Euler Classes of Inner Product Modules*

Maynard Kong
Department of Sciences, Catholic University of Peru, Lima, Peru

Communicated by I. N. Herstein
Received December 9, 1976

Ozeki [6] has defined the Chern class of a finitely generated projective module as an element of the de Rham cohomology of the ring. His resulting classes are stable invariants, but the functorial properties do not seem to be clear from the definition. On the other hand, he made no attempt to define Euler classes for projective nodules.

According to the Chern-Weil theory of characteristic classes, for a given differentiable oriented bundle over a manifold, one can define its Euler class $[2,4,5]$. 'This is the cohomology class of a differential form constructed by taking the Pfaffian of the curvature form of a connection compatible with a Euclidean metric on the bundle. Since the set of differentiable cross sections to a bundle is a f.g. projective module over the ring of differentiable functions on the base manifold and the Euclidean metric defines a symmetric bilinear form on this module, it is only natural to ask whether the above construction can be generalized to any f.g. projective module.

Following R.G. Swan's ideas we have defined Euler classes for inner product modules. By considering the connection forms as Kähler differentials of the ring we can easily derive the functorial properties of these classes.

Let (P, h) be an inner product module, i.e., P is a f.g. projective module over a ring R, and h is a symmetric nondegenerate bilincar form on P. In Scction 1 , we prove the existence of a connection ∇ on P compatible with h. In Section 2 , we define cohomology groups $H_{\mathrm{DR}}^{*}(P, h)$ associated to (P, h), by using a complex $\Lambda^{0} \Omega_{R} \otimes \Lambda^{n} P$, where Ω_{R} is the module of Kähler differentials of R and $n=$ rank $P[1 ; 3]$. In the next section, we define the Euler class $e(P, h, \nabla)$ as the cohomology class of the Pfaffian of the curvature of ∇. In Section 4 , we show that $e(P, h, \nabla)$ is independent of the connection ∇. In Section 5 , we exhibit the functorial and multiplicative properties of these classes. We also establish the connec-

[^0]tion with the differentiable Euler classes. Finally, in Section 6, we compute Euler classes for some inner product modules and, as an application, we show the nontriviality of the tangent bundle to the affine 2 -sphere defined over an Archimedean ordered field.

1. Connections on Inner Product Modules

Let R be a commutative K-algebra. Let Ω^{r} denote the r th exterior product of the module $\Omega_{R / K}$ of Kähler differentials of R over K. Then we have a complex

$$
K \longrightarrow R \xrightarrow{a} \Omega \xrightarrow{d} \Omega^{2} \longrightarrow \cdots
$$

whose cohomology groups $H_{D R}^{*}(R / K)$ are called the de Rham groups of R / K.
If $\Phi: M \times N \rightarrow L$ is a bilinear map of R-modules, then there exists a unique bilinear map

$$
A=\Lambda_{\mathscr{\Phi}}: \Omega^{p} \otimes M \times \Omega^{q} \otimes N \rightarrow \Omega^{p+q} \otimes L
$$

which satisfies $(\omega \otimes m) \wedge\left(\omega^{\prime} \otimes n\right)=\omega \wedge \omega^{\prime} \otimes \Phi(m, n)$, for all $\omega \in \Omega^{p}$, $\omega^{\prime} \in \Omega^{a}, m \in M, n \in N$.

We consider the following examples:
Example 1. If $\Phi: R \times M \rightarrow M$ is the product $\Phi(r, m)=r m(r \in R, m \in M)$, then we have the bilinear maps

$$
\begin{aligned}
\Lambda: \Omega^{p} \times \Omega^{q} \otimes M & \rightarrow \Omega^{p+q} \otimes M \\
\left(\omega, \omega^{\prime} \otimes m\right) & \mapsto \omega \wedge \omega^{\prime} \otimes m .
\end{aligned}
$$

Example 2. If $\Phi: \Lambda^{r} M \times \Lambda^{s} M \rightarrow \Lambda^{r+s} M$ is the exterior product map $(x, y) \mapsto x \wedge y$, then we have the bilinear products

$$
\Lambda: \Omega^{p} \otimes \Lambda^{r} M \times \Omega^{q} \otimes \Lambda^{s} M \rightarrow \Omega^{p+q} \otimes \Lambda^{r+s} M
$$

These products are associative and satisfy $\omega \wedge \omega^{\prime}=(-1)^{p \alpha+r s} \omega^{\prime} \wedge \omega$, if $\omega \in \Omega^{p} \otimes \Lambda^{r} M, \omega^{\prime} \in \Omega^{q} \otimes \Lambda^{s} M$.

Example 3. If $h: M \times M \rightarrow R$ is a bilinear form, then we have bilineat maps $\tilde{h}=\Lambda_{h}: \Omega^{p} \otimes M \times \Omega^{q} \otimes M \rightarrow \Omega^{p+q}$. If we assume that h is a symmetric map then $\tilde{h}\left(\omega, \omega^{\prime}\right)=(-1)^{p q} \tilde{h}\left(\omega^{\prime}, \omega\right)$, for $\omega \in \Omega^{q}(\triangle) M, \omega^{\prime} \in \Omega^{q}(\widehat{Q}$. For convenience, we write h instead of \tilde{h}.

Definition. A connection on an R-module M is a map $\nabla: M \rightarrow \Omega \otimes M$ such that
(1) ∇ is K-linear,
(2) $\nabla(r m)=d r \otimes m+r \nabla(m) \quad(r \in R, m \in M)$.

In this case, we can define the K-linear maps $\nabla=\nabla^{p}: \Omega^{p} \otimes M \rightarrow \Omega^{p+1} \otimes M$ by

$$
\nabla^{p}(\omega \otimes m)=d \omega \otimes m+(-1)^{p} \omega \wedge \nabla(m) \quad\left(\omega \in \Omega^{p}, m \in M\right)
$$

and the curvature K_{∇} of ∇ by $\nabla^{2} \nabla: M \rightarrow \Omega^{2} \otimes M$.
Lemma 1.1. If $\omega \in \Omega^{p}, \eta \in \Omega^{q} \otimes M$, then

$$
\nabla(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{p} \omega \wedge \nabla \eta
$$

This is obvious.
Corollary 1.2. For any connection ∇ on M we have $K_{\nabla} \in \operatorname{Hom}_{R}\left(M, \Omega^{2} \otimes M\right)$.
Proof. Let $r \in R$ and $m \in M$. Applying Lemma 1.1, we get

$$
\begin{aligned}
K_{\nabla}(r m) & =\nabla(\nabla(r m))=\nabla(d r \otimes m+r \nabla m) \\
& =-d r \wedge \nabla m+d r \wedge \nabla m+r \nabla \nabla m=r K_{\nabla}(m)
\end{aligned}
$$

Definition. Let $h: M \times M \rightarrow R$ be a symmetric bilinear form on M. A connection ∇ on M is said to be compatible with h in case $h(\nabla x, y)+h(x, \nabla y)=$ $d(h(x, y))$ holds for all $x, y \in M$.

Recall that an inner product module over R is a finitely generated projective R-module together with a symmetric bilinear product which is nondegenerate.

Theorem 1.3. Suppose $\frac{1}{2} \in K$. Then, for any inner product module (P, h) over R, there exists a connection ∇ compatible with h.

Proof. First we assume that P is a free module. Choose a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for P and let $C=\left(c_{i j}\right) \in M_{n}(R), c_{i j}=h\left(e_{i}, e_{j}\right)$. Let $\omega_{i j} \in \Omega$ be defined by $\left(\omega_{i j}\right)=$ $\frac{1}{2} C^{-1} d(C) \in M_{n}(\Omega)$. Define

$$
\nabla\left(\sum_{i=1}^{n} r_{i} e_{i}\right)=\sum_{i=1}^{n} d r_{i} \otimes e_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i} \omega_{j i} \otimes e_{j} \quad\left(r_{i} \in R\right) .
$$

Then, it is clear that ∇ is a connection on P compatible with h.
In the general case, we can choose an inner product module (Q, k) so that $P \oplus Q$ is a free module. In fact, if T is an R-module such that $P \oplus T$ is free, then using $P \approx P^{*}$, since h is nondegenerate, we can see that $P \oplus P \oplus T \oplus T^{*}$ is free; here $M^{*}=\operatorname{Hom}_{R}(M, R)$, for a module M. Now, if we take $Q=$ $P \oplus T \oplus T^{*}$ and $k\left(\left(p, t, t^{*}\right),\left(p_{1}, t_{1}, t_{1}{ }^{*}\right)\right)=h\left(p, p_{1}\right)+t^{*}\left(t_{1}\right)+t_{1}^{*}(t)$, we obtain (Q, k) as we have required.

Next, let ∇^{\prime} be a connection on $P \oplus Q$ compatible with $h \perp k$. Let $i: P \rightarrow$ $P \oplus Q$ be the canonical injection and $\pi: P \oplus Q \rightarrow P$, the first projection map. Then

$$
\nabla=(1 \otimes \pi) \circ \nabla^{\prime} \circ i: P \xrightarrow{i} P \oplus Q \xrightarrow{\nabla^{\prime}} \Omega \otimes(P \oplus Q) \xrightarrow{1 \otimes \pi} \Omega \oplus P
$$

is a connection on P compatible with h.
Remark. From now on, we make the assumption $\frac{1}{2} \in K$.

2. The De Rham Cohomology Groups $H_{D \mathrm{D}}^{*}(P, h)$

Definimion. If $\nabla: P \rightarrow \Omega \otimes P$ is a connection on P, we define $\nabla_{k}: A k P \rightarrow$ $\Omega \otimes A^{k} P$ by

$$
\nabla_{k}\left(x_{1} \wedge \cdots \wedge x_{k}\right)=\sum_{i=1}^{k} x_{1} \wedge \cdots \wedge \nabla x_{i} \wedge \cdots \wedge x_{k}
$$

for $x_{1}, \ldots, x_{k} \in P$.
This is clearly well defined. In fact, we can see that

$$
\nabla_{k}\left(r x_{1} \wedge \cdots \wedge x_{k}\right)=d r \otimes x_{1} \wedge \cdots \wedge x_{k}+r \nabla_{l_{k}}\left(x_{1} \wedge \cdots \wedge x_{k}\right) \quad(r \in R)
$$

Proposition 2.1.
(1) $\nabla_{k}: \Lambda^{k} P \rightarrow \Omega \otimes A^{k} P$ is a connection on $\Lambda^{k} P$.
(2) If $\omega \in \Omega^{a} \otimes A^{k} P$ and $\omega^{\prime} \in \Omega^{b} \otimes A^{l} P$, then

$$
\nabla_{k+l}^{a+b}\left(\omega \wedge \omega^{\prime}\right)=\nabla_{k}^{a}(\omega) \wedge \omega^{\prime}+(-1)^{a} \omega \wedge \nabla_{l}^{b}\left(\omega^{\prime}\right)
$$

Remark. For brevity we often write ∇ instead of $\nabla_{k}{ }^{a}$.
Proposition 2.2. Let (P, h) be an inner product modute and let $h_{\text {w }}$ be the bilkear form induced on $\Lambda^{k} P$ so

$$
h_{k}\left(火_{1} \wedge \cdots \wedge x_{k}, y_{1} \wedge \cdots \wedge y_{k}\right)=\operatorname{det}\left(h\left(x_{i}, y_{j}\right)\right), \quad x_{i}, y_{j} \in P
$$

If ∇ is a connection on P compatible with h, then ∇_{k} on $A^{k} P$ is compatible with h_{k}.
Proof. Let $x_{i}, y_{j} \in P, i, j=1, \ldots, k$. Denote by $m_{i j}$ the cofactor of $h\left(x_{i}, y_{j}\right)$ in $\operatorname{det}\left(h\left(x_{i}, y_{j}\right)\right)$. Then, for $\xi=x_{1} \wedge \cdots \wedge x_{k}, \eta=y_{1} \wedge \cdots \wedge y_{k}$, we have

$$
\begin{aligned}
& h_{k}(\nabla \xi, \eta)=\sum_{i, j} h\left(\nabla x_{i}, y_{j}\right) m_{i j} \\
& h_{k}(\xi, \nabla \eta)=\sum_{i, j} h\left(x_{i}, \nabla y_{j}\right) m_{i j}
\end{aligned}
$$

and

$$
d h_{l i}(\xi, \eta)=\sum_{i, j} d h\left(x_{i}, y_{j}\right) m_{i j}
$$

Hence, the compatibility condition of ∇ with respect to h gives the desired conclusion.

Proposition 2.3. (1) If ∇ is a connection compatible with h, then the curvature K_{∇} satisfies $h\left(K_{\nabla} x, y\right)+h\left(x, K_{\nabla} y\right)=0$ for all $x, y \in P$.
(2) Suppose that rank $P=n$. Then, for any $f \in \operatorname{Hom}_{R}\left(P, \Omega^{a} \otimes P\right)$ which satisfies $h(f x, y)+h(x, f y)=0$ for all $x, y \in P$, it holds that $\sum_{i=1}^{n} x_{1} \wedge \cdots \wedge$ $f\left(x_{i}\right) \wedge \cdots \wedge x_{n}=0$, for all $x_{1}, \ldots, x_{n} \in P$.

In particular, if $n=1$, then $f=0$.
Proof. (1) Let $x, y \in P$. We claim that

$$
h\left(K_{\nabla} x, y\right)=d(h(\nabla x, y))+h(\nabla x, \nabla y)
$$

To see this, let $\nabla x=\sum \omega_{i} \otimes x_{i}$, with $\omega_{i} \in \Omega, x_{i} \in P$. Then using the definition of K_{∇} and substituting $h\left(\nabla x_{i}, y\right)=d h\left(x_{i}, y\right)-h\left(x_{i}, \nabla y\right)$ yields the claim.

Observing that $h\left(x, K_{\nabla} y\right)=h\left(K_{\nabla} y, x\right)$ and applying the above relation gives

$$
h\left(K_{\nabla} x, y\right)+h\left(x, K_{\nabla} y\right)=d d(h(x, y))=0 .
$$

(2) After localizing we can assume that P is a free module. Take a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for P and write
$f\left(e_{i}\right)=\sum \omega_{j i} \otimes e_{j}, \quad \omega_{j i} \in \Omega^{a}, \quad c_{i j}=h\left(e_{i}, e_{j}\right), \quad \omega=\left(\omega_{i j}\right), \quad$ and $\quad C=\left(c_{i j}\right)$.
It is easy to see that $h(f x, y)+h(x, f y)=0$ for all $x, y \in P$, is equivalent to $C \omega+(C \omega)^{\perp}=0$. Since C is nonsingular, we get $\omega^{\perp}=-C \omega C^{-1}$ and so Trace $\omega^{\perp}=-$ Trace ω. Thus Trace $\omega=0$. On the other hand, it can be easily verified that

$$
\sum_{i=1}^{n} x_{1} \wedge \cdots \wedge f\left(x_{i}\right) \wedge \cdots \wedge x_{n}=(\text { Trace } \omega) x_{1} \wedge \cdots \wedge x_{n}
$$

Theorem 2.4. If (P, h) is an inner product module with rank $P=1$, then there is a unique connection ∇ compatible with h and it has $K_{\nabla}=0$. In particular, we have a complex

$$
P \rightarrow \Omega \otimes P \rightarrow \Omega^{2} \otimes P \rightarrow \cdots
$$

i.e., $\nabla \nabla=0$, and we define the cohomology groups

$$
H_{\mathrm{DR}}^{k}(P, h)=\operatorname{Ker} \nabla^{k} / \operatorname{Im} \nabla^{k-1}
$$

Proof. Since $\nabla \nabla(\omega \otimes x)=\omega \wedge K_{V}(x)$ holds for any $\omega \in \Omega^{a}, x \in P$, it is enough to prove the first statement. But this follows from Proposition 2.3 applied when $n=1$.

Definirion. Let (P, h) be an inner product module with rank $P=n$. Define the k th de Rham cohomology group of (P, h) by $H_{\mathrm{DR}}^{k}(P, h)=H_{\mathrm{DR}}^{k}\left(\Lambda^{n} P, h_{n}\right)$, where the last group is the one defined in Theorem 2.4.

If ∇ is a connection compatible with h, then by Proposition 2.2 and Theorem 2.4, ∇_{n} is the unique connection compatible with h_{n}, so that by definition

$$
H_{\mathrm{DR}}^{k}(P, h)=\operatorname{Ker} \nabla_{n}^{k} / \operatorname{Im} \nabla_{n}^{k-1}
$$

In particular, we observe that these groups are independent of the choice of the connection $\bar{\nabla}$.

Remarks. (1) If rank $P=1$, then P has a nondegenerate bilinear form if and only if $P \approx P^{*}$. Thesc are nccessarily symmctric.
(2) If rank $P=1$ and $d u=0$ for all units u of R, for example, if $U(R)=$ $K^{\text {, }}$, then all nondegenerate bilinear forms give the same connection. In fact, if h^{\prime} and h are two such forms, then there exists a unit x in R such that $h^{\prime}=u h$, and if ∇ is the connection compatible with h, using $d u=0$, we can see that ∇ is also compatible with h^{\prime}.

3. The Euler Class of an Inner Product Module

Let (P, h) be an inner product module. Define the following R-modules
(1) $L(P)=\operatorname{End}_{R}(P)$.
(2) $L(P, h)=\{f \in L(P) \mid h(f x, y)+h(x, f y)=0$, for all $x, y \in P\}$.
(3) $A^{k}(P)=\operatorname{Hom}_{R}\left(P, \Omega^{k} \otimes P\right)$.
(4) $A^{k}(P, h)=\left\{f \in A^{k}(P) \mid h(f x, y)+h(x, f y)=0\right.$, for all $\left.x, y \in P\right\}$.

Then $A^{k}(P, h)$ is a submodule of $A^{k}(P)$. Observe that $A^{0}(P)=L(P)$ and $A^{0}(P, h)=L(P, h)$.

We also define K-linear maps $d_{\nabla}: A^{k}(P) \rightarrow A^{k+1}(P)$, for a given connection ∇ on P, by the rule

$$
\left.d_{\nabla}(f)=\nabla^{k} \circ f-(I \otimes) f\right) \circ \nabla \quad\left(f \in A^{k}(P)\right)
$$

where $I \otimes f$ denotes the composite map

$$
\Omega \otimes P \xrightarrow{I \otimes f} \Omega \otimes\left(\Omega^{k} \otimes P\right) \longrightarrow \Omega^{k+1} \otimes P
$$

Proposition 3.1.
(1) $d_{\nabla}(f) \in A^{k+1}(P)$ for all $f \in A^{k}(P)$.
(2) If ∇ is compatible with h, then d_{∇} maps $A^{k}(P, h)$ into $A^{k+1}(P, h)$.

Proof. (1) Let $r \in R, x \in P$. Then we have

$$
\begin{aligned}
d_{\nabla}(f)(r x) & =\nabla(f(r x))-(I \otimes f)(\nabla(r x)) \\
& =d r \wedge f(x)+r \nabla f(x)-(I \otimes f)(d r \otimes x+r \nabla x) \\
& =r \nabla f(x)-r(I \otimes f) \nabla x \\
& =r d_{\nabla}(f)(x) .
\end{aligned}
$$

(2) First we prove the following relation

$$
h\left(d_{\nabla} f(x), y\right)=d h(f x, y)+(-1)^{k+1} h(f x, \nabla y)+h(\nabla x, f y)
$$

for $f \in A^{k}(P, h), x, y \in P$. Write

$$
\begin{array}{rlrl}
f(x) & =\sum \omega_{i} \otimes x_{i}, & \omega_{i} \in \Omega^{k}, \quad x_{i} \in P \\
\nabla x & =\sum \theta_{j} \otimes y_{j}, & & \theta_{j} \in \Omega, \quad y_{i} \in P
\end{array}
$$

From the definition of d we get

$$
h\left(d_{\nabla} f(x), y\right)=\sum d \omega_{i} h\left(x_{i}, y\right)+(-1)^{k} \sum \omega_{i} \wedge h\left(\nabla x_{i}, y\right)-\sum \theta_{j} \wedge h\left(f\left(y_{j}\right), y\right)
$$

then, substituting $h\left(\nabla x_{i}, y\right)=d h\left(x_{i}, y\right)-h\left(x_{i}, \nabla y\right)$ and $h\left(f\left(y_{j}\right), y\right)=$ $-h\left(y_{j}, f(y)\right)$ yields

$$
\begin{aligned}
h\left(d_{\nabla} f(x), y\right)= & \sum d \omega_{i} h\left(x_{i}, y\right)+(-1)^{k} \sum \omega_{i} \wedge d h\left(x_{i}, y\right) \\
& +(-1)^{k+1} \sum \omega_{i} \wedge h\left(x_{i}, \nabla y\right)+\sum \theta_{i} \wedge h\left(y_{j}, f(y)\right) \\
= & d h(f x, y)+(-1)^{x+1} h(f x, \nabla y)+h(\nabla x, f y)
\end{aligned}
$$

Finally, we have $h\left(x, d_{\nabla} f(y)\right)=h\left(d_{\nabla} f(y), x\right)$ and using the above relation we obtain

$$
\begin{aligned}
& h\left(d_{\nabla} f(x), y\right)+h\left(x, d_{\nabla} f(y)\right) \\
& \quad=[d h(f x, y)+d h(f y, x)] \\
& \quad+\left[(-1)^{k+1} h(f x, \nabla y)+h(\nabla y, f x)\right]+\left[(-1)^{k+1} h(f y, \nabla x)+h(\nabla x, f y)\right]
\end{aligned}
$$

which is 0 because each bracket is 0 .
Theorem 3.2. Let ∇ be a connection compatible with h. Then we have
(1) The map $\Lambda^{2} P \xrightarrow{\nrightarrow} L(P, h)$, which sends $a \wedge b$ into $u_{a A b}: P \rightarrow P$, $u_{0 \wedge b}(x)=h(a, x) b-h(b, x) a, x \in P$, is an isomorphism.
(2) The map $Q^{k} \otimes L(P) \xrightarrow{v} A^{k}(P), \omega \otimes f \mapsto v_{\omega \otimes f}, w_{\omega \otimes f}(x)=w \otimes f(x)$, $x \in P$, is an isomorphism. Moreover, v maps $\Omega^{k} \otimes L(P, h)$ isomorphically onto $A^{l}(P, h)$.
(3) In the diagram

all squares are commutative, and the vertical maps are isomorphisns over R.
Proof. (1) and (2). By localizing we can assume that P is a free module. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for P, and $C=\left(h\left(e_{i}, e_{j}\right)\right)$. Identify $A^{k}(P)$ with the module $M_{n}\left(\Omega^{k}\right)$ of n-square matrices with entries in Ω^{k} by means of this basis, i.e. $f \in A^{k}(P)$ goes to $\omega=\left(\omega_{i j}\right) \in M_{n}\left(\Omega^{k}\right)$, where $f\left(e_{i}\right)=\sum_{j=1}^{k} \omega_{i i} \otimes e_{j}$. Then $A^{k}(P, h)=\left\{\omega \in M_{n}\left(\Omega^{k}\right) \mid C \omega+(C \omega)^{\perp}=0\right\}$. Let S^{k} be the module of skewsymmetric matrices in $M_{n}\left(\Omega^{h}\right) ; \alpha: A^{h}(P, h) \rightarrow S^{k}$, the isomorphism $\alpha(\omega)=C \omega$, and $\beta: \Omega^{k} \otimes S^{0} \rightarrow S^{k}$, the isomorphism $\beta\left(\omega \otimes\left(a_{i j}\right)\right)=\left(\omega a_{i j}\right)$. Then we have a commutative diagram

from which it readily follows that v is an isomorphism.
Let $\left\{e_{i}^{*}\right\}$ be the dual basis of $\left\{e_{i}\right\}$ and let $E_{i j} \in L(P)$ for which $E_{i j}\left(e_{k}\right)=\delta_{j k} e_{i j}$. Then $S^{0} \xrightarrow[\sim]{\underset{ }{\gamma}} A^{2} P, E_{i j}-E_{j i} \mapsto e_{j}^{*} \wedge e_{i}^{*}$, is an isomorphism, and the composite map

$$
\Lambda^{2} P \xrightarrow{u} L(P, h) \xrightarrow{\propto} S^{0} \xrightarrow{\gamma} \Lambda^{2} p^{*}
$$

is the isomorphism $h^{*} \wedge h^{*}$, where $h^{*}: P \leadsto P^{*}, x \mapsto h(x, 一)$. Whence u is an isomorphism.
(3) Let $\omega \in \Omega^{k}, a, b, x \in P$. Then by straight computations we see that the following relations hold

$$
\begin{gather*}
v \circ(I \otimes u)(\omega \wedge \nabla a \wedge b)(x)=\omega \wedge\{h(\nabla a, x) \otimes b-\nabla a h(x, b)\} \tag{3.1}\\
{[I \otimes(v \circ(I \otimes u)(\omega \otimes a \wedge b))] \nabla x=(-1)^{k} \omega \wedge\{h(a, \nabla x) b-h(b, \nabla x) a\}} \tag{3.2}\\
\nabla\left(u_{a \lambda b}(x)\right)=d h(a, x) \otimes b+h(x, a) \nabla b-d h(b, x) \otimes a-h(x, b) \nabla a \tag{3.3}
\end{gather*}
$$

Now, by definition and (3.1) we have

$$
\begin{aligned}
& {\left[v \circ(I \otimes u) \circ \nabla_{2}^{k}(\omega \otimes a \wedge b)\right](x)} \\
& =\quad d \omega \otimes u_{a \wedge \bar{b}}(x) \\
& \quad+(-1)^{k} \omega \wedge\{h(\nabla a, x) \otimes b-\nabla a h(x, b)-h(\nabla b, x) \otimes a+\nabla b h(x, a)\}
\end{aligned}
$$

and substituting $h(\nabla a, x)=d h(a, x)-h(a, \nabla x)$, and similarly $h(\nabla b, x)$, yields

$$
\begin{aligned}
= & d \omega \otimes u_{a \wedge b}(x)-(-1)^{k} \omega \wedge\{h(a, \nabla x) \otimes b-h(b, \nabla x) \otimes a\} \\
& +(-1)^{k} \omega \wedge\{d h(a, x) \otimes b+h(x, a) \nabla b-d h(b, x) \otimes a-h(x, b) \nabla a\}
\end{aligned}
$$

so that, by (3.2) and (3.3), this becomes
$=d \omega \otimes u_{a \wedge b}(x)-[I \otimes(v \circ(I \otimes u)(\omega \otimes a \wedge b))] \nabla x+(-1)^{k} \omega \wedge \nabla\left(u_{a \wedge \emptyset}(x)\right)$
$=d_{\nabla}(v \circ(I \otimes u)(\omega \otimes a \wedge b))(x)$.

Lemma 3.3 (Bianchi's identity). For any connection ∇ on a module P we have $d_{\nabla}\left(K_{\nabla}\right)=0$.

Proof. For $x \in P$ write $\nabla x=\sum \omega_{i} \otimes x_{i}, \omega_{i} \in \Omega, x_{i} \in P$. Then

$$
\begin{aligned}
\nabla^{2} \circ K_{\nabla}(x) & =\nabla^{2}\left(\sum d \omega_{i} \otimes x_{i}-\sum \omega_{i} \wedge \nabla x_{i}\right) \\
& =\sum d \omega_{i} \wedge \nabla x_{i}-\sum d \omega_{i} \wedge \nabla x_{i}+\sum \omega_{i} \wedge \nabla^{\prime} \nabla x \\
& =\sum \omega_{i} \wedge K_{\nabla}\left(x_{i}\right)=\left(I \otimes K_{\nabla}\right)\left(\sum \omega_{i} \otimes x_{i}\right) \\
& =\left(I \otimes K_{\nabla}\right) \circ \nabla(x)
\end{aligned}
$$

I'hus $d_{\nabla}\left(K_{\nabla}\right)=V^{2} \circ K_{\nabla}-\left(I \otimes K_{\nabla}\right) \circ V=0$.
Definition. Let (P, h) be an inner product module of rank $n=2 k$. Let ∇ be a connection on P compatible with h. Let $\theta_{\nabla}=(v \circ(I \otimes u))^{-1}\left(K_{\nabla}\right) \in \Omega^{2} \otimes$ $\Lambda^{2} P$. By the Bianchi identity and Theorem 3.2(3), we know that $\nabla_{2}{ }^{2}\left(\theta_{\nabla}\right)=0$. Thus, by Proposition 2.1(2), $\Lambda^{k} \theta_{\nabla} \in \Omega^{n} \otimes A^{n} P$ is a cocycle. Define

$$
e(P, h, \nabla)=\text { the Euler class of }(P, h, \nabla)=\left\{(2 k)!/ k!\Lambda^{k} \theta \mathrm{P}\right\} \in H_{\mathrm{DR}}^{n}(P, h)
$$

where $\{\eta\}$ denotes the cohomology class of η.
The coefficient $(2 k)^{q} / k^{q}$ allows us to avoid the division by integers in the proof of the invariance theorem.

4. Invariance of the Euler Classes

We show that $e(P, h, \nabla)$ is independent of ∇.
We use the isomorphism $\Lambda^{2} P \xrightarrow[\sim]{u} L(P, h)$ to define an action of $\Omega^{a} \otimes \Lambda^{2} P$ on $\Omega^{b} \otimes \Lambda^{k} P$. Let $[$,$] be the unique bilinear map \Omega^{a} \otimes \Omega^{2} P \times \Omega^{b} \otimes \Lambda^{k} P \rightarrow$ $\Omega^{a+b} \otimes \Lambda^{k} P$ such that

$$
\left\lfloor\omega \otimes c \wedge d, \omega^{\prime} \otimes x_{1} \wedge \cdots \wedge x_{k}\right\rfloor=\omega \wedge \omega^{\prime} \otimes \sum_{i=1}^{k} x_{1} \wedge \cdots \wedge u_{c \wedge d}\left(x_{i}\right) \wedge \cdots \wedge x_{k}
$$

holds for $\omega \in \Omega^{a}, \omega^{\prime} \in \Omega^{b}, c, d, x_{i} \in P$.

Proposition 4.1. We have the following
(1) If $\omega \in \Omega^{a} \otimes \Lambda^{2} P, \omega_{i} \in \Omega^{a_{i}} \otimes \Lambda^{k_{i}} P(i=1,2)$, then

$$
\left[\omega, \omega_{1} \wedge \omega_{2}\right]=\left[\omega, \omega_{1}\right] \wedge \omega_{2}+(-1)^{a a_{1}} \omega_{1} \wedge\left[\omega, \omega_{2}\right]
$$

(2) If rank $P=n$, then all maps

$$
[,]: \Omega^{a} \otimes A^{2} P \times \Omega^{b} \otimes \Lambda^{n} P \rightarrow \Omega^{a+b} \otimes \Lambda^{n} P
$$

are zero.
(3) If $k_{1} \mid k_{2}=n=\operatorname{rank} P$, and $\omega_{i} \in \Omega^{a_{i}} \otimes \Lambda^{k_{i} P(i=1,2) \text {, then }}$

$$
\left[\omega, \omega_{1}\right] \wedge \omega_{2}=(-1)^{a a_{1}+1} \omega_{1} \wedge\left[\omega, \omega_{2}\right]
$$

for any $\omega \in \Omega^{a} \otimes \Lambda^{2} P$.
(4) If $\omega \in \Omega \otimes A^{2} P, \eta \in \Lambda^{2} P$, then

$$
\overline{[\omega, \eta]}=(-1)^{a}(I \otimes \bar{\omega}) \circ \bar{\eta}-(I \otimes \bar{\eta}) \circ \bar{\omega}
$$

where $\bar{\eta}$ denotes $v \circ(I \otimes u)(\eta) \in A^{a}(P, h)$.
Proof. (1) This can be checked directly.
(2) If $c, d, x_{1}, \ldots, x_{n} \in P$, then Proposition 2.3 (2) gives $\sum x_{1} \wedge \cdots \wedge$ $u_{c \wedge d}\left(x_{i}\right) \wedge \cdots \wedge x_{n}=0$, since $u_{c \wedge d} \in L(P, h)$ by Theorem 3.2(2).
(3) follows from (1) and (2).
(4) Let $\omega=\omega_{1} \otimes c \wedge d, \eta=\eta_{1} \otimes x \wedge y$, with $\omega_{1} \in \Omega, \eta_{1} \in \Omega^{a}$, and $c, d, x, y \in P$. Then, for any $p \in P$ we have

$$
\begin{align*}
{[\omega, \eta](p) } & =v \circ(I \otimes u)\left(\omega_{1} \wedge \eta_{1} \otimes[c \wedge d, \nsim \wedge y]\right)(p) \\
& =\omega_{1} \wedge \eta_{1} \otimes u([c \wedge d, x \wedge y])(p) \tag{4.1}\\
& =\omega_{1} \wedge \eta_{1} \otimes\left[u_{c \wedge d}, u_{x \wedge u}\right](p)
\end{align*}
$$

since $u([c \wedge d, x \wedge y])=\left[u_{c \wedge d}, u_{x \wedge y}\right]$, where the last bracket is the usual commutator in $L(P)$.

But we also have the following relations

$$
\begin{align*}
& (I \otimes \bar{\omega}) \circ \bar{\eta}(p)=(-1)^{a} \omega_{1} \wedge \eta_{1} \otimes u_{c \wedge d}\left(u_{x_{\wedge} y}(p)\right) \tag{4.2}\\
& (I \otimes \bar{\eta}) \circ \bar{\omega}(p)=\omega_{1} \wedge \eta_{1} \otimes u_{x \wedge y}\left(u_{u_{\wedge} d}(p)\right) \tag{4.3}
\end{align*}
$$

From (4.1), (4.2), and (4.3) we get (4).
Proposition 4.2. Let ∇ be a connection on P compatible with h. Then, for $\omega \in \Omega \otimes \Lambda^{2} P$, zve have
(1) $\nabla[\omega, \omega]=-2[\omega, \nabla \omega]$,
(2) $\nabla \cdot \nabla(\omega)=-\left[\omega, \bar{\theta}_{\nabla}\right]$, where $\theta=K_{\nabla}$,
(3) $[\omega,[\omega, \omega]]=0$.

Proof. We use the fact that the isomorphism $-=v \circ(I \otimes u)$ commutes with ∇ and d_{∇} (Theorem 3.2(3) and Proposition 4.1(4)).
(1) We have

$$
\begin{aligned}
\nabla[\omega, \omega] & =-2[\omega, \nabla \omega] \Leftrightarrow \overline{\nabla[\omega, \omega}]=-2 \overline{[\omega, \nabla \omega}] \Leftrightarrow d_{\nabla}[\omega, \omega] \\
& =-2\{(I \otimes \bar{\omega}) \circ \overline{\nabla \omega}-(I \otimes \overline{\nabla \omega}) \circ \bar{\omega}\} \Leftrightarrow-2 d_{\nabla}((I \otimes \bar{\omega}) \bar{\omega}) \\
& =-2\left\{(I \otimes \bar{\omega}) \circ d_{\nabla} \bar{\omega}-\left(I \otimes d_{\nabla} \bar{\omega}\right) \circ \bar{\omega}\right\}
\end{aligned}
$$

since $[\omega, \omega]=-2(I \otimes \bar{\omega}) \circ \bar{\omega}$.
Thus, it suffices to show that

$$
d_{\nabla}((I \otimes f) \circ f)=(I \otimes f) \circ d_{\nabla} f-\left(I \otimes d_{\nabla} f\right) \circ f, \quad f \in A^{1}(P)
$$

First, we show that

$$
\begin{equation*}
\left(I \otimes d_{\nabla} f\right) \circ f=(I \otimes f) \nabla f-\nabla \circ((I \otimes f) \circ f) \tag{4.4}
\end{equation*}
$$

Let $x \in P$ and write $f(x)=\sum \omega_{i} \otimes x_{i}, \omega_{i} \in \Omega, x_{i} \in P$. Then

$$
(I \otimes f) \nabla f(x)=\sum_{i} d \omega_{i} \wedge f\left(x_{i}\right)-\sum_{i} \omega_{i} \wedge(I \otimes f) \nabla x_{i}
$$

and

$$
\nabla \circ((I \otimes f) \circ f)(x)=\sum_{i} d \omega_{i} \wedge f\left(x_{i}\right)-\sum_{i} \omega_{i} \wedge \nabla f\left(x_{i}\right) .
$$

Subtracting these gives

$$
\sum \omega_{i} \wedge d_{\nabla} f\left(x_{i}\right)=\left(I \otimes d_{\nabla} f\right)\left(\sum \omega_{i} \otimes x_{i}\right)=\left(I \otimes d_{\nabla} f\right)(f(x))
$$

Next, from (4.4) and the definition of d_{v}, we have

$$
\begin{equation*}
(I \otimes f) \circ d_{\nabla} f-\left(I \otimes d_{\nabla} f\right) \circ f=\nabla \circ((I \otimes f) \circ f)-(I \otimes f) \circ(I \otimes f) \circ \nabla \tag{4.5}
\end{equation*}
$$

But the right-hand side of (4.5) is precisely $d_{\nabla}((I \otimes f) \circ f)$, since it is easy to see that

$$
\{I \otimes((I \otimes f) \circ f)\} \circ \nabla=(I \otimes f) \circ(I \otimes f) \circ \nabla
$$

(2) Similarly, if $\bar{\theta}_{\nabla}=K_{\nabla}$, then

$$
\nabla \circ \nabla(\omega)=-\left[\omega, \theta_{\nabla}\right] \Leftrightarrow d_{\nabla} \circ d_{\nabla}(\bar{\omega})=-\left\{(I \otimes \bar{\omega}) \circ K_{\nabla}-\left(I \otimes K_{\nabla}\right) \circ \bar{\omega}\right\},
$$

and so, it suffices to prove that

$$
d_{\nabla} \circ d_{\nabla}(f)=-(I \otimes f) \circ K_{\nabla}+\left(I \otimes K_{\nabla}\right) \circ f, \quad \text { for } \quad f \in A^{1}(P)
$$

But the following relations can be checked directly from definition

$$
\begin{aligned}
d_{\nabla} \circ d_{\nabla}(f)= & \nabla \circ \nabla \circ f-\nabla \circ(I \otimes f) \circ \nabla-(I \otimes \nabla f) \circ \nabla \\
& +(I \otimes((I \otimes f) \circ \nabla)) \circ \nabla \\
\nabla \circ \nabla \circ f= & (I \otimes \nabla \nabla) f
\end{aligned}
$$

and

$$
-(I \otimes f) \circ \nabla=-\nabla \circ(I \otimes f)-I \otimes \nabla f+I \otimes((I \otimes f) \circ \nabla))
$$

(3) follows from a similar argument.

Theorem 4.3. Let (P, h) be an inner product module over R with $\operatorname{rank} P=n=2 k$. Then, for any pair of connections ∇ and ∇_{1} compatible with $h, e(P, h, \nabla)=e\left(P, h, \nabla_{1} \nabla\right.$ in $H_{\mathrm{DR}}^{n}(P, h)$.

Proof. Let $f=\nabla_{1}-\nabla \in A^{1}(P, h)$ and write $\bar{\theta}=K_{\nabla}, \bar{\theta}_{1}=K_{\nabla_{1}}, \bar{\omega}=f$, with $\omega \in \Omega \otimes \Lambda^{2} P, \theta, \theta_{1} \in \Omega^{2} \Lambda^{2} P$. Then, we have $K_{\nabla_{1}}=K_{\nabla} \mid d_{\nabla} f-(I \otimes f) \circ f$, and so $\theta_{1}=\theta+\nabla \omega+\eta$, where $\eta=\frac{1}{2}[\omega, \omega]$. Thus

$$
\begin{equation*}
\theta_{1}^{k}=\sum_{i_{1}+i_{2}+i_{3}=k}\left(k!i_{1}!i_{2}!i_{3}!\right) \theta^{i_{1}}(\nabla \omega)^{i_{2}} \eta^{i_{3}} \tag{4.6}
\end{equation*}
$$

where, for brevity, we are writing $A B$ instead of $A \wedge B$.
Recall the following relations

$$
\begin{align*}
\nabla \eta & =-[\omega, \nabla \omega], & & \text { by Proposition } 4.2(1) \tag{4.7}\\
\nabla \nabla \omega & =-[\omega, \theta], & & \text { by Proposition } 4.2(2) \tag{4.8}\\
\nabla \theta & =0, & & \text { by Bianchi's identity } \tag{4.9}\\
{[\omega, \eta] } & =0, & & \text { by Proposition } 4.2(3) . \tag{4.10}
\end{align*}
$$

Define the following differential forms

$$
\begin{array}{ll}
\alpha_{i_{1} i_{2} i_{3}}=\theta^{i_{1}}(\nabla \omega)^{i_{2}} \eta^{i_{3}}, & \text { if } i_{1}, i_{2}, i_{3} \geqslant 0 \text { and } i_{1}+i_{2}+i_{3} \geqslant 1, \\
\beta_{i_{1} i_{2} i_{3}}=\omega \theta^{i_{1}} \nabla\left\{(\nabla \omega)^{\left.i_{2}\right\}} \eta^{i_{3}},\right. & \text { if } i_{2} \geqslant 1 \text { and } i_{1}, i_{3} \geqslant 0, \\
\gamma_{i_{1} i_{2} i_{3}}=\omega \theta^{i_{1}}(\nabla \omega)^{i_{2}} \nabla\left(\eta^{i_{3}}\right), & \text { if } i_{3} \geqslant 1 \text { and } i_{1}, i_{2} \geqslant 0,
\end{array}
$$

and set them equal to 0 for other values of $i_{1}, i_{2}, i_{3} \geqslant 0$. Then $\alpha_{i_{1} i_{2} i_{3}} \in \Omega^{2 r} \otimes \Lambda^{2 r} P$, $\beta_{i_{1} i_{2} i_{3}} \in \Omega^{2(r+1)} \otimes \Lambda^{2(r+1)} P$, and $\gamma_{i_{1} i_{2} i_{3}} \in \Omega^{2(r+1)} \otimes \Lambda^{2(r+1)} P$, where $r=i_{1}+i_{2}+i_{3}$.

Lemma 4.4. Suppose that $i_{1}+i_{2}+i_{3}+1=k=(\operatorname{rank} P) / 2$. Then
(1) $\left(i_{1}+1\right)\left(i_{3}+1\right) \beta_{i_{1} i_{2} i_{3}}$

$$
=-2 i_{2}\left(i_{3}+1\right) \alpha_{i_{1}+1, i_{2}-1, i_{3}+1}-i_{2}\left(i_{2}-1\right) \gamma_{i_{1}+1, i_{2}-2, i_{3}+1} ;
$$

(2) $\left(i_{9}+1\right)\left(i_{2}+2\right) \gamma_{i_{1} i_{2} i_{3}}=-2 i_{3}\left(i_{2}+2\right) \alpha_{i_{1}, i_{2}+1, i_{3}}-i_{1} i_{3} \beta_{i_{1}-1, i_{2}+2, i_{3}-1}$;
(3) $\nabla\left(\omega \alpha_{i_{1} i_{2} i_{3}}\right)=\alpha_{i_{1}, i_{2}+1, i_{3}}-\beta_{i_{1} i_{2} i_{3}}-\gamma_{i_{1} i_{2} i_{3}}$.

Proof. We use the distributive properties of both ∇ (Proposition 2.1(2)) and the bracket (Proposition 4.1(1) and (3)).
(1) If $i_{2}=0$, then both sides are zero. Assume that $i_{2} \geqslant 1$. We have

$$
\begin{aligned}
\beta_{i_{1} i_{2} i_{3}} & =\omega \theta^{i_{1}} \nabla\left\{(\nabla \omega)^{i_{2}}\right\} \eta^{i_{3}} \\
& =i_{2} \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}-1} \nabla \nabla \omega \eta^{i_{3}} \\
& =-i_{2} \nabla \nabla \omega \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}-1} \eta^{i_{3}},
\end{aligned}
$$

since $\nabla \nabla \omega$ and $\omega \theta^{i_{1}}(\nabla \omega)^{i_{2}-1}$ both have odd degrees. Therefore by (4.8)

$$
\beta_{i_{1} i_{2} i_{3}}=i_{2}[\omega, \theta] \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}-1} \eta^{i_{3}}
$$

Now, we move ω to the right and distribute it:

$$
\begin{aligned}
\beta_{i_{1} i_{2} i_{3}}= & -i_{2} \theta[\omega, \omega] \theta^{i_{1}}(\nabla \omega)^{i_{2}-1} \eta^{i_{3}}+i_{2} \theta \omega\left[\omega, \theta^{i_{1}}\right](\nabla \omega)^{i_{2}-1} \eta^{i_{3}} \\
& +i_{2} \theta \omega \theta^{i_{1}}\left[\omega,(\nabla \omega)^{i_{2}-1}\right] \eta^{i_{3}}+i_{2} \theta \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}-1}\left[\omega, \eta^{i_{3}}\right] .
\end{aligned}
$$

By (4.10), the last summand is zero and using $[\omega, \omega]=2 \eta$, (4.7), and (4.8) we obtain

$$
\begin{aligned}
\beta_{i_{1} i_{2} i_{3}}= & -2 i_{2} \theta^{i_{1}+1}(\nabla \omega)^{i_{2}-1} \eta^{i_{3}+1}-i_{1} i_{2} \omega \theta^{i_{1}}(\nabla \nabla \omega)(\nabla \omega)^{i_{2}-1} \eta^{i_{3}} \\
& -\left(i_{2}-1\right) i_{2} \omega \theta^{i_{1}+1}(\nabla \omega)^{i_{2}-2} \nabla \eta \eta^{i_{3}} .
\end{aligned}
$$

Multiplying by $i_{3}+1$ yields

$$
\begin{aligned}
\left(i_{3}+1\right) \beta_{i_{1} i_{2} i_{3}}= & -2_{i_{2}}\left(i_{3}+1\right) \alpha_{i_{1}+1, i_{2}-1, i_{3}+1}-i_{1}\left(i_{3}+1\right) \beta_{i_{1} i_{2} i_{3}} \\
& -\left(i_{2}-1\right) i_{2} \gamma_{i_{1}+1, i_{2}-2, i_{3}+1} .
\end{aligned}
$$

This gives (1).
(2) If $i_{3}=0$, then both sides are zero. Assume that $i_{3} \geqslant 1$. We have

$$
\begin{aligned}
\gamma_{i_{1} i_{2} i_{3}} & =\omega \theta^{i_{1}}(\nabla \omega)^{i_{2}} \nabla\left(\eta^{i_{3}}\right) \\
& =i_{3} \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}} \nabla \eta \eta^{i_{3}-1} \\
& =-i_{3} \nabla \eta \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}} \eta^{i_{3}-1}
\end{aligned}
$$

since $\nabla \eta$ and $\omega \theta^{i_{1}}(\nabla \omega)^{i_{2}}$ both have odd degrees. Therefore, by (4.7) we have

$$
\gamma_{i_{1} i_{2} i_{3}}=i_{3}[\omega, \nabla \omega] \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}} \eta^{i_{3}-1}
$$

Again, we move ω to the right and distribute it:

$$
\begin{aligned}
\gamma_{i_{1} i_{2} i_{3}}= & -i_{3} \nabla \omega[\omega, \omega] \theta^{i_{1}}(\nabla \omega)^{i_{2}} \eta^{i_{3}-1}+i_{3} \nabla \omega \omega\left[\omega, \theta^{i_{1}}\right](\nabla \omega)^{i_{2}} \eta^{i_{3}-1} \\
& +i_{\mathrm{a}} \nabla \omega \omega \theta^{i_{1}}\left[\omega,(\nabla \omega)^{i_{2}}\right] \eta^{i_{3}-1}+i_{3} \nabla \omega \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}}\left[\omega, \eta^{i_{3}-1}\right] .
\end{aligned}
$$

By (4.10), the last summand is zero and using $[\omega, \omega]=2 \eta$, (4.7), and (4.8), we obtain

$$
\begin{aligned}
\gamma_{i_{1} i_{2} i_{3}}= & -2 i_{3} i^{i_{1}}(\nabla \omega)^{i_{2}+1} \eta^{i_{3}}-i_{1} i_{3} \omega \theta^{i_{1}-1} \nabla \nabla \omega(\nabla \omega)^{i_{2}+\frac{1}{1}} \eta^{i_{3}-1} \\
& -i_{2} i_{3} \omega \theta^{i_{1}}(\nabla \omega)^{i_{2}} \nabla \eta \eta^{i_{3}-1} .
\end{aligned}
$$

Multiplying by $i_{2}+2$ yields

$$
\left(i_{2}+2\right) \gamma_{i_{1} i_{2} i_{3}}=-2 i_{3}\left(i_{2}+2\right) \alpha_{i_{1}, i_{2}+1, i_{3}}-i_{1} i_{3} \beta_{i_{1}-1, i_{2}+2, i_{3}-1}-i_{9}\left(i_{2}+2\right) \gamma_{i_{1} i_{5} i_{3}}
$$

This gives (2).
Finally, (3) follows immediately from Proposition 2.1(2) and thus we have completed the proof of Lemma 4.4.

Define the differential forms

$$
\begin{aligned}
& {\tilde{i_{1} i_{2} i_{3}}}=\left((2 k)!/ i_{1}!i_{2}!i_{3}!\right) \alpha_{i_{1} i_{2} i_{3}} \\
& \vec{\beta}_{i_{1} i_{2} i_{3}}=\left((2 k)!/\left(i_{2}+2 i_{3}+1\right) i_{1}!i_{2}!i_{3}!\right) \beta_{i_{1} i_{2} i_{3}} \\
& \delta_{i_{1} i_{2} i_{3}}=\left((2 k)!/\left(i_{2}+2 i_{3}+1\right) i_{1}!i_{2}!i_{3}!\right) \omega \alpha_{i_{1} i_{2} i_{3}}
\end{aligned}
$$

Remark. Using the fact that $\left(n_{1}-n_{2}+\cdots+n_{p}\right)!/\left(n_{1}!n_{2}!\cdots n_{p}!\right)$ is always an integer, for given nonnegative intcgers n_{i}, we can show that $(2 k)!/(a!(b+1)$! $c!(b+2 c))$ is an integer provided that $a+b+c=k$. This is easily scen by considering the following four cases: $b \div 2 c \leqslant k-1, b+2 c=k, b \div 2 c=-$ $k-f-1$, and $b+2 c \geqslant k-2$.

Lemma 4.5. If $i_{1} \cdot i_{2}+i_{3}+1=k$, then we have
(1) $\nabla\left(\delta_{i_{1} i_{3} i_{3}}\right)=\tilde{\alpha}_{i_{1}, i_{2}+1, i_{2}}-\tilde{\beta}_{i_{1} i_{2} i_{3}}-\tilde{\beta}_{i_{1}-1, i_{2}+2, i_{3}-1}$,
(2) $\tilde{\alpha}_{i_{4}+1,0 . i_{3}-1}+\widetilde{\beta}_{i_{1}, 1, i_{3}}=0$.

Proof. From Lemma 4.4(3), we have

$$
\nabla\left(\omega \alpha_{i_{1} i_{2} i_{3}}\right)=-\alpha_{i_{1}, i_{2}+1, i_{3}}-\beta_{i_{1} i_{2} i_{3}}-\gamma_{i_{12} i_{3} i_{3}} .
$$

Let $p==(2 k)!\left(\left(i_{2}+2 i_{3}+1\right) i_{1}!i_{2}!i_{3}!\right)=\left(i_{2}+1\right)\left(i_{2}+2\right) q$, where $q \in \mathbb{Z}$ by the preceding remark. Then, multiplying both sides by p and substituting $\left(i_{2}+1\right)\left(i_{2} \div 2\right) \gamma_{i_{1} i_{2} i_{3}}$ according to Lemma 4.4(2), gives the desired result.
(2) Applying Lemma 4.4(1), with $i_{2}=1$, we have

$$
\left(i_{1}+1\right)\left(i_{3}-1\right) \beta_{i_{1}, 1, i_{3}}=-2\left(i_{3}-1\right) \alpha_{i_{1}+1,0, i_{3}+1} .
$$

Multiplying by the integer $(2 k)!/\left(\left(i_{1}-1\right)!1!\left(i_{3}+1\right)!\left(2+2 i_{3}\right)\right)$ we get

$$
\tilde{\alpha}_{i_{1}+1,0, i_{3}+1}+\tilde{\beta}_{i_{1}, 1, i_{3}}=0
$$

Lemma 4.6. Let

$$
t \cdots \sum_{i_{1} ; i_{2}: i_{3}=k-1} \delta_{i_{1} i_{2} i_{3}} \in \Omega^{n-1} \otimes A^{n} P
$$

Then

$$
((2 k)!/ k!) \theta_{1}{ }^{k}==((2 k)!/ k!) \theta^{k}-!-\nabla t .
$$

With this lemma we conclude the proof of Theorem 4.3.
Proof of Lemma 4.6. By Lemma 4.5(1), we have

$$
\nabla t: \sum_{\substack{i_{1}+i_{2}-i_{3}=k \\ i_{2} \geqslant 1}} \tilde{x}_{i_{1}, i_{2}, i_{3}}--\sum_{i_{1}-i_{2}, i_{3}-k-1} \tilde{\beta}_{i_{1} i_{2} i_{3}}+\sum_{\substack{i_{1}+i_{2} i=i_{3}=k-1 \\ i_{2} \geqslant 2}} \tilde{\beta}_{i_{1} i_{2} i_{3}}
$$

and also by Lemma 4.5(2),

$$
\sum_{\substack{i_{1}, i_{3}-k \\ i_{1}, i_{3} \geqslant 1}} \tilde{\alpha}_{i_{1}, 0, i_{3}}-\sum_{i_{1}: i_{3} \leq 1 \geqslant \pm k} \tilde{\beta}_{i_{1}, 1, i_{3}}=0 .
$$

Adding this to ∇t gives

$$
\nabla t=\sum_{i_{1}+i_{2}+i_{3}=k} \tilde{\alpha}_{i_{1} i_{2} i_{3}}
$$

such that $i_{2} \geqslant 1$ or, $i_{2}=0$ and $i_{1}, i_{3} \geqslant 1$. Since

$$
((2 k)!/ k!) \theta_{1}^{k}=\sum_{i_{1}+i_{2}+i_{3}=k} \tilde{\alpha}_{i_{1}, i_{2} i_{3}} \quad \text { by }(4.6),
$$

and since $\tilde{\alpha}_{k, 0,0}=((2 k)!/ k!)$ and $\alpha_{0,0, k}=((2 k)!/ k!) \eta^{k}$, we obtain

$$
((2 k)!/ k!) \theta_{1}^{k}=((2 k)!/ k!) \theta^{k}+\nabla t+((2 k)!/ k!) \eta^{k} .
$$

But $\eta^{k}=0$. In fact, by Proposition 4.1 and (4.10)

$$
\eta^{k}=\frac{1}{2}[\omega, \omega] \eta^{k-1}=((k-1) / 2) \omega \eta^{k-2}[\omega, \eta]=0,
$$

Thus we have obtained the desired relation.
Remark. We denote the Euler class $e(P, h, \nabla)$ simply by $e(P, h)$, since we have seen that $e(P, h, \nabla)$ is independent of the choice of the connection ∇ on P compatible with h.

5. Properties of Euler Clasees Connections with the Differentiable Euler Classes

Let $\varphi: R \rightarrow R_{1}$ be a K-algebra homomorphism. Given an inner product module (P, h) over R define
(i) $P_{1}=R_{1} \otimes P$.
(ii) $h_{1}: P_{1} \times P_{1} \rightarrow R_{1}$ by $h_{1}\left(r_{1} \otimes p, r_{1}^{\prime} \otimes p^{\prime}\right)=r_{1} r_{1}^{\prime} \varphi\left(h\left(p, p^{\prime}\right)\right), r_{1}, r_{1}{ }^{\prime} \in R_{1}$, $p, p^{\prime} \in P$.
(iii) $\nabla_{1}: P_{1} \rightarrow \Omega_{R_{1}} \otimes P_{1}$ by $\nabla_{1}\left(r_{1} \otimes p\right)=d r_{1} \otimes 1 \otimes p+\overline{r_{1} \nabla(p)}, r_{1} \in R_{1}$, $p \in P$, where $\overline{\nabla(p)}$ is the image of $\nabla(p)$ under the canonical map $\Omega_{R} \otimes P \rightarrow$ $\Omega_{R_{1}} \otimes P_{\mathrm{I}}$.

It is clear that if ∇ is a connection compatible with h, so is ∇_{1} with respect to h_{1}. The next proposition is immediate.

Proposition 5.1. (1) The following diagram is commutative
where η is the linear map which satisfies $\eta\left(r_{1} \otimes \omega \otimes p\right)=r_{1} \omega \otimes 1 \otimes p, r_{1} \in R_{1}$, $\omega \in \Omega_{R}{ }^{2}, p \in P$.
(2) If S is a multiplicative closed subset of R and $R \rightarrow R_{S}$ is the natural map, then $\left(K_{\nabla}\right)_{s}=K_{\nabla_{S}}$.

Proposition 5.2. Let $\varphi: R \rightarrow R_{1}$ be a K-algebra homomorphism. Let (P, h) be an inner product module ozer R of even rank, and let $\left(P_{1}, h_{1}\right)$ be the one induced by φ. Then

$$
\varphi_{*}(e(P, h))=e\left(P_{1}, h_{1}\right)
$$

where φ_{*} is the K-linear map $H_{\mathrm{DR}}^{*}(P, h) \rightarrow H_{\mathrm{DR}}^{*}\left(P_{1}, h_{1}\right)$ induced by the canonical $\operatorname{map} P \rightarrow P_{1}$.

Proof. Let ∇ be a connection on P compatible with h, and let ∇_{1} be the one on P_{1} induced by ∇, as in (iii) above. Let $\eta: R_{1} \otimes\left(\Omega_{R}^{2} \otimes P\right) \rightarrow \Omega_{R_{1}}^{2} \otimes P_{1}$ be the map of Proposition 5.1(1). Then $\psi: A^{2}(P, h) \rightarrow A^{2}\left(P_{1}, h_{1}\right)$, defined by $f \mapsto \eta \circ(I \otimes f)$, maps K_{∇} into $K_{\nabla_{1}}$.

Now the result follows from the commutativity of all the following diagrams.

and

Theorem 5.3. Suppose that for $i=1,2,\left(P_{i}, h_{i}\right)$ is an inner product module noer R of even rank n_{i}, and let $(P, h)=\left(P_{1}, h_{1}\right) \perp\left(P_{2}, h_{2}\right)$. Then

$$
e(P, h)=\binom{n_{1}+n_{2}}{n_{1}} e\left(P_{1}, h_{1}\right) \wedge e\left(P_{2}, h_{2}\right)
$$

in $H_{\mathrm{DR}}(P, h)$, where \wedge is the product induced in cohomology by the canonical bilinear map $A^{n_{1}} P_{1} \times \Lambda^{n_{2}} P_{2} \rightarrow \Lambda^{n_{1}+n_{2}} P$.

Proof. Let ∇ be a connection on P_{i} compatible with h_{i}. Then $\nabla=\nabla_{1} \bigcirc \nabla_{2}$ is a connection on P compatible with h. The identification $\Omega^{a} \otimes \Lambda^{m} P=$ $\Theta_{i+j=m}\left(\Omega^{a} \otimes A^{1} P_{1} \otimes A^{j} P_{2}\right)$ yields, when $a=2$ and $m=-2$, the equation
$\theta=\theta_{1}+\theta_{2}$ for the corresponding curvature forms. Thus, if $n_{i}=2 k_{i}$, we have

$$
\theta^{k_{1}+k_{2}}=\left(\theta_{1}+\theta_{2}\right)^{k_{1}+k_{2}}=\binom{k_{1}+k_{2}}{k_{1}} \theta_{1}^{k_{1}} \wedge \theta_{2}^{k_{2}}
$$

since $\theta_{i}{ }^{p}=0$ for $p>k_{i}$. Multiplying by $\left(2 k_{1}+2 k_{2}\right)!\left(\left(k_{1}+k_{2}\right)!\right.$ gives the result.

Theorem 5.4. Let $\alpha:(P, h) \rightarrow(Q, k)$ be an isometry of inner product modules of even rank n, i.e., an isomorphism $\alpha: P \stackrel{\sim}{\rightarrow} Q$ such that $h(x, y)=k(\alpha x, \alpha y)$ for all $x, y \in P$. Then $\left(\Lambda^{n} \alpha\right)_{*}(e(P, h))=e(Q, k)$, where $\left(\Lambda^{n} \alpha\right)$ is the isomorphism $H_{\mathrm{DR}}^{*}(P, h) \xrightarrow{\sim} H_{\mathrm{DR}}^{*}(Q, k)$ induced by $\Lambda^{n} P \xrightarrow[\sim]{\Lambda^{n}{ }^{n}} A^{n} Q$.

Proof. Consider a connection ∇ on P compatible with h. Then $\nabla_{\alpha}=$ $(I \otimes \alpha) \circ \nabla \circ \alpha^{-1}$ is a connection on Q compatible with k.

Next, it is easy to check that the following diagrams are commutative

and

where $\mu(f)=(I \otimes \alpha) \circ f \circ \alpha^{-1}, f \in A^{a}(P, h)$.
Thus, if θ is the curvature of ∇ and θ_{α} that of ∇_{α}, we have $(I \otimes \alpha \wedge \alpha)(\theta)=\theta_{\alpha}$. Therefore, if $n=2 p$, we have $\left(I \otimes \Lambda^{2 p} \alpha\right)\left(\Lambda^{p} \theta\right)=\Lambda^{p}((I \otimes \propto \wedge \alpha) \theta)=$ $\Lambda^{p} \theta_{\alpha}$. This shows that $\left(\Lambda^{n} \alpha\right)_{*}(e(P, h))=e(Q, k)$.

Corollary 5.5. If $\alpha:(P, h) \rightarrow(P, h)$ is an isometry and rank $P=n$ is event, then
(1) $\left(\Lambda^{n} \alpha\right)_{*}(e(P, h))=e(P, h)$.
(2) $\left(\Lambda^{n} \alpha\right) \circ\left(\Lambda^{n} \alpha\right)=I$.

In particular, if P is free then, for all $\alpha \in O(P, h)$ we have
(3) $\operatorname{det} \alpha \cdot e(P, h)=e(P, h)$.
(4) $(\operatorname{det} \alpha)^{2}=1$.

Corollary 5.6. If (P, h) is an inner product module of poyen rank and $P=$ $P_{1} \perp P_{2}$, where P_{1} has odd rank, then $e(P, h)=0$.

Proof. Define $\alpha \in O(P, h)$ by $\alpha\left(p_{1}, p_{2}\right)=\left(-p_{1}, p_{2}\right), p_{i} \in P_{i}$. Then $A^{n} \alpha=$ $-I$ and so $-e(P, h)=e(P, h)$. Thus $e(P, h)=0$.

Let M be a C^{∞}-manifold and let E be an oriented vector bundle over M of even dimension $n=2 k$. Let R be the ring of C^{∞}-maps $M \rightarrow \mathbb{R}$, and $P=\Gamma(E)$, the R-module of C^{∞}-sections of E over M. Choose a Euclidean metric h on E. Then we have an inner product module (P, h).

Proposition 5.7. There exists an isomorphism $H_{\mathrm{DR}}^{*}(P, h) \underset{\sim}{\alpha} H^{*}(M)$ such that $\alpha(e(P, h))=(2 \pi)^{n / 2} n!e(E)$, where $e(E)$ is the'usual Euler class of E.

Proof. Let $A^{p}(M)=-\Gamma\left(\Lambda^{p} T^{*}\right)$ be the module of C^{∞}-differential forms of degree p on M; here T^{*} is the dual tangent bundle of M. Then we have an isomorphism of differential graded algebras $\Omega_{R / \mathbb{R}} \approx A^{*}(M)$. Using the isomorphism $\Omega_{R / \mathbb{R}}^{a} \otimes \Lambda^{\alpha} P \approx \Gamma\left(\Lambda^{a} T^{*} \otimes \Lambda^{\alpha} E\right)$ we regard the elements of $\Omega_{R / \mathbb{R}}^{a} \otimes \Lambda^{\alpha} P$ as functions on M. Take a connection ∇ on P compatible with h. Then, ∇ is a local operator: if $\omega, \omega^{\prime} \in \Omega^{a} \otimes \Lambda^{\alpha} P$ are such that $\omega=\omega^{\prime}$ on an open set $U \subset M$, then $\nabla(\omega)=\nabla\left(\omega^{\prime}\right)$ on U.

Suppose now that (e_{1}, \ldots, e_{n}) is an orthonormal basis for E over U. We can write

$$
\begin{gathered}
\nabla\left(e_{i}\right)=\sum_{j=1}^{n} \omega_{j i} \otimes e_{j} \\
K_{\nabla}\left(e_{i}\right)=\sum_{j=1}^{n} K_{j i} \otimes e_{j}
\end{gathered}
$$

on U, with $\omega_{i j} \in \Omega_{R}, K_{i j} \in \Omega_{R}{ }^{2}$. Since $\left(h\left(e_{i}, e_{j}\right)\right)=$ identity matrix, the compatibility condition implies that $\left(\omega_{i j}\right)$ and $\left(K_{i j}\right)$ are both skew-symmetric matrices.

If $\theta_{\nabla}=(v \circ(I \otimes u))^{-1}\left(K_{\nabla}\right)$, then $\theta_{\nabla}=-\frac{1}{2} \sum_{i, j} K_{i j} \otimes e_{i} \wedge e_{j}$. Thus

$$
\Lambda^{k} \theta_{\nabla}=\left((-1)^{k} / 2^{k}\right)\left(\sum \epsilon_{i_{1} i_{2} \cdots i_{2 k}} K_{i_{1} i_{2}} \wedge \cdots \wedge K_{i_{2 k-1}, i_{2 k}}\right) \otimes e_{1} \wedge \cdots \wedge e_{2 k}
$$

on U.
On the other hand, by [4], the Euler class of E ' is the cohomology class of the form γ, where γ can be expressed on U with respect to the orthonormal positive basis $\left(e_{1}, \ldots, e_{n}\right)$ by

$$
\gamma=\left((-1)^{k} / 2^{2 k} \pi^{k} k!\right)\left(\sum \epsilon_{i_{1} i_{2} \cdots i_{2 k}} K_{i_{1} i_{2}} \wedge \cdots \wedge K_{i_{2 k-1}, i_{2 k}}\right)
$$

By choosing orthonormal positive local bases we define an isomorphism $\alpha: \Lambda^{n} P \oplus R$ as follows. Set

$$
\alpha\left(s_{1} \wedge \cdots \wedge s_{n}\right)=\operatorname{det}\left(a_{i j}\right) \text { on } U
$$

if $s_{1}, \ldots, s_{n} \in P, s_{i}=\sum a_{j i} e_{j}$ on U, and $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal positive basis for E / U.

This extends to an isomorphism $\Omega^{*} \otimes \Lambda^{n} P \rightarrow \Omega^{*}$ which sends $(2 k)!/ k!\Lambda^{k} \theta_{\nabla}$ into $(2 \pi)^{k}(2 k)!\gamma$.

It oniy remains to see that α commutes with the operators ∇ and d. This is equivalent to $\nabla\left(\omega_{0}\right)=0$, where $\omega_{0}=\alpha^{-1}(1)$. But, if $\left(e_{1}, \ldots, e_{n}\right)$ and U are as above, then $\omega_{0} / U=e_{1} \wedge \cdots \wedge e_{n}$, and so

$$
\begin{aligned}
\nabla\left(\omega_{0}\right) / U & =\sum_{i=1}^{n} e_{1} \wedge \cdots \wedge \nabla e_{i} \wedge \cdots \wedge e_{n} \\
& =\left(\text { Trace of }\left(\omega_{i j}\right)\right) e_{1} \wedge \cdots \wedge e_{n} \\
& =0,
\end{aligned}
$$

since $\left(\omega_{i j}\right)$ is skew as we have observed earlier.

6. Applications

Euler Classes of Free Modules

Suppose that (F, h) is an inner product module with F free. Choose a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for F and write $c_{i j}=h\left(e_{i}, e_{j}\right), C=\left(c_{i j}\right)$, and $u=\operatorname{det} C$. Then, by the proof of Theorem 1.3, a connection ∇ on F compatible with h can be given by

$$
\nabla\left(e_{i}\right)=\sum_{j} \omega_{j i} \otimes e_{j}
$$

where $\omega=\frac{1}{2} C^{-1} d C$.
Let $\bar{C}: F \rightarrow F$ be the linear map given by $\bar{C}\left(e_{i}\right)=\sum_{j} c_{j i} e_{j}$. Then, it can be checked that

$$
(I \otimes \bar{C} \wedge \bar{C})\left(\theta_{\nabla}\right)=\frac{1}{8} \sum_{i, j} \theta_{i j} \otimes e_{i} \wedge e_{j},
$$

where $\left(\theta_{i j}\right)=d C \wedge C^{-1} d C, I=$ identity map of Ω^{2}. Thus

$$
\Lambda^{k} \theta_{\nabla}=\left(1 / 8^{k} u\right)\left\{\sum \epsilon_{i_{1} i_{2} \cdots i_{2 k}} \theta_{i_{1} i_{2}} \wedge \cdots \wedge \theta_{i_{2 k-1}, i_{2 k}}\right\} \otimes e_{1} \wedge \cdots \wedge e_{2 k}
$$

Since h_{n} on $\Lambda^{n} F$ is multiplication by $u=\operatorname{det} C$, we see that $\left(\Omega \cdot \otimes A^{n} F, \nabla\right) \approx$ $\left(\Omega, d_{h}\right)$, where $d_{h}: \Omega^{p} \rightarrow \Omega^{p-1}$ is the coboundary map given by $d_{n}(\eta)=$ $d \eta+d u / 2 u \wedge \eta, \eta \in \Omega^{p}$. Thus

$$
e(F, h)=\left((2 k)!/ k!8^{k} u\right)\left\{\sum_{i_{1} i_{2} \cdots i_{2 k}} \theta_{i_{1} i_{2}} \wedge \cdots \wedge \theta_{i_{2 k-1}, i_{2 k}}\right\} \in H_{\mathrm{DR}}^{2 k}\left(R, d_{h}\right)
$$

The Euler Class of the Tangent Bundle to the n-Sphere

Let K be a commutative ring. For $n \geqslant 1$, let $R=R_{n}=K\left[X_{1}, \ldots, X_{n+1}\right] /(f)$, where $f=1-\sum_{1}^{n+1} X_{i}{ }^{2}$. Let x_{i} be the image of X_{i} in R. Let $P=P_{n}=$ $\left\{a \in R^{n+1} \mid h(a, u)=0\right\}$, where $u=\left(x_{1}, \ldots, x_{n+1}\right)$ and $h: R^{n+1} \times R^{n+1} \rightarrow R$ is the usual inner product $h(a, b)=\sum_{i} a_{i} b_{i}$.

If $\left\{e_{1}, \ldots, e_{n+1}\right\}$ is the standard basis for R^{n+1} and $e^{\prime}{ }_{i}=e_{i}-x_{i} u, i=1, \ldots, n+1$, then $\left\{e_{1}^{\prime}, \ldots, e_{n+1}^{\prime}\right\}$ is a system of generators of P. A connection ∇ compatible with h on P can be given by $\nabla(a)=\sum_{j} d a_{j} \otimes e_{j}^{\prime}, a=\left(a_{1}, \ldots, a_{n+1}\right) \in P$. In particular, $\nabla\left(e_{i}^{\prime}\right)=-\sum_{j} d\left(x_{i} x_{j}\right) \otimes e_{j}^{\prime}$. Its corresponding curvature takes the form

$$
K_{\nabla}(a)=\sum_{i<j} d x_{i} \wedge d x_{j} \otimes\left(a_{i} e_{j}^{\prime}-a_{j} e^{\prime}\right)
$$

where a_{i} is the i th component of $a \in P$. Since $u_{e_{i}{ }^{\prime} \wedge_{i}}(a)=a_{i} e^{\prime}{ }_{j}-a_{j} e^{\prime}{ }_{i}, a \in P$, we have

$$
\left.\theta_{\nabla}=\frac{1}{2} \sum_{i, j} d x_{i} \wedge d x_{j} \otimes\right) e_{i}^{\prime} \wedge e_{j}^{\prime}
$$

Let

$$
\begin{aligned}
& \omega=\sum_{i=1}^{n+1}(-1)^{i+1} x_{i} d x_{1} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge d x_{n+1} \in \Omega_{R}{ }^{n} \\
& e=\sum_{i=1}^{n+1}(-1)^{i+1} x_{i} e_{1}^{\prime} \wedge \cdots \wedge \widehat{e_{i}^{\prime}} \wedge \cdots \wedge e_{n+1}^{\prime} \in \Lambda^{n} P
\end{aligned}
$$

It is immediatc that

$$
\begin{gather*}
d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n+1}=(-1)^{i+1} x_{i} \omega \tag{6.1}\\
e_{1}^{\prime} \wedge \cdots \wedge \widehat{e_{i}^{\prime}} \wedge \cdots \wedge e_{n+1}^{\prime}=(-1)^{i+1} x_{i} e
\end{gather*}
$$

From these we readily obtain $\Omega_{R}{ }^{n}=R \omega$ and $\Lambda^{n} P=R e$, and the map $\Omega_{R}{ }^{p} \otimes$ $\Lambda^{n} P \rightarrow \Omega_{R}{ }^{p}$ defined by $\eta \otimes e \rightarrow \eta$ establishes an isomorphism of differential graded algebras.

Now, we assume that $n=2 k$. Then, by the above description of θ_{∇} and (6.1), we see that

$$
\begin{equation*}
e(P, h)=\left((2 k)!^{2} / k!2^{k}\right)\{\omega\} \quad \text { in } H_{\mathrm{DR}}^{n}(R) \tag{6.2}
\end{equation*}
$$

We wish to show that $e(P, h)=0$ if char K is a prime $p \geqslant k+1$, and $e(P, h) \neq 0$ and is a generator of $H_{\mathrm{DR}}^{n}(R)$, if K contains the rational numbers.

If $\eta_{1}, \eta_{2} \in \Omega_{R}{ }^{n}$, we write $\eta_{1} \equiv \eta_{2}$ in case η_{1} and η_{2} are cohomologous, and if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n+1}\right)$, with nonnegative integers α_{i}, we set $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n+1}^{\alpha_{n+1}}$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n+1}$.

Using (6.1), we obtain

$$
\begin{aligned}
& d\left(x^{\alpha} x_{i} x_{j} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge \widehat{d x_{j}} \wedge \cdots \wedge d x_{n+1}\right) \\
& \quad=(-1)^{i+j}\left(\left(\alpha_{i}+1\right) x^{\alpha} x_{j}^{2}-\left(\alpha_{j}+1\right) x^{\alpha} x_{i}^{2}\right) \omega, \quad i<j
\end{aligned}
$$

Thus

$$
\left(\alpha_{i}+1\right) x^{\alpha} x_{j}{ }^{2} \omega \equiv\left(\alpha_{j}+1\right) x^{\alpha} x_{i}{ }^{2} \omega \quad \text { for all } \alpha, i, j .
$$

Adding these relations over all $i=1,2, \ldots, n+1$, and using

$$
\begin{equation*}
\sum_{i=1}^{n+1} x_{i}^{2}=1 \tag{6.3}
\end{equation*}
$$

we get

$$
\begin{equation*}
(|\alpha|+n+1) x^{\alpha} x_{j}{ }^{2} \omega \equiv\left(\alpha_{j}+1\right) x^{\alpha} \omega \quad \text { for all } \alpha, j \tag{6.4}
\end{equation*}
$$

If char K is a prime $p \geqslant n+1$, then (6.4) implies $x^{\alpha} \omega \equiv 0$ for all α such that $|\alpha|+n+1=p$. Next, using induction and (6.3) to lower degrees by 2 we arrive at $\omega \equiv 0$. If $k+1 \leqslant p \leqslant 2 k$ then $(2 k)!/ k!=0$. Thus, $e(P, h)=0$, as was claimed.

If K contains the rational numbers, then (6.4) can be written as

$$
x^{\alpha} x_{i}^{2} \omega \equiv\left(\alpha_{j}+1\right) /(|\alpha|+n+1) x^{\alpha} \omega
$$

and from this and induction on $|\alpha|$, we can see that $H_{\mathrm{DR}}^{n}(R)=K\{\omega\}$.
Define a K-linear map $\varphi: K\left[X_{1}, \ldots, X_{n+1}\right] \rightarrow K$ as follows

$$
\begin{align*}
\varphi\left(X_{1}^{\alpha_{1}} \cdots X_{n+1}^{\alpha_{n+1}}\right) & =0 & & \text { if some } \alpha_{i} \text { is odd } \tag{6.5}\\
& =\left(\prod_{i=1}^{n+1} s_{\alpha_{i}-1}\right) / s_{|\alpha|+n-1} & & \text { if all } \alpha_{i} \text { are even }
\end{align*}
$$

where we set $s_{-1}=1$ and $s_{m}=1 \times 3 \times \cdots \times m$, if m is an odd number $\geqslant 1$.
It is easy to check that

$$
\varphi\left(X^{\alpha} X_{j}^{2}\right)=\left(\left(\alpha_{j}+1\right) /(|\alpha|+n+1)\right) \varphi\left(X^{\alpha}\right)
$$

and so $\varphi(I)=\{0\}$, where $I=\left(1-\sum_{i=1}^{n+1} X_{i}^{2}\right)$. Therefore φ induces a K-linear map

$$
\varphi: \Omega_{R}^{n}=R \omega \approx R \rightarrow K, \quad \omega \mapsto 1
$$

Furthermore, by checking on generators $d\left(x^{\alpha} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge \widehat{d x_{j}} \wedge \cdots \wedge\right.$ $\left.d x_{n+1}\right)$ we can sec that φ maps $d \Omega_{R}^{n-1}$ into 0 . Thus $\varphi: H_{D R}^{n}(R) \approx K$ and $\varphi(\{\omega\})=$ $1 / s_{n-1}$.

Proposition 6.1. Suppose that K is an Archimedean ordered field. Then P_{2} is not a free module.

Proof. Let $S^{2}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in K^{3} \mid \sum_{i=1}^{3} a_{i}^{2}=1\right\}$. We observe that any $f \in R=R_{2}$ defines a K-valued map on S^{2} in an obvious manner.

Let $T=\left\{r \in R \mid r=1 \because h, h \in R\right.$ and $h(a) \geqslant 0$, for all $\left.a \subset S^{2}\right\}$. This is a multiplicative closed subset of R.
If $P \Rightarrow P_{2}$ were free, then $\epsilon\left(P_{T}, h_{T}\right)=0$ in $H_{\mathrm{DR}}^{2}\left(P_{T}, h_{T}\right)$. In fact, choosing a basis $\left\{e_{1}, e_{2}\right\}$ for P and writing $h\left(e_{1}, e_{1}\right)==p, h\left(e_{1}, e_{2}\right)=q, h\left(e_{2}, e_{2}\right)=r$, then $p r-q^{2}=u \in K$, with $u>0$. Since $p \cdot(r \mid u)=1+\left(q^{2} / u\right) \in T$, p bccomes a unit in R_{T}, and so $P_{T} \cdots R_{T} e_{1} \perp\left(R_{T} e_{1}\right)^{\perp}$. 'I'hercfore, $e\left(P_{T}, h_{T}\right)=-0$, by Corollary 5.6.

However, we show that $e\left(P_{T}, h_{T}\right) \not / 0$.
Definition. (1) Let f_{n}, f be functions on S^{2} with values in K. We write $f_{n} \rightarrow f$ if $\forall \epsilon>0 \exists n_{0}$ such that $, f_{n}(a)-f(a)_{i} \leqslant \epsilon \forall a \in S^{2}, n \leqslant n_{0}$.
(2) If $\eta_{n}, \eta \in \Omega_{R}{ }^{\alpha}$, we write $\eta_{n} \rightarrow \eta$ if there exists $\omega_{j} \in \Omega_{R^{\alpha}}, f_{j}, f_{n}, \in R$, $j=1,2, \ldots, p, n=1,2,3, \ldots$, such that
(i) $\eta_{n}=\sum_{j=1}^{p} f_{n i} \omega_{j} \quad$ and $\quad \eta=\sum_{j=1}^{p} f_{i} \omega_{j}$,
(ii) $f_{n j} \rightarrow f_{j}, \quad j=1, \ldots, p$.

Remarks. (a) Any $f \in R$ is bounded on S^{2}.
(b) If $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$, then $f_{n} \vdash g_{n} \rightarrow g+g$.
(c) If $f_{n} \rightarrow f$ and $g_{n}->g$, and f and g are both bounded, then $f_{n} \cdot g_{n} \rightarrow$ $f \cdot g$,
(d) If $\eta_{n} \rightarrow \eta, f_{n} \rightarrow f, f$ bounded, then $f_{n} \eta_{n} \rightarrow f \eta$.

Lemma 6.2. Let $t \in T$. Then there exists a sequence $\left(u_{n}\right), u_{n} \in R$, such that
(1) $u_{\pi} \rightarrow 1 / t$,
(2) $d u_{n}+u_{n}{ }^{2} d t \rightarrow 0$.

Observe that (2) means $d u_{n} \rightarrow d(1 / t)$.
Proof. First of all, we observe that if $t \in T$, then we can write $t=1 \quad m h$, where $h \in R$ and $0 \leqslant h \leqslant \frac{1}{2}$, and $m \in \mathbb{N}$. In fact, let $h^{\prime} \in R$ such that $t=1+h^{t}$ and $h^{\prime}(a) \geqslant 0$, for all $a \in S^{2}$. Since h^{\prime} is bounded on S^{2} and K is Archimedean, we can find $m \in \mathbb{N}$ such that $2 h^{\prime} \leqslant m$. Then, $h=h^{\prime} / m$ will do.

We proceed by induction on m. Let $r=: 1 \dashv(m-1) h$, so that $t=:=r \dashv h$. Suppose we have already found $\left(v_{n}\right), v_{n} \in R$, such that
(1) $v_{n} \rightarrow 1 / r$,
(2) $d v_{n}+\tau_{n}^{2} d r \rightarrow 0$.

Since $v_{n} h \rightarrow h / r$ and $h / r \leqslant \frac{1}{2}$ we can assume that
(3) $\left|v_{n} h\right| \leqslant \frac{2}{\delta_{0}}$ for all n.

Set $u_{n}=v_{n} \cdot \sum_{0}^{n}(-1)^{k}\left(v_{n} h\right)^{k}=v_{m}\left(f_{n} \mid g_{n}\right) \in R$, where $f_{n}=1+(-1)^{n}\left(v_{n} h\right)^{x+1}$, and $g_{n}=1+v_{n} h$. Then
(4) $f_{n} \rightarrow 1, g_{n} \rightarrow 1+(h / r)$, and $\left|g_{n}\right| \leqslant \frac{5}{3}$, for all n. It is clear that $u_{n} \rightarrow(1 / r)(1 /(1+(h / r)))=1 /(r+h)=1 / t$, in view of (1) and (4). Observe that $d u_{n}+u_{n}{ }^{2} d t \rightarrow 0$ is equivalent to $g_{n}{ }^{2}\left(d u_{n}+u_{n}{ }^{2} d t\right) \rightarrow 0$, since $\frac{s}{3} \leqslant\left|g_{n}\right|$, for all n. From $g_{n}^{2} d\left(f_{n} / g_{n}\right)=g_{n} d f_{n}-f_{n} d g_{n}$, we obtain

$$
g_{n}^{2}\left(d u_{n}+u_{n}^{2} d t\right)=g_{n} f_{n} d v_{n}+v_{n} g_{n} d f_{n}-v_{n} f_{n} d g_{n}+v_{n}^{2} f_{n}^{2} d t
$$

Expressing this as a linear combination of $d v_{n}, d h$, and $d r$, yields
$g_{n}^{2}\left(d u_{n}+u_{n}^{2} d t\right)=\left\{f_{n} g_{n}+(-1)^{n}(n+1) g_{n} \theta_{n}^{n+1}-f_{n} \theta\right\} d v_{n}$

$$
+\left\{(-1)^{n}(n+1) g_{n} v_{n}^{2} \theta_{n}^{n}-v_{n}^{2} f_{n}+v_{n}^{2} f_{n}^{2}\right\} d h+v_{n}^{2} f_{n}^{2} d r
$$

where $\theta_{n}=v_{n} h$. Writing $\beta_{n}=d v_{n}+v_{n}^{2} d r$, we know that $\beta_{n} \rightarrow 0$, and substituting $d v_{n}$ we get

$$
g_{n}^{2}\left(d u_{n}+u_{n}^{2} d t\right)=A_{n}+B_{n} d r+C_{n} d h
$$

where

$$
\begin{aligned}
A_{n} & =\left\{f_{n} g_{n}+(-1)^{n}(n+1) g_{n} \theta_{n}^{n+1}-f_{n} \theta_{n}\right\} \beta_{n}, \\
B_{n} & =-v_{n}^{2}\left\{f_{n} g_{n}+(-1)^{n}(n+1) g_{n} \theta_{n}^{n+1}-f_{n} \theta_{n}-f_{n}^{2}\right\}, \\
C_{n} & =v_{n}^{2}\left\{(-1)^{n}(n+1) g_{n} \theta_{n}^{n}-f_{n}+f_{n}^{2}\right\} .
\end{aligned}
$$

Using $f_{n} \rightarrow 1, \beta_{n} \rightarrow 0, g_{n} \rightarrow 1+(h / r), \theta_{n} \rightarrow(h / r),(n+1) \theta_{n}{ }^{n} \rightarrow 0$ (by (3)), $v_{n} \rightarrow(1 / r)$, we get $A_{n} \rightarrow 0, B_{n} \rightarrow 0$, and $C_{n} \rightarrow 0$.

Lemma 6.3. Let $\omega=x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{2} d x_{1} \wedge d x_{6}$. Suppose that $\omega=d(\eta \mid t)$ for some $\eta \in \Omega_{R}{ }^{2}$ and $t \in T$, Then there exist sequences of forms $\left(\alpha_{n}\right),\left(\beta_{n}\right), \alpha_{n} \in \Omega_{R}^{2}, \beta_{n} \in \Omega_{R}$, such that $\omega=\alpha_{n}+d \beta_{n}$, and $\alpha_{n} \rightarrow 0$.

Proof. We have

$$
\begin{aligned}
\omega & =d(\eta / t)=d \eta / t-\left(1 / t^{2}\right) d t \wedge \eta, \\
t^{2} \omega & =t d \eta-d t \wedge \eta .
\end{aligned}
$$

Take (u_{n}) as in Lemma 6.2. Then

$$
\begin{aligned}
u_{n}^{2} t^{2} \omega & =u_{n}{ }^{2} t d \eta-u_{n}^{2} d t \wedge \eta \\
& =u_{n}^{2} t d \eta-\left(d u_{n}+u_{n}^{2} d t\right) \wedge \eta+d u_{n} \wedge \eta \\
& =u_{n}\left(u_{n} t-1\right) d \eta-\left(d u_{n}+u_{n}{ }^{2} d t\right) \wedge \eta+d\left(u_{n} \wedge \eta\right) .
\end{aligned}
$$

Thus we have

$$
u_{n}^{2} t^{2} \omega-\alpha_{n}^{\prime}+d \beta_{n}, \quad \text { with } \quad \alpha_{n}^{\prime} \rightarrow 0
$$

Finally, $\omega=\left(1-u_{n}{ }^{2} t^{2}\right) \omega+\alpha_{n}{ }^{\prime}+d \beta_{n}=\alpha_{n}+d \beta_{n}$, where $\alpha_{n}=\left(1-u_{n}{ }^{2} t^{2}\right) \omega+$ $\alpha_{n}{ }^{\prime} \rightarrow 0$.

Lemma 6.4. If $f \in R$ satisfies $f(a) \geqslant 0$, for all $a \in S^{2}$, then $\varphi(f) \geqslant 0$, where $\varphi: R \rightarrow K$ is the map defined in (6.5), which induces $H_{\mathrm{DR}}^{2}(R) \approx K$.

Proof. We can assume $f=\sum \lambda_{\alpha \beta} x_{1}^{2 \alpha} x_{2}^{2 \beta}, \lambda_{\alpha \beta} \in K$. In fact, by definition of φ, $\varphi(f)=\varphi\left(\frac{1}{8} \sum f\left(\pm x_{1}, \pm x_{2}, \pm x_{\varepsilon}\right)\right)$, so that f can be replaced by a sum of monomials of even degree in x_{1}, x_{2}, and x_{3}. Then, using $1=x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}$ we obtain the required expression.

Now, we prove two assertions:
Assertion 1. Let $N_{\alpha}=\sum_{p=0}^{\alpha}(-1)^{p}\binom{\alpha}{p}(1 /(2 p+1)) \in \mathbb{Q}$. Then there exists a sequence $\left\{\left(a_{n}, b_{n}\right)\right\}, a_{n}, b_{n} \in \mathbb{Q}$ such that
(i) $a_{n}{ }^{2}+b_{n}{ }^{2}=1$, for all $n \in \mathbb{Z}$.
(ii) $\lim _{N \rightarrow \infty}(1 / N) \sum_{n=0}^{N} a_{n}^{2 \alpha} b_{n}^{2 \beta}=\varphi\left(x_{1}^{2 \alpha} x_{2}^{2 \beta}\right) / N_{\alpha+\beta}$, for all $\alpha, \beta \geqslant 0$.

Proof. Choose $\zeta=a+b i \in \mathbb{Q}(i), i=(-1)^{1 / 2}$, such that $a^{2}+b^{2}=1$ and $\zeta^{\alpha} \neq 1$ for all $\alpha \in \mathbb{Z}, \alpha \neq 0$. Define $a_{n}, b_{n} \in \mathbb{Q}$ by the equation $\zeta^{n}=a_{n}+b_{n} i$, $n \in \mathbb{Z}$. Then $a_{n}=a_{-n}$ and $b_{n}=-b_{-n}$.

Now, we contend that the following relations hold.
(1) $\quad N_{\alpha}=\frac{2 \alpha}{2 \alpha+1} N_{\alpha-1}, \quad$ for all $\alpha \in \mathbb{Z}, \quad \alpha \geqslant 1$.
(2) $\frac{\varphi\left(x_{1}^{2 \alpha} x_{2}^{2 \beta}\right)}{N_{\alpha+\beta}}=\frac{\varphi\left(x_{1}^{2 \alpha} x_{2}^{2 \beta-2}\right)}{N_{\alpha+\beta-1}}-\frac{\varphi\left(x_{1}^{2 \alpha+2} x_{2}^{2 \beta-2}\right)}{N_{\alpha+\beta}}$.
(3) $a_{n}^{2 \alpha} b_{n}^{2 \beta}=a_{n}^{2 \alpha} b_{n}^{2 \beta-2}-a_{n}^{2 \alpha+2} b_{n}^{2 \beta-2}, \quad$ for all $n \in \mathbb{Z}$.
(4) $N_{\alpha} \cdot\binom{2 \alpha}{\alpha} \cdot \frac{1}{2^{2 \alpha}}=\varphi\left(x_{1}^{2 \alpha}\right)=\frac{1}{2 \alpha+1}$.
(5) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N} a_{n}^{2 \alpha}=\frac{1}{2^{2 \alpha}}\binom{2 \alpha}{\alpha}$.

To prove (1), we write, for $0 \leqslant p \leqslant \alpha-1$

$$
\frac{2 \alpha}{2 \alpha+1}\binom{\alpha-1}{p} \frac{1}{2 p+1}=\binom{\alpha}{p} \frac{2(\alpha-p)}{(2 \alpha+1)(2 p+1)}=\frac{1}{2 p+1}\binom{\alpha}{p}-\frac{1}{2 \alpha+1}\binom{\alpha}{p}
$$

Then

$$
\begin{aligned}
\frac{2 \alpha}{2 \alpha+1} N_{\alpha-1} & =\frac{2 \alpha}{2 \alpha+1} \sum_{0}^{\alpha-1}(-1)^{p}\binom{\alpha-1}{p} \frac{1}{2 p+1} \\
& =\sum_{0}^{\alpha-1}(-1)^{p}\binom{\alpha}{p} \frac{1}{2 p+1}-\frac{1}{2 \alpha+1} \sum_{0}^{\alpha-1}(-1)^{p}\binom{\alpha}{p} \\
& =N_{\alpha}-(-1)^{\alpha} \frac{1}{2 \alpha+1}-\frac{1}{2 \alpha+1}\left(-(-1)^{\alpha}\right)=N_{\alpha}
\end{aligned}
$$

Now, (2) follows from (1) and the definition of φ. (3) follows from $\alpha_{n}{ }^{2}+b_{n}{ }^{2}=1$, and (4) is proved by induction using (1) and the definition of p.

To prove (5), we observe that

$$
\begin{aligned}
\lim _{N \rightarrow \infty}(1 / N) \sum_{n=0}^{N} \zeta^{n \alpha} & =1 \quad \text { if } \quad \alpha=0, \\
& =0 \quad \text { if } \quad \alpha \neq 0 .
\end{aligned}
$$

In fact, if $\alpha=0$, this is clear, while if $\alpha \neq 0$, then

$$
\left\|\frac{1}{N} \sum_{n=0}^{N} \zeta^{n \alpha}\right\|=\left\|\frac{1}{N} \frac{1-\zeta^{(N+1) \alpha}}{1-\zeta^{*}}\right\| \leqslant \frac{4}{N^{2}\left\|1-\zeta^{\alpha}\right\|}
$$

where we are using $\|p+q i\|=p^{2}+q^{2},\|u+v\| \leqslant 2(\|u\|+\|v\|)$. This gives (5) because

$$
\begin{aligned}
(1 / N) \sum_{n=0}^{N} a_{n}^{2 \alpha} & =(1 / N) \sum_{n=0}^{N}\left(\left(\zeta^{n}+\zeta^{-n}\right) / 2\right)^{2 \alpha} \\
& =\left(1 / 2^{2 \alpha}\right) \sum_{0}^{2 \alpha}\binom{2 \alpha}{p}\left[(1 / N) \sum_{n=0}^{N} \zeta^{(2 \alpha-2 p) n}\right]
\end{aligned}
$$

implies

$$
\begin{aligned}
\lim _{N \rightarrow \infty}(1 / N) \sum_{n=0}^{N} a_{n}^{2 \alpha} & =\left(1 / 2^{2 \alpha}\right) \sum_{0}^{2 \alpha}\binom{2 \alpha}{p} \lim _{N \rightarrow \infty}(1 / N) \sum_{n=0}^{N} \zeta^{(2 \alpha-2 p) n} \\
& =\left(1 / 2^{2 \alpha}\right)\binom{2 \alpha}{\alpha}
\end{aligned}
$$

Finally, (4) and (5) show the assertion for $\beta=0$, and using (2), (3), and induction on β, we complete the proof of Assertion 1.
Assertion 2. Given an integer $C \geqslant 0$ there exists a sequence $\left\{r_{N}=\right.$ $\left.\left(r_{N, 0}, \ldots, r_{N, N}\right), r_{N, j} \in \mathbb{Q}\right\}$ such that
(i) $0<r_{N, j} \leqslant 1,1-r_{N, j}^{2}=t_{N, j}^{2}$, with $t_{N, j} \in \mathbb{Q}$.
(ii) $\lim _{N \rightarrow \infty}(1 / N) \sum_{j=0}^{N} r_{N, j}^{2 \alpha}=N_{\alpha}$, for all $0 \leqslant \alpha \leqslant C$.

Proof. We first notice that, for all $\alpha \geqslant 0$, we have

$$
\lim _{N \rightarrow \infty}(1 / N) \sum_{j=0}^{N}\left(1-\left(j^{2} / N^{2}\right)\right)^{\alpha}=N_{\alpha}
$$

In fact,

$$
\left(1-\left(j^{2} / N^{2}\right)\right)^{\alpha}=\sum_{p=0}^{\alpha}(-1)^{p}\binom{\alpha}{p}\left(j^{2 p} / N^{2 p}\right)
$$

and

$$
\lim _{N \rightarrow \infty}\left(1 / N^{2 p+1}\right) \sum_{j-0}^{N} j^{2 p}=(1 /(2 p+1))
$$

For each N, choose $\epsilon_{N}>0$ small enough so that

$$
\left(1-\left(j^{2} / N^{2}\right)+\epsilon_{\mathrm{N}}\right)^{\alpha}-\left(1-\left(j^{2} / N^{2}\right)\right)^{\alpha} \leqslant\left(1 / N^{2}\right)
$$

for all $1 \leqslant \alpha \leqslant C$ and $0 \leqslant j \leqslant N$. In particular, $\epsilon_{N} \leqslant\left(1 / N^{2}\right)$. Now, choose $r_{N, j} \in \mathbb{Q}$ such that $r_{N, 0}=1$ and

$$
1-\left(j^{2} / N^{2}\right) \leqslant r_{N . j}^{2} \leqslant 1-\left(j^{2} / N^{2}\right)+\epsilon_{N}, \quad 1 \leqslant j \leqslant N
$$

and such that $1-r_{N, j}^{2}=t_{N, j}^{2}$, with $t_{N, j} \in \mathbb{Q}$. For this, it is enough to choose $y \in \mathbb{Q}$ so that

$$
1-\left(j^{2} / N^{2}\right) \leqslant\left(2 y /\left(1+y^{2}\right)\right)^{2} \leqslant 1-\left(j^{2} / N^{2}\right)+\epsilon_{N}
$$

Then

$$
\left(1-\left(j^{2} / N^{2}\right)\right)^{\alpha} \leqslant r_{N . j}^{2 n} \leqslant\left(1-\left(j^{2} N^{2}\right)+\epsilon_{N}\right)^{\alpha} \leqslant\left(1-\left(j_{;}^{2} N^{2}\right)\right)^{\alpha}+\left(1 / N^{2}\right)
$$

for all $1 \leqslant \alpha \leqslant C$ and $0 \leqslant j \leqslant N$. It follows that

$$
\lim _{N, \infty}(1 / N) \sum_{j=0}^{N} r_{N, j}^{2 \alpha}=N_{\alpha}, \quad \text { for all } 0 \leqslant \alpha \leqslant C .
$$

We conclude the proof of Lemma 6.4. We have

$$
\lim _{M, N, \infty}(1 / M N) \sum_{j=0}^{N} \sum_{k=0}^{M}\left(r_{N, j} a_{k}\right)^{2 \alpha}\left(r_{N, j} b_{k}\right)^{2 \beta}=\varphi\left(x_{1}^{2 \alpha} x_{2}^{2 \beta}\right)
$$

for all $\alpha, \beta \leqslant C=$ degree of f, by Assertions 1 and 2. This implies

$$
\lim _{M, N \rightarrow \infty}(1 / M N) \sum_{j=0}^{N} \sum_{k=0}^{M} f\left(r_{N, j} a_{k}, r_{N, j} b_{k}, t_{N, j}\right)=\varphi(f)
$$

with

$$
\left(r_{N, j} a_{k}\right)^{2}+\left(r_{N, j} b_{k}\right)^{2}+\left(t_{N, j}\right)^{2}=1
$$

so that

$$
f\left(r_{N, j} a_{k}, r_{N, j} b_{k}, t_{N, j}\right) \geqslant 0
$$

Hence $\varphi(f) \geqslant 0$.
From Lemma 6.4, it follows that if $\eta_{n} \rightarrow \eta$ in $\Omega_{R}{ }^{2}$, then $\varphi\left(\eta_{n}\right) \rightarrow \varphi(\eta)$.
We are now ready to complete the proof of Proposition 6.1.
Suppose $e\left(P_{T}, h_{T}\right)=0$. Then $\omega=d(\eta / t), \eta \in \Omega_{R}$, and $t \in T$, since $e(P, h)=$ $2\{\omega\}$ by (6.2). Hence, by Lemma 6.3, there exist sequences of forms (α_{n}), $\left(\beta_{n}\right)$, such that $\omega=\alpha_{n}+d\left(\beta_{n}\right)$, for all n, and $\alpha_{n} \rightarrow 0$. Thus $1=\varphi(\omega)=\varphi\left(\alpha_{n}\right)$ and $\varphi\left(\alpha_{n}\right) \rightarrow 0$ by the above consequence of Lemma 6.4. This is a contradiction.

References

1. N. Bourbaki, "Algèbre I," Chapitres 1 à 3, Eléments de Mathématique, Hermann, Paris, 1970.
2. S.mS. Chern, "Topics in Differential Geometry," I.A.S., Princeton, N.J., 1951.
3. N. Katz, Nilpotent connections, Publ. Math. I.I.ES. 39 (1970).
4. S. Kobayashi and K. Nomize, "Foundations of Differential Geometry," Vol. MT, Interscience, New York, 1969.
5. J. W. Milnor and J. D. Stasheff, "Characteristic Classes," Princeton Univ. Press, Princeton, N. J. 1974.
6. H. Ozekx, Chern classes of projective modules, Nagoya Math. J. 23 (1963), 121-152.

[^0]: * This paper contains the substance of the author's dissertation, submitted to the Department of Mathematics of the University of Chicago in August 1976. The dissertation was written under the direction of Professor Richard G. Swan of that Department; the author expresses his most grateful thanks to Professor Swan for proposing the theme and providing constant guidance and inspiration.

