof. We use the distributive properties of both V (Proposition 2.1(2)) and
the bracket (Proposition 4.1(1) and (3)).

(1) If z, = 0, then both sides are zero. Assume that 7, >> 1. We have
Buigt, = w0 V{(Ve)'m’s
= w0 (V)= ' VVawy'
= —5,VVawwlY(Vaw)= Iy,
since VVw and wf1(Vw)?2~! both have odd degrees. Therefore by (4.8)
Biyigiy = tal e, 0] w0 (Vao) = Ip's.
Now, we move w to the right and distribute it:
Bisiniy = — B[, @] 04(Ve) 0" + iyfwlw, 05} (Vo)* '
+ i, (Vo s + iyl (Va) ™o, 7],

By (4.10), the last summand is zero and using [w, ] = 2, (4.7), and (4.8)
we obtain

Busini, = — 200" (Vo) * it — 45500 (VVw)(Ven) = Hy's

— (G — 1) w85 (V)2 2Vyn's,
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Muitiplymng by 4; + 1 yields
(fs + DBy, = — 25,0 -+ D, ip1,i000 — Gl + DBy,
— (G~ 1) iz?’vz1+1,e'2——z,is+1 .

This gives (1)
(2) I i; =0, then both sides are zero. Assume that i, > 1. We have

Vigigi, = w8 (Vo) ?V(5)
= 1,00 (Va )2 Vymst
= — iV (V)2
since Vy and w1 (Vw)’ both bave odd degrees. Therefore, by (4.7} we have
Virigts = taw, Vo] @0 (Ver)'tys™,
Again, we move w to the right and distribute it:
Viigts = —laVow, 0] Vo)™ 4 iVaw[w, 67) (Vo)
+ iyVowd e, (Va)elr's + iVewd™(Vew) e, 75,

By (4.10), the last summand is zero and using [w, o] = 2%, {4;7), and (4.8},
we obtain

Vigigia = — 2030 (Vo) T’ — 11,00 VYoo Ven)iatiyio?
— dyiy@f (VY Vs 2,
Multiplying by 7, -+ 2 yields

(fa + D000, = —2a(ta + 2)04, 4511, — CibsBipt,igrmiig1 — falle + 2Wigins, -

This gives (2).
Finally, (3) follows immediately from Proposition 2.1(2) and thus we have

completed the proof of Lemma 4.4,
Define the differential forms

Pl (O TR AT A R
Biyiuta = (QRW(iy + 24y -+ 1) i i 55D, »

5511253 == ((Zk)!/ (12 4 245 + 1) ’.1! ii“2! i?»‘i)wafzézis :
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Remark. Using the fact that (n; 5 n, + -+ + n)l/(nIn,! - n,!) is always an
integcr, for given nonnegative intcgers n;, we can show that (2&)!/(a!(d < 1)!
cl(b + 2¢)) is an integer provided that @ -- b ~ ¢ = k. 'This is easily scen by
considering the following four cases: & -+ 2¢ < <k-— 1, b --2c="rk b —2c =
kE--l,and b+ 2¢c =2 k- 2.

Levma 4.5, If 4, \-1, 4 i3+ 1 = k, then we have

(1) V(3iipi,) = Giptyitiiy — Bigigiy -i- lgil_l_ig_;_“a_l ’
2) &pr0.41 + Pipng, =
Proof. From Lemma 4.4(3), we have
V(o i) = @y igra,iy — Bivigis — Yivigis -

Let p == (2R)1/((1, + 215 + 1) 1,151 =. (4, -+ 1)(Z, 4 2)q, where geZ by the
preceding remark. Then, multiplying both sides by p and substituting
(fy + D(iz 5+ 2) ¥4 5,4, according to Lemma 4.4(2), gives the desired result.

(2) Applying Lemma 4.4(1), with i, = 1, we have
(G + 1) — )/31‘1.1,1'3 e —2(g - 1)“i1+1.0.i3+1 .
Multiplving by the integer (2k)!;{(¢, -- D (#; 4 1)I(2 + 24;)) we get
&ipa1,0.6001 + Borsy = 0.
Lemma 4.6, Let

tee Y 8, €21 ® AP

1) iy fg=k—1
Then
(CR)JRY) 6,% == ((2R)!/RY) 6% -1- V2.

With this lemma we conclude the proof of Theorem 4.3.

Proof of Lemma 4.6. By Lemma 4.5(1), we have

Vit Z Xj\,igiy > Biyiyiy F Y _giliz'i;,
2y iy ty=k @)ty dg—k—1 1) byl rig=k-1
12 ,1 i,»2

and also by Lemma 4.5(2),

Z &i,.o.ia - Z 551-1.1}4 = 0.

i) --?'3~k 4y i igt 2=k
2>l
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Adding this to V¢ gives
Vi= Y &

iy Higtis=F

t1igly
such thatz, 2> 1 or, 4, = Oand 4 ,4; = 1. Since

(QR\VENO: = 3 &4, by (4.6),

iyt ti=k
and since & ¢ = ((2R)!/R!) and aq o, = ((2R)}/ED) 1%, we obtain
((RR)RY) 0% = ((2K)V/RY) 0% 4 Vi - ((2F)1/R]) o~
But ¥ = 0. In fact, by Proposition 4.1 and (4.10)
7t = 3w, @] 9 = ((k — 1)/2) wr* e, 7] = 0,
Thus we have obtained the desired relation.

Remark. We denote the Euler class e(P, &; V) simply by e(P, &), since we
have seen that e(P, k, V) is independent of the choice of the connection V on P
compatible with A.

5. PropPERTIES OF EULER CLASSES
CONNECTIONS WITH THE DIFFERENTIABLE EULER CLASSES

Let ¢: R — R, be a K-algebra homomorphism. Given an inner product
module (P, %) over R define
) P,=R RP.

(i) 2Py X Py— Ryby by(ry @ p, vy’ @) =ryri /' o(h( p,p")), 71,7/ €R,
p.peP.

(i) ViiPp—>Qp @ PibyVi(r, ®p) =drn®1 @p +nV(p)hreR,,
p € P, where V( p) is the image of V( p) under the canonical map 2, @ P —
2 ®P,.

Tt is clear that if V is a connection compatible with £, so is V; with respect to 4 .
The next proposition is immediate.

ProvosiTion 5.1. (1) The following diagram is commutative

KV1

P,=R,®P

o A

R, ® QR P)

0%, ® P
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where v is the linear map whickh satisfies n(r; @ w X p) =rw X1 X p,r, e Ry,
welt pel.

(2) If Sis amultiplicative closed subset of R and R — Ry is the natural map,
theﬂ (Kv)s = vs*

ProrosITION 5.2. Let ¢: R — R, be a K-algebra homomorphism. Let (P, h)
be an inner product module over R of even rank, and let (P, , hy) be the one induced
by ¢. Then

‘P*(e(Py h)) = e(Pl ’ hl)y

where @, ts the K-linear map HE (P, by — HEo (P, , ) induced by the canonical
map P — P, .

Proof. Let V be a connection on P compatible with 4, and let V, be the one
on P, induced by V, as in (iii) above. Let 5: Ry Q) (£ ® P) — 921?1 ® Py
be the map of Proposition 5.1(1). Then : A¥P, k) — A¥P,, k), defined by
Jr>neo(I ® f), maps K into K .

Now the result follows from the commutativity of all the following diagrams.

QRa®AkP v > Q%‘.-l@AkP

O Px
v . X
Q8 @ AP, — s 051 S AP,
and
oo (I® u)
0 @ MP T AP, k)
w.i lw
vo(I& u)

Q% QAP "> AXP,, k)

THEOREM 5.3.  Suppose that for i = 1, 2, (P;, h;) is an inner product module
over R of even rank n; , and let (P, k) = (Py, k) | (P,, hy). Then

eP k) = (" T"2) e(Py, by 1 Py o)
ny ’
in Hog(P, h), where A is the product induced in cohomology by the canonical
bilinear map AmP, X AP, — Amnap,

Proof. Let V be a connection on P, compatible with ;. ThenV .=V, ® V,
_is a connection on P compatible with A The identification 24 & A™P -=
Qizjam (820 @ AP} ® A’P,) vyields, when a == 2 and m == 2, the equation
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¢ = 6, + G, for the corresponding curvature forms. Thus, if n; = 2k, , we have

k 4k .
Ot = (8, 4 Oy = (7 . ) 6 n 2,
since 82 =0 for p > k;. Multiplying by (2k, -~ 2&)j(k, -+ k) gives the

result,

TeeOREM 5.4. Let «: (P, h) — (Q, k) be an isometry of inner product modules
of even rank n, i.e., an isomorphism o«: P = Q such that h(x,y) = k{ax, ay)
SJor all x, y € P. Then (A7) (e(P, b)) = (O, k), where (A ) is the isomorphism
Hin(P, B) 2> HEL(O, k) induced by AP 5 A7Q.

Proof. Consider a connection V on P compatible with A Then V, ==

(f ® ) oV oalis a connection on Q compatible with .
Next, it is easy to check that the following diagrams are commutative

P ,omgp

al ll@m
X,

Qs 2RQ

Qe ® A2p 298, go(p )

o

IQaax u

Qv @ A2Q 8, 4O, k)

where p{f) = (I @ o) o foa?, fe AP, b).

Thus, if 8 is the curvature of V and 0, that of V, , we have (I ® a A «)(8) =6, .
Therefore, if n =2p, we have (I & A%2a)(A?8) = A?({I @ o A a)f) ==
A8, . This shows that (A" (e(P, k)) = (0, k).

Cororrary 5.5, If a: (P, k) — (P, k) is an isomeiry and rank P = n is even,
then

(1) (A" (P, b)) = (P, h).
2) (Arw)o (Ama) = 1.
In particular, if P is free then, for all o« € O(P, k) we have
(3) deta-elP, k) =eP h).
(4) (deta)? =1.

CoroLLArY 5.6. If (P, k) is an inner product module of even rank and P —
P, | P,, where P, has odd rank, then (P, h) = C.
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Proof. Define € O(P, k) by of py, pg) = (—P1, Po)s P: €P;. Then A%« =
~1I and so —e(P, h) = e(P, k). Thus ¢(P, k) = 0.

Let M be a C®-manifold and let E be an oriented vector bundle over M of
even dimension n = 2. Let R be the ring of C*-maps M — R, and P = I'(E),
the R-module of C®-sections of E over M. Choose a Euclidean metric % on E.
Then we have an inner product module (P, &).

~ PrOPOSITION 5.7. There exists an isomorphism Hiy(P, h) — H*(M) such
that o(e(P, b)) = (2w)"*nle(E), where e(E) is the'usual Euler class of E.

" Proof. Let A®(M) = I'(A*T*) be the module of C=-differential forms of
degree p on M; here T* is the dual tangent bundle of M. Then we have an
isomorphism of differential graded algebras £2; g ~ A*(M). Using the isomor-
phism Q% p @ AP ~ I'(A°T* Q) A*E) we regard the elements of Q% p @ AP
as functions on M. Take a connection V on P compatible with 4. Then, V is a
local operator: if w, w’ € £2% ) A*P are such that @ = ' on an open set U C M,
then V(w) = V(w') on U.

Suppose now that (e, ,..., €,) is an orthonormal basis for E over U. We can write

Vie;) = Z w; @ ¢

=1
Kyle;) = Y K;; Qe
A

on U, with w;; ey, K;;€ 2% Since (h(e;, ¢;)) = identity matrix, the com-
patibility condition implies that (w;) and (K;;) are both skew-symmetric
matrices.

If 0 = (vo I ®u)™HKy), then 6, = — 3 ; Ki; ® e; A ;. Thus

A*hg = ((—1)¥[2%) (Z eili2~--i2kKili2 At A Ki%_l,i%) @er A Aey,

on U.
On the other hand, by [4], the Euler class of E is the cohomology class of the
form y, where y can be expressed on U with respect to the orthonormal positive

basis (e, ,..., €,) by
v = (=122 (T €iyin Koy A o A K

ok—1s izk) .

By choosing orthonormal positive local bases we define an isomorphism
a: AP @ R as follows. Set

ofsy A - A sy) = det(ay) on U
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5,8, €P, s, =3 ae; on U, and (e ,..., ;) is an orthonormal positive
basis for E/U.

This extends to an isomorphism 2" @ A"P — Q* which sends (2k)![k! A%,
into (2ar)*(2k)ly.

It only remains to see that « commutes with the operators V and d. This is
equivalent to V(wy) = 0, where w, = o 1(1). But, if (e ,..., &,) and U are as
above, then we/U = e, A - A ¢, ,and s0

V(w)/U =Y ey A AVe; A Ae,

i=1

= (Trace of (w;;))e; A * A g,

:0’

since (w;;) is skew as we have observed earlier.

6. APPLICATIONS

Euler Classes of Free Modules

Suppose that (¥, /) is an inner product module with F free. Choose a basis
{€y ey €, for Fand write ¢;; = he;, ), C = {¢y), and u = det C. Then, by
the proof of Theorem 1.3, a connection V on F compatible with % can be given by

Vie;) = Z wi; & e

where w = $C-1dC.
Let C: F - F be the linear map given by C(e;) =3, ¢;;¢; . Then, it can be
checked that

TRCACYby) =13 0u®ene,

where (6;;) = dC A C-*dC, I = identity map of £2% Thus

AkGV = (1/8ku) %Z Eiﬂ'z"'izlﬁiﬂ'z ATt A 952k~1,i2k€ @eg At A ey

Since %, on A"F is multiplication by # = det C, we see that (£ ® A"F, V) ~
(&, 4,), where d,: Q7 — Q7+l is the coboundary map given by dy(y) =
dn -+ duf2u A 7, ne Q7. Thus

o(F, ) = ((2Rk)\R! 8%u)

- 72k
z €i1i2"'i2k9i1i2 A A Bizkdvizkg = HDR(R’ dh)
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The Euler Class of the Tangent Bundle to the n-Sphere

Let K be a commutative ring. Forz > 1, let R = R, = K[X, ,..., X, J1/(f),
where f =1 —Zfﬂ X2 Let x; be the image of X; in R. Let P = P, =
{a € Rt | h(a, u) = 0}, where u = (% ,..., X,.1) and A: R X R* R is
the usual inner product A(a, &) =3 ; a; .

If{e, ..., ey, } is the standard basis for R*land ¢’; = ¢, — xu, i = 1,...,n - 1,
then {€'; ..., €4} is a system of generators of P. A connection V compatible
with £ on P can be given by V(a) =>,da; Q ¢/, a = (ay,...,a,1)€P. In
particular, V(e';) = —>; d(x;x;) ® ¢';. Its corresponding curvature takes the
form

Ko(a) = ), dx; n dx; @ (ae'; — aje’y)
i<y
where a; is the 7th component of ¢ € P. Since ueifAei'(a) =a¢’; —a;;, acP,
we have

by =34 de; nde; Qe A€,
0
Let

n+1 as
w =Y (=1 dey A - Adwg Ao A dxgyy € Qg7
gu=]

n+1

Y
—_ — 1)+ 4 aee 4 4 n
e= Y (=1 xe A A A e, AP
g=1

It is immediate that

N
dxy A Adx A A dxy, = (— 1D x,

(6.1)
P .
eynne A ne = (1) xe
From these we readily obtain £;* = Rw and A"P == Re, and the map 2,7 ®
ArP — 2.7 defined by 7 (K e — 7 establishes an isomorphism of differential
graded algebras.
Now, we assume that # == 2k. Then, by the above description of 6, and (6:1),
we see that

o(P, ) = ((QB)2[R! 29w} in HER(R). (6.2)

We wish to show that e(P, k) = 0 if char K is a prime p >k + 1, and
e(P, £) # 0 and is a generator of Hfz(R), if K contains the rational numbers.

If my , m, € 237, We write n, = 7, in case 7, and 7, are cohomologous, and if
® = (0 .., Apyy), With nonnegative integers o, we set x* = ;' - x,** and
o] = ag -+ g
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Using {6.1), we obtain
7~ AN
d(xxge; dreg Ao A dxg A A da; A A dxg )
= (=D + 1) w® — (o + D wePor, @ <5

Thus

(o + 1) oo = (o -+ 1) a3 forall a,4,7.
Adding these relations over all == 1, 2,...,n + 1, and using

B+l

Y ox? =1, (6.3)

=1

we get
(lal +n+ DawPo = (o + Datw  forall oj. (6.4

If char K is a prime p > #n + 1, then (6.4) implies x*w = 0 for all « such that
lel+#n -1 = p. Next, using induction and (6.3) to lower degrees by 2 we
artive at w= 0. If 2 +1 < p << 2k then (2R)/R! = 0. Thus, P, k) = 0,
as was claimed.

If K contains the rational numbers, then (6.4) can be written as

xfw = {o; + Dl a] 4+ 2+ 1) 2w

and from this and induction on | « |, we can see that HL (R) = K{w}.
Define 2 K-linear map ¢: KX ,..., X,.4] — K as follows

P(X0 s Xon1) = 0 if some «, is odd

n41

6.5
741
== (H Smrx) / Siatpm—y  if all o, are even
-1

where weset sy = lands, =1 x 3 X - X m, if mis an odd number = L
It is easy to check that

XX = (& + DIl | + 5+ 1)) o{X*)
and so o(I) = {0}, where I = (1 — 1+ X2). Thercfore ¢ induces a K-linear

map
@: 82" = Ry ~ R — K, wi—> 1.

et N
Furthermore, by checking on generators d{xdxg A~ A dx; A =" Adxy A 0 A
dx,.,) we can see that ¢ maps dQ% % into 0. Thus g1 HE (R) ~ Kand p{{e}) =

/
I!S,n,l .
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ProrosiTion 6.1.  Suppose that K is an Archimedean ordered field. Then P,
is not a free module.

Proof. Yt S* — {{q;,a,,a5)c K3 tZ?__l a? = 1}. We observe that any
fe R = R, defines a K-valued map on S in an obvious manner.

Let T ={reR|r==1-h heR and ka) > 0, for all ac 5%. This is a
multiplicative closed subsct of R.

If P -: P, were free, then e(Py, hy) = 0 in Hpp(Pr, k). In fact, choosing
a basis {e;, &,} for P and writing Ale,, &) == p, hley, &) = ¢, kley, e5) =1,
then pr — ¢ = u e K-, withu > 0. Since p - {r/u) == 1 -{- (¢3/u) € T, p becomes
a unit in Ry, and so Py -: Rpe, | (Rre)*. Thercfore, e(Pr, hy) =- 0, by
Corollary 5.6.

However, we show that e(Pr, k) /- 0.

DerinttioN. (1) Let f, , f be functions on S? with values in K. We write
Jfo — fif Ve > 0 3n, such that  f,(a) — f(a) < eVaecStn<ny.
(2) If 9,, n€8g, we write 5, — 7 if there exists w; € 2%, f;, f; G R,
J=12..,p n=1,273,..., such that
@) 7o =Flafaws and g =X e,
i) fui—fi, Jj=1..,p
Remarks. (a) Any fe R is bounded on S2
(b) 1ffy—fandg, — g thenf, --g. —g ¢ .
(¢ Iff,— fand g, ->g, and f and g are both bounded, then f, - g, —
/e
(d) If 5, —> n, f, — f, f bounded, then £, — fr.

LemMA 6.2. Let t € T. Then there exists a sequence (u,), u, € R, such that
() u,-— 14,
(2) du, - wBdt->0.
Observe that (2) means du, — d(1]t).

Proof. First of all, we observe that if t € T, then we can write ¢t =: 1 < mh,
where e Rand 0 < h < },and me N.Infact, let A e Rsuchthatt =1 4+ &
and A'(a) = 0, for all a € S2 Since #' is bounded on $2% and K is Archimedean,
we can find m € N such that 24" <{ m. Then, & = #'/m will do.

We proceed by induction on m. Let r == 1 4. (m — 1)A, so that ¢t ==r 4 A.
Supposc we have already found (z,), v, € R, such that

(1) zp->l/r,

2) dv, +¢2dr—> 0.
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Since v,i — hjr and Afr << L we can assume that
(3) vkl < gforalinm

Set Uy =Ty ° 2: (_l)k(vnh)k = ”n(.f n/g n) €R, wheref, =1+ (—I)“(‘D,,b}""’l,
and g, = 1 4 9,4 Then

4) fo—1, gon—1-(kr), and |g,| < §, for all n. It is clear that
u, —> (1r1[(1 + (Afr))) = 1/(r + k) = 1/, in view of (1) and (4). Observe
that du, + u,2 ¢ — 0 is equivalent to g 2(du, + u,2 dt) - 0, since 3 < g, ),
for all n. From g,2d(f,/g,) = gudfy — fadgn , We obtain

g na(dun -+ “'nsdt) =g nf ,,J‘I)“ + Unk. 'nd n 'z’nf udg a T+ ‘vnz nzdt .

Expressing this as a linear combination of dv,, , dh, and dr, yields

gn'(dutn + .l dt) = {fugn + (—1)"(n + 1) 2,07 — 1,8} do,,
+ {1 + 1) £20,20," — 0%, + 0,25 dR -+ 0,22 dr,

where 8, = o,k Writing B, = dv, -+ v,%dr, we know that B, — 0, and sub-
stituting do,, we get

Bty -+ w2t = A, + Budr + Cpdh
where
Ap = {fafn + (=1 + 1) £,607" ~ fo80)Bn »
B, = —0,{fogn + (—1)"(n + 1) g0 — fub — £,
Co = 0 {(—1)"(n + 1) g0 — S + F:73-
Using fo—> 1, Bn — 0, gn—~ 1 + (Bfr), 0, — (hfr), (n + 1)0," — 0 (by (3)),
Yy — (1fr), we get 4, -0, B, — 0, and C,, — 0.

Lemma 6.3. Let o = xdxy A dieg -+ xedocg A dxy + x,d%y A dxy . Suppose
that » = d(nft) for some n € Q:® and t € T, Then there exist sequences of forms
(24), (Br), oy € 252, Bn € Ry , stich that w = o, + dB, , and o, — 0.

Proof. We have
w = daft) = dujt — (1/¢%) dt A,
2w = tdn — df A m.
Take (u,,) as in Lemma 6.2. Then
2w = wldy — w3t A q
= U,2bdn — (dit, + 2 di) Ay + du, Ay
= Uyttt — 1) dyy — (du, + w2 dE) A7+ d{u, A 7).
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Thus we have
w0 = o, + dB,, with o, — 0.

Finally, w = (1 — #,2)w + o, + dB,, = o, + dB,, , where a,, = (1 — u,*%)w

o, — 0.

Lemma 6.4. If f € R satisfies f(a) = 0, for all a €S2, then (p( f) = 0, where
@: R — K is the map defined in (6.5), which induces H3 x(R) ~

Proof. We can assume f = 3 A,zx2x%, 2, € K. In fact, by definition of g,

o(f) = (3 X f(-%, , £, +x;)), so that f can be replaced by a sum of
monomials of even degree in & , &, , and x; . Then, using 1 = %% 4 %% + x,®
we obtain the required expression.

Now, we prove two assertions:

Assertion 1. Let N, = Z:,:O (—D1)P(3)(1/(2p + 1)) € Q. Then there exists a
sequence {(a, , b,)}, @, , b, € Q such that

) a2+b2=1forallnel.
(ll) th—mO (I/N) Zn—O azubgﬁ = (P x2ax )/ atB > for all o, B > 0

Proof. Choose { = a + bi € Q(i), i = (—1)/3, such that ® 4 b = ] and
{* 1 for all «€Z, a 5~ 0. Define a, , b, € Q by the equation {* = a,, + b,i,
neZ. Thena, =a_,andb, = —b_,

Now, we contend that the following relations hold.

(1) No=-- 2+1 N_,, forallaeZ, a3 1.
(2) (9‘71 xz) (xZa 28—2 . ‘p(xioH—zng—Z)
N‘H'B NU+B~ Na+B
(3) abP = P 2T forall nel.
2o 1 1
@ N (7)) 5w = o) =y -
1 ¥ ,, 1 2
) fim 7 2, an =35 ()

To prove (1), we write, for 0 < p << o — 1

2a o« — o o — « a
2cx+l( P I)E_I—I_l_:(p)(ZOt—Zf—(l)(z_ﬁ)—l— 1):2p1+1(p)_2a1-f—1(p)'
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Then

i

2 20 o — 1
m+1M4“2+1Z“m(p)@+i

”af('])( ) piLi ?omzazﬂ( l)p( )
(W2+1 h:ﬁ%AW:m.

Now, (2} follows from (1) and the definition of ¢. (3) follows from @,2+5,2 =1,
and (4) is proved by induction using (1) and the definition of @.
To prove (5), we observe that

lim (1/N) 2 fro=1  if a=0,

n==0

== {) i a0

In fact, if @ == Q, this is clear, while if & s 0, then

N N4lo
O I T
if.lYnéog IN 10 igNzﬁl-C“}E’
where we are using ||p + il =p® - ¢% [iu -+ o] <2(ju) + o). This

gives {5) because
ﬂmifﬂw@@uww%
2z ” 51
= a5 () ) 3, o]

implies

hm (1/N) Z = (1/22“)2( ) hm (1/N) Z [ea—zpin

s}
P A
- ()
Finally, (4) and (5) show the assertion for f = 0, and using (2), (3), and

induction on 3, we complete the proof of Assertion 1.

Assertion 2. Given an integer C > 0 there exists a sequence {ry =
{(Tn.0 - P.w)s Fv,s € Q} such that
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) 0<ry; <1, 1 — rﬁ,,, =1, withty;e Q.
(i) limy,, (1/1\')27 oty = Ny, forall 0 <aC

Proof. We first notice that, for all « 2> 0, we have
N
lim (I/N) ¥, (1 — (4N?)? = N, .
wme j=0
In fact,
1_ '2_/2\72 LR c __,1 D & '2p/’1\_,721}
(1 =GNy = X (=17 () Gine)
and

lim (1/N224) ZJ“’ = (1/2p -+ 1))-

N-»0

For each N, choose ey > 0 small enough so that
(1= (BIN?) + e) — (1 — (NI < (N?)

for all 1 < a << C and 0 <j < N. In particular, ¢y < (I/N?). Now, choosc
ry;€EQ such that ry o = 1 and

N,

N

L= (AN <, < L= (BINY + o, 1f

and such that 1 — 73 ; = 1% ;, with ¢y ;c Q. For this, it is enough to choose
y € Q so that

1—(AN?) < (/1 + 5% <1 = (N?) tey.

Then
(1 — (N <7, < (= (N + a0 < (L— GENY + (11A9)

forall ] < a<{Cand0 <j < N. It follows that
N
_l\lnl (UNYY. 7%+« N,,  forall0 << a < C.
: -0
We conclude the proof of Lemma 6.4. We have

N
hm (l MN) Z Z (v, ) (rn ka>°{3 — ¢(x““xz )

M i=0 k-0
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for all o, B <C C = degree of f, by Assertions 1 and 2. This implies

N M
Mﬁggw (1/MN) Z Z flrngam, 7n.be s tnvg) = olf)
: j=0 %0
with
(v + Py e + (v = 1
so that

Fnie s N0 st ) 2 0.

Hence ¢(f) = 0.

From Lemma 6.4, it follows that if 7, — 7 in £2z2, then ¢(n,) — ¢(n).

We are now ready to complete the proof of Proposition 6.1.

Suppose e(Pr , hy) = 0. Then w = d(nft), ne 2y, and t € T, since ¢(P, k) =
2{w} by (6.2). Hence, by Lemma 6.3, there exist sequences of forms («,), (8,),
such that w = a, + d(B,), for all #, and «,, — 0. Thus 1 = ¢{w) = ¢(x,) and
(o) — 0 by the above consequence of Lemma 6.4. This is a contradiction.

REFERENCES

1. N. Boureaxki, “Algebre 1,” Chapitres 1 3 3, Eléments de Mathématique, Hermann,
Paris, 1970.

2. S.-S. CugrN, “Topics in Differential Geometry,” I.A.S., Princeton, N.J., 1951.

3. N. Karz, Nilpotent connections, Publ. Math, I.H.ES. 39 (1970).

4. S. Kosavasur aNp K. Nowmizvu, “Foundations of Differential Geometry,” Vol. I1,
Interscience, New York, 1969,

5. J. W. MiLNor AnD J. D. Stasuerr, “Characteristic Classes,” Princeton Univ. Press,
Princeton, N. J. 1974.

6. H. Ozexi, Chern classes of projective modules, Nogoya Math. J. 23 (1963), 121-152.

481/49/1-20



