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1. INTRODUCTION 

Let A(t), B(t) be (real or complex) n x n matrix functions, bounded and 
continuous on [0, a). The systems of linear differential equations 

i =A(t)x (1) 

and 

3 = B(t) Y (2) 

are said to be kinematically similar if there exists a continuously differen- 
tiable invertible matrix function S(t) (called a kinematic similarity) such that 
S(t) and S-‘(t) are bounded and such that the transformation x = S(t) y 
takes the solutions of (1) onto the solutions of (2). Since A(t) and B(t) are 
assumed to be bounded, S(t) will also be bounded for every kinematic 
similarity S(t). 

(1) is said to be reducibZe (cf. Coppel [3, p. 381) if it is kinematically 
similar to a system (2) whose coefficient matrix has the diagonal block form 

B,(t) and B*(t) being matrices of lower order than B(t). In Lemma 2 in [3, 
p. 401 Coppel shows that (1) is reducible if and only if there is a projection 
P # 0, I such that X(t) PX-‘(t) is bounded. Here X(t) is the fundamental 
matrix for (1) with X(0) = I. In this case, we also say that (1) is reducible 
with respect to the decomposition I’, @ V, of n-dimensional Euclidean space 
E”, where V, is the range of P and V, its kernel. By induction using Coppel’s 
result, it is easy to show (cf. Daleckii and Krein [4]) that (1) is kinematically 
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similar to a system (2) whose coefficient matrix has the block diagonal form 
d&@,(t),..., B&j), h w ere Bi(t) has order ni (ni > 1, Cf= I n, = n), if and 
only if there exist supplementary projections P, ,..., P, of respective ranks 
n, ,..., nk such that X(t) P,X-‘(t) is bounded for i = I,..., k. In this case we 
say that (1) is (n, ,..., n,)-reducible with respect to the decomposition 
v, @ ... @ V, of E”, where Vi is the range of Pi. If a system is not 
reducible, we say it is irreducible. 

The ordered pair V,, V2 of subspaces of E” is said to be exponentially 
separated (Bylov et al. [2], Palmer [8], Bronshtein and Chernii [I]) with 
respect to the system (1) if dim Vi > 1, V, n Vz = {0 1 and there exist 
constants K > 1, a > 0 such that for s < t 

whenever xi(t) is a solution of (1) with x,(O) # 0 in Vi. (Throughout this 
paper 1 . ] denotes the Euclidean norm when the argument is a vector and the 
corresponding operator norm when the argument is a matrix). If 
V, @ V2 = E” we say simply that (1) is exponentially separated. If k > 2 and 
n, ,..., nk are positive integers such that C:= i n, = n, system (1) is said to be 

(n , ,..., Q-exponentially separated if E” can be decomposed as a direct sum 
V,@*** @ v, with dim Vi = ni such that Vi, Vi+ I are exponentially 
separated with respect to (1) for i = l,..., k - 1. In this case we also say that 
V , ,--., V, are exponentially separated with respect to (1). If no Vi can be 
expressed as the direct sum of proper subspaces which are exponentially 
separated with respect to (l), then V, @ a.. @ V, is said to be a minimal 
decomposition [8] for (1). 

The main aim of this paper is to show that a system (1) is exponentially 
separated if and only if all neighboring systems are reducible. Our only 
concern here is the sufficiency of the latter condition since its necessity 
follows from the roughness of exponential separation [2, 1; 8, Corollary 21 
and the reducibility of exponentially separated systems [2; 8, Lemma 11. 

In Sections 2 and 3 we derive some preliminary results on bounded 
solutions and exponential dichotomies of matrix systems of the form 

2 = A (t)Z - ZB(t), (3) 

where A(t), B(t) are m x m, n x n matrix functions bounded and continuous 
on [0, co). 

To prove our main result we need an ordering (strictly, preordering) 
between systems of the form (1). This is defined in Section 4. If the letters A 
and B denote the systems (1) and (2), respectively (B need not have the same 
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order as A), then B >A means that whenever (1) is kinematically similar to 
a block upper triangular system 

(4) 

then the matrix system 

i = A*(t) 2 - m(t) 

has a nontrivial bounded solution. It turns out that among other properties 
this ordering is reflexive and transitive. 

Sections 5 and 6 arose from consideration of the question of whether a 
reducible system (1) is kinematically similar to a block upper triangular 
system 

where each Ai is irreducible and 

Ak>Ak-,>...>A,>A,. (6) 

It turns out that there are systems for which this is not the case. These 
include the prime systems. System (1) is prime means that whenever it is 
kinematically similar to a block upper triangular system of the form (4), then 
it is not true that A, > A,. One of two other equivalent definitions is that the 
matrix system 

i=A(t)Z-zA(t) (7) 

have no nonzero bounded solution with square zero. (Compare this with 
Coppel’s result that system (1) is irreducible if and only if (7) has no 
bounded idempotent solution apart from Z = 0, 1.) In Section 5 a nontrivial 
example of a prime system is given and it is shown that prime systems can 
be reducible but cannot be exponentially separated. On the other hand an 
irreducible system need not be prime. 

In Section 6 it is shown that any system (1) is kinematically similar to a 
block upper triangular system (5) where each Ai is prime and (6) holds. In 
Section 7 we consider the special case of block upper triangular systems of 
the form (5), where each Ai is irreducible and for i > j the matrix system 

i = Ai(t)Z - ZAj(t) 
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has no nontrivial bounded solution, and show that if all neighboring systems 
are reducible, then system (5) is exponentially separated. An important role 
here is played by the functional analytic characterization of exponential 
dichotomy [ 3, 51. 

In Section 8 the general case is treated. It is first shown that if A is prime 
and A > B the matrix system 

i = (A(t) + a(t)Z)Z - ZB(t) 

has no nontrivial bounded solution whenever a(t) is a bounded real 
continuous function such that Ik a(s) ds is bounded below but not above. 
Using this and the result of Section 6 the general case is reduced to the 
special case considered in Section 7. A corollary of this our main result is 
that if V, @ ... 0 Vk is a minimal decomposition for (1) then all neighboring 
systems are (m, ,..., m,)-reducible if and only if there is a partition 
J,UJ,U ..- u J, of {I,..., k} such that for i = I,..., 1, 

\’ dim Vi = m,. 
,zi 

This generalizes theorems of MillionEikov [6] and Palmer [ 71. Finally in 
Section 9 the same problem is discussed for systems on (-00, co). 

2. BOUNDED SOLUTIONS OF MATRIX SYSTEMS 

In this and the next section we consider matrix systems of the form (3) 
where A(t), B(t) are m x m, n x n matrix functions, bounded and continuous 
on ‘[O, co). The solutions of (3) are m x n matrix functions Z(t). If X(t) is 
the fundamental matrix for (1) with X(0) = I and Y(t) is the fundamental 
matrix for (2) with Y(0) = Z, then 

Z(l) = X(t) MY- l(t) 

is the solution of (3) such that Z(0) = M. Note that rank Z(t) = rank A4 for 
all t so that we may speak of the rank of a solution of (3). 

If x = S(t)u and y = T(t)u are kinematic similarities taking (1) and (2) 
into the systems 

ti = C(t)24 
and 

d = D(t)& 

respectively, the transformation 

Z = S(t) WT- l(t) 
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takes (3) into 

I@= C(t) w - WD(f) (8) 

and clearly (3) has a nontrivial bounded solution if and only if (8) has; 
moreover corresponding solutions have the same ranks. 

LEMMA 1. Let A(t), B(t) be m x m, n x n matrix functions, bounded and 
continuous on [0, a). 

(i) Suppose the kinematic similarity S(t) takes (1) into a block upper 
triangular system of the form (4). System (4) has a fundamental matrix of 
the form 

Then if the matrix system 

i = A,(t)Z - ZB(t) 

has a bounded solution X,(t) MY-‘(t), 

SW I 
X,(f) MY-‘(t) 

0 I 

(9) 

(10) 

is a bounded solution of (3) with the same rank. Conversely, tf the matrix 
system (3) has a bounded solution of rank k there is a kinematic similarity 
S(t) taking (1) into a system (4) with A,(t) k x k such that the bounded 
solution has the form (10). 

(ii) Suppose the kinematic similarity T(t) takes (2) into a block upper 
triangular system 

4’= 
I 
B,(t) B,,(t) 

0 B&) ‘* I 

This has a fundamental matrix of the form 

Then tf the matrix system 

(11) 

(12) 
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has a bounded solution X(t) MY;‘(t), 

(0 X(t) MY;‘(t)] T-‘(t) (13) 

is a bounded solution of (3) with the same rank. Conversely, if (3) has a 
bounded solution of rank k there is a kinematic similarity T(t) taking (2) into 
a system (11) with B,(t) k x k such that the bounded solution has the form 
(13). 

Proof: The first part of (i) follows from the observation that 

[ 

X,(t)MY-‘(t) 
0 1 [ xl(t) X,2(4 M ~ ZZ 

0 I[ 1 X*(f) 0 y ‘0) 
is a bounded solution of 

g= A,(t) A12W 
I 0 A,(t) I 

Z - ZB(t). 

For the converse let X(t)MY-‘(t) be a bounded solution of (3) with rank 
A4 = k. We may write M = M, M, , where M, is m x k, M, is k x n and both 
have rank k. Choose N, so that the partitioned m x m matrix [M, N,] is 
nonsingular and apply the Gram-Schmidt orthonormalization process to the 
columns of X(t)[M, N,] to get 

w>w, Nl 1 = w I 
X,(t) X,,(t) o I X,(t) ’ 

where S(t) is unitary and the matrix on its right is upper triangular with 
X,(t) k x k, etc. This means that the kinematic similarity S(t) takes (1) into 
a system (4), where A,(t) is k X k and X,(t) is a fundamental matrix for the 
system 

i = A,(t)x. 

Finally a simple calculation shows that X(t) MY-‘(t) equals the expression 
in (lo), thus completing the proof of (i). 

To prove the first part of (ii) note that 

[O x(t)MY,‘(t)] =X(t)[OM] yb(f) ;;jliJ 
I 2 

is a bounded solution of 

i=A(t)Z-Z o 
I 

B,(t) B,,(t) 
I B,(t) ’ 
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For the converse: if X(t) MY-‘(t) is a bounded solution of rank k of (3) 
write M = M, M, as in the proof of part (i) and let N, be a matrix such that 
the n x n matrix [ 2*] is nonsingular and apply Gram-Schmidt to get 

where s(t) is unitary and the matrix on its right is upper triangular with 
Y2(t) k x k, etc. Now the kinematic similarity S(r) takes (2) into a system 
(1 l), where B2(f) is k x k and Yz(t) is a fundamental matrix for the system 

i, = B*(O Y. 

The proof is completed by observing that X(t) MY-‘(t) equals the expression 
in (13). 

(Note: (ii) could also be deduced from (i) by looking at the system 

2 = -B*(t)Z + ZA *(t), 

where * denotes adjoint.) 

3. EXPONENTIAL DICHOTOMIES FOR MATRIX SYSTEMS 

Let B be a finite-dimensional (real or complex) vector space and J@‘(L) a 
function defined on [0, co) with values in Hom(B, 8), the space of linear 
mappings of 8’ into itself. We suppose that sup Id(t)1 < 00, where 1 . 1 here 
denotes the operator norm, and that -CP(t) is continuous with respect to the 
topology this norm defines. Now consider the differential equation 

i = d(f)X (xE8) (14) 

and let L?(t) be a fundamental operator solution (cf. [4,5]). 
Equation (14) is said to have an exponential dichotomy [3-51 if there is a 

projection .9 of B into itself and constants K > 1, a > 0 such that 

IL/(t) 9F-‘(s)I < KeCa(‘-‘) (s < 4, 

l~?(t)(l- 9) 4a-l(s)l < KemaCS-‘) (s > t>* 

The range of 9 is {[E 8: 9(t)l; + 0 as t + co} and is called the stable 
subspace; the kernel of 9 is called the unstable subspace. If the stable 
subspace is the whole of Z, (14) is said to be unifarmly asymptotically stable. 

Usually B is E” and J(f) is an n x n matrix function. However, in this 
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section B is the space of m x II matrices and the operator-valued function 
d(t) is defined by 

d(t)(2) = A(l)Z - ZB(t), 

where Z is an m x n matrix and A(t), B(t) are m x m, n x n matrix functions 
bounded and continuous on [0, co). A fundamental operator solution for the 
corresponding differential equation (3) has the form 

I;P(C)(Z) =X(t) zu-‘(t), (15) 

where X(t), Y(f) are fundamental matrices for (l), (2), respectively. 
The following lemma collects together a few facts concerning systems (3) 

which are uniformly asymptotically stable. 

LEMMA 2. Let A(t), B(t) be m x m, n X n matrix functions bounded and 
continuous on [0, 03). Then 

(i) (3) is uniformly asymptotically stable if and only if there exist 
constants K > 1, a > 0 such that for s < t 

IX(t)X-l(s)1 1 Y(s) Y-‘(t)] < Ke-a(‘-S). (16) 

(ii) Let C(t) b e a p x p matrix function, bounded and continuous on 
[0, 00). Then if (3) and the system 

i = B(t)Z - ZC(t) 

are uniformly asymptotically stable, so also is the system 

i = A(t)Z - ZC(t). 

(iii) Let C(t) be an m x n matrix function bounded and continuous on 
[0, co). Then if (3) is uniformly asymptotically stable the block upper 
triangular system 

(17) 

is exponentially separated. 

ProoJ (i) (3) is uniformly asymptotically stable if there exist constants 
K>l,a>Osuchthatfors<t, 

[.9(t) L!-‘(s)1 < Ke-a(‘-s), 
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where P(t) is defined in (15). This means that for all m X n matrices Z and 

s < t, 

IX(t)X-‘(s)ZY(s) Y-l(t)1 <Ke-a(f-s) IZI. (18) 

(18) is clearly implied by (16) and if (18) holds so also does (16), but with a 
new K which depends only on the old K and m and n (since if A and B are 
m x m, n x n matrices such that 

IAWGKIZI 

for all m X n matrices Z there exists K, depending only on m and n such that 

IA IBI GK,K). 

(ii) If W(t) is a fundamental matrix for the system 

i = C(t)x, 

then the assertion follows from part (i) and the inequality, 

lPw-‘(~)l I w> w-w 
< I~(t)~-‘(s>l I Y(s) Y-i(t)l I y(t) Y-‘(s)1 I W(s) w-‘(t>l. 

(iii) If (3) is uniformly asymptotically stable, then (16) holds for s ,< t. 
It follows from Theorem 1 in [8] that the block diagonal system 

i= 
[ 
A(t) 0 

0 B(t) x 1 
is (m, n)-exponentially separated with projection P, = diag(Z,, 0), I,,, being 
the m X m identity matrix. Then it follows from Corollary 4 in [8] and the 
remark after it that the block upper triangular system (17) is also (m, n)- 
exponentially separated. 

Next we consider systems (3) where A(t) and B(t) are both block upper 
triangular and show that whether or not (3) has an exponential dichotomy 
depends only on the diagonal blocks in A(t) and B(t). 

LEMMA 3. Let A(t) and B(t) be square matrix functions (not necessarily 
of the same order), bounded and continuous on [0, 03). Zf system (1) is block 
upper triangular of the form (5) and (2) is block upper triangular of the form 

B,(t) B,,(t) *.a B,,W 

..* YY 

. . . 0 
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the matrix system (3) has an exponential dichotomy if and only tf the system 

i = Ai(t)Z - ZBj(t) (19) 

has one for all i and j. Moreover the dimension of the stable subspace for (3) 
is the sum of the dimensions of the stable subspaces for (19). 

Proof Partitioning Z as [Z,], where Z, has the same number of rows as 
Ai and the same number of columns as B.,(t), system (3) becomes 

iij = At(t) Zij - Z,B,i(t) + ” Ai, Z,j - “ Zi,B,j(t), 
mfi Z j  

(i = l,..., k; j = l,..., 1). 
If we order the Z, as 

Z ,I,..‘, z,, , zz,,..., z,, ,*.., z/d,...r z,, 

the system is block upper triangular with 

i, = Ai Z, - Z,B,(t) (i = l,..., k; j = l,..., 1) 

as the corresponding block diagonal system. Now the lemma follows from 
Corollary 2 in [S] and the remark after it (cf. also Sacker and Sell [lo]). 

Finally we prove a corollary of Lemma 3. 

LEMMA 4. Let A(t), B(t) be square matrix functions bounded and 
continuous on (0, CD). Then if (3) has an exponential dichotomy so also has 
the system 

i = B(t)Z - ZA(t) (20) 

and the stable subspace for (3) and the unstable subspace for (20) have the 
same dimension. 

Proof Since both systems (1) and (2) are kinematically similar to 
systems with upper triangular coefficient matrices (cf. [3, p. 87]), we may 
assume without loss of generality that A(t) = [aij(t)] and B(t) = [bij(t)] are 
both upper triangular. Then the assertion follows from Lemma 3 and the 
facts that if the scalar equation 

i = (aii(t) - b,,(t))x 

has an exponential dichotomy so also has 

i = (b,,(t) - aii(t))x, 

and the former has nontrivial bounded solutions if and only if the latter has 
none. 
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4. AN ORDERING FOR LINEAR DIFFERENTIAL SYSTEMS 

In this section we define an ordering for systems of the form (1) and prove 
some properties of it. Throughout A(t), B(t), C(t) denote square matrix 
functions (not necessarily of the same order), bounded and continuous on 
[0, co). For the sake of brevity we shall often just use the letters A, B, etc., to 
denote the systems (l), (2), etc. Also the notation 

means that the system (1) is kinematically similar to a block upper 
triangular system (5). 

If the matrix system (3) has no nontrivial bounded solution we write 
A > B. Otherwise we write A # B. In the first proposition we present some 
elementary properties of this relation. 

PROPOSITION 1. Suppose A - (A 1, A,). Then 

(i) ifA,>BandA,>B,A>B; 

(ii) ifB>A,andB>A,,B>A. 

Proof: (i) If we partition Z = col(Z,, Z,) the matrix system 

A&) 
A*(f) 1 

Z - ZB(t) (21) 

i,=A,(t)Z,-Z,B(t)+A,,(t)Z,, 
i, = A#) Z, - Z,B(t). 

It follows that (21) has no nontrivial bounded solution and hence that (3) 
also has none. 

(ii) If we partition Z = [Z,Z,] the system 

1 
becomes 

i, = B(t) Z, - Z,A,(t), 

i, = B(t) Z, - Z,A,(t) - ZIAIZ(f). 

As in (i) the result follows at once. 
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Remark. The converses to (i) and (ii) are valid in case A(t) = 

diag(A l(th Adf)). 

DEFINITION. We say that 

A>B 

if whenever B - (B,, B,) (including the case B -B,), B, $ A. 

EXAMPLE. Suppose the matrix system 

i = B(t)Z - ZA(t) (22) 

has a nontrivial bounded solution of rank equal to the order of B(t) but none 
of lower rank. Then A > B. For suppose B - (B 1, BJ. Now B $ A so that by 
Proposition 1 either B, $ A or B, $ A. But if B, $ A it would follow from 
Lemma 1 that (22) had a nontrivial bounded solution of rank less than the 
order of B(t). So we must have B, $ A so that A > B, as asserted. 

The advantage of the notion > defined above is that it is transitive (note 
that > is not transitive, in general). 

PROPOSITION 2. (i) If A > B and B > C, then A > C; 

(ii) if A > B and B > C, then A > C. 

Proof. (i) Suppose A $ C. Then by Lemma 1, C - (C,, C,) such that 
the system 

i = A(t)Z - ZC,(t) 

has a bounded solution X(t) MW;‘(t) with the rank of M equal to the order 
of C,(t). Here X(t) is a fundamental matrix for (1) and W,(t) one for the 
system 

1= C&)x. 

Now since B > C, C, $ B so that system 

i = C,(t)Z - ZB(t) 

has a bounded solution W,(t) NY-‘(t) with Nf 0. Here Y(t) is a 
fundamental matrix for (2). 

But then 

x(t)MNY~‘(~)=X(t)MW,‘(t) * W*(t)NY-‘(t) 

is a bounded solution of (3) with MN# 0 since Nf 0 and M has full 
column rank. This contradicts A > B. Hence A > C. 
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(ii) Let C - (C,, C,). S uppose C, > A. Then since A > B it follows by 
(i) that C, > B. This contradicts B > C. So C, $ A and hence A > C. 

We now prove a proposition which does for > what Proposition 1 did 
for >. 

PROPOSITION 3. Suppose A - (A 1, A *) (including the case A - A,). Then 

(i) A >A,; 
(ii) $A2 > B, then A > B; 

(iii) $B>A, andBaA,, then B>A. 

Proof: (i) Suppose A, - (A I, A;). Then 

A - (A,,AI,A;) 

since if S(t) is the kinematic similarity taking system A, into one with block 
diagonal (A;, A;), diag(Z, S(t)), where Z is an identity matrix with order 
equal to that of A,(t), is a kinematic similarity taking the system A into one 
with block diagonal (A i, Ai, A;). Now the system 

i=A;(t)Z-ZA;(t) 

has the constant solution Z = the identity matrix. It follows by Lemma 1 that 
the system 

i = A;(t)Z - ZA(t) 

has a bounded solution of the same rank. That is, A; $A and so A > A,. 

(ii) Since A > A, and A, > B, it follows by Proposition 2 that A > B. 

(iii) Let A - (A;, A;) and suppose A; > B. Then since B > A, and 
B > A, it follows by Proposition 2 that Ai > A, and Ai > A,. But then 
Proposition 1 implies that A; > A, which contradicts A >A;(part (i) of this 
proposition). So Ai $ B and hence B > A. 

The following lemma is a tool we shall need in the next section. 

LEMMA 5. Let A, B be two systems. Then B is kinematically similar to 
an upper triangular system with block diagonal (B,, B,) (possibly B = B, or 
B=B,) such that B, >A andA>B,. 

Proof. The proof is by induction on the order n of B. If B is scalar, then 
either B > A or B # A. By the example before Proposition 2 the latter implies 
A > B. So the lemma does hold in the scalar case. 

Now we assume the lemma holds for 1,2,..., n - 1 and prove it for n. So 
let B(t) be rz X It. If A > B, we are finished. Otherwise B - (B,, BJ with 
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B, > A. Applying the induction hypothesis to B,, we have B, - (B; , B;) 
with B;>A, A>B;. Reasoning as at the beginning of the proof of 
Proposition 3, it follows that B - (B;, By), where B; is a block upper 
triangular system with block diagonal (Bi, B,). It follows from Proposition 1 
that B; > A and we already know that A > B’, . So the induction proof is 
complete. 

5. PRIME SYSTEMS 

In this section we use the same notations as in the previous section. We 
begin with a lemma about matrices. 

LEMMA 6. Let M be an n x n matrix. Then 

M2=0 

if and only if M is similar to a matrix of the form 

0 N I I 0 0' (23) 

where N is k x (n - k) with 1 < k < n. 

ProofI The sufficiency is clear. To prove the necessity, we assume that 
M2 = 0. Let k be the rank of M. For E” choose a basis such that the first k 
vectors span the range of M. Then M is similar to its representation with 
respect to this basis. This has the form 

M’= Q N 
I I 0 0' 

where N is a k x (n - k) matrix. Since M’* = 0, M’ annihilates its own 
range. Therefore Q = 0. 

PROPOSITION 4. Let A be any system (1). Then the following three 
statements are equivalent: 

(i) the matrix system 

i=A(t)Z-ZA(t) 

has a nontrivial bounded solution with square zero; 

(ii) A - (A,,A,) such that A, $ A,; 

(iii) A-(A,,A,)such thatA,>A,. 

(24) 
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Proof: First we show that (ii) implies (i). Suppose the kinematic 
similarity S(t) takes system A into one with block diagonal (A i, A *) with 
A 1 $ A *. So the matrix system 

i=A,(t)Z-ZA,(t) (25) 

has a nontrivial bounded solution Z(t). It follows from part (i) of Lemma 1 
that the system 

i=A(t)Z-ZA,(l) (26) 

has the nontrivial bouded solution 

and then from part (ii) of the same lemma that (24) has the bounded 
solution 

which has square zero. Thus (ii) implies (i). 
Now we show that (i) implies (ii). Let X(t) be a fundamental matrix for 

(1) and suppose X(t)MX-‘(t) is a nontrivial solution of (24) with square 
zero. Then M* = 0 and so by Lemma 6 there exists a nonsingular matrix L 
such that L -‘ML has the form (23), where N is k X (n - k) with k the rank 
of M. Using the Gram-Schmidt process we may write 

X(l)L = U(t) 
I 

X,(t) X,*(0 o 
I X*(f) ’ 

where U(t) is unitary and the matrix on its right is upper triangular with 
X,(t) k x k, etc. The transformation U(t) takes (1) into a system (4), where 
for i = 1, 2, Xi(t) is a fundamental matrix of 

i = A i(t)x. (27) 

That is, A N (A 1, AZ) and a simple calculation shows 

I 
0 X,(t) ivx;‘(t) 
0 0 1 

= u- ‘(t) X(f) kfx- l(t) u(t) 

so that (25) has the nontrivial bounded solution X,(t)NX;‘(t). This means 
that A, $ A,, Thus (i) implies (ii). 
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That (iii) implies (ii) is trivial. To prove that (ii) implies (iii) suppose that 
A N (.4i,AJ with A, $A,. By Lemma5, A, - (A:,&) with Ai >A,, 
A 2 > A I. A 1 has a lower order than A, since A, # A,. Then reasoning as at 
the beginning of the proof of Proposition 3, A - (A;, A;) where A; is a 
block upper triangular system with block diagonal (A I, A,). Since A, > A ; it 
follows by Proposition 3 that A; > A I. Thus (ii) implies (iii). 

DEFINITION. System A is said to be prime if whenever A - (A,, A,), 
A, $ A,. By Proposition 4 this is equivalent to the statement that whenever 
A - (Al, AJ, A, > A, and also to the condition that the matrix system (24) 
has no nontrivial bounded solution with square zero. 

EXAMPLE. Trivially any scalar system is prime. A nontrivial example of 
a prime system is 

I 
4f> WI i=A((t)x= o o x, 

I 

where a(t), b(t) are bounded continuous real functions satisfying 

(i) sh a(s) ds is unbounded above and below, 

(ii) the scalar inhomogeneous system 

i = a(t)x + b(t) (28) 

has no bounded solution. (If a(t) satisfies (i) the homogeneous equation 

i = a(t)x (29) 

cannot have an exponential dichotomy and so by Proposition 3 in 13, p. 221 
it is always possible to find a bounded continuous real b(t) such that (28) 
does not have a bounded solution.) 

We show that (24), with A(t) as above, has no rank 1 bounded solution. 
Let Z(t) be a nontrivial bounded solution of (24) and partition it as 
[z,(t) z,(t)]. Then (24) becomes 

i, = (A(t) - a(t)> ~1, (30) 

i,=A(t)z,-b(t)z,. (31) 

Since clearly the system 

i2=A(t)z2 

has no nontrivial bounded solution, zi(t) cannot be zero. But the only 
bounded solutions of (30) are constants col(a, 0) so that z,(t) = col(a, 0) 
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with a # 0. Now suppose Z(f) has rank 1. Then there is a scalar function 
A(t) such that z*(t) = -n(t) zi(t) = col(-A(t 0) for all t. It follows that 1(t) 
is continuously differentiable and bounded and, substituting in (31), we find 
it is a solution of (28). This is a contradiction. Hence (24) has no rank 1 
bounded solution. So all nontrivial bounded solutions of (24) must be 
nonsingular and hence cannot have square zero. Thus the system is prime. 

Remarks (a). An irreducible system need not be prime. For example, let 
a(r) be a bounded continuous real function such that J”ba(s)ds is bounded 
above but (29) does not have an exponential dichotomy. Then the system 

is not prime but it is irreducible by Theorem 3 in [7]. 

Remark (b). A prime system need not be irreducible. For consider a 
system (l), where A(t) = diag(A,(t), A*(t)). Suppose each system (27) is 
prime and that A, > A,, A, > A,. Then A is prime for if Xi(t) is a 
fundamental matrix for (27) any bounded solution of the matrix system (24) 
has the form 

Since A, > A,, A, > A, the off-diagonal blocks are zero. So if the solution 
has square zero, Mf , = 0 and M:, = 0. But since both systems (27) are 
prime, this means M,, and M,, are both zero. So the solution is zero and A 
is prime, as asserted. 

Conversely if A is prime, it follows from one of the equivalent definitions 
that A, > A,, A, > A,, and reversing the above argument that each system 
(27) is prime. 

Remark (c). A prime system cannot be exponentially separated. For 
suppose the system (1) is exponentially separated. Then by Lemma 1 in [8] 
it is kinematically similar to a block diagonal system 

with respect to which the subspaces y, = 0 and y, = 0 are exponentially 
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separated. It follows from Theorem 1 in [8] and its proof that there exist 
constants K > 1, a > 0 such that for s < t, 

1 Y,(t) Y;‘(s)1 1 Y*(s) Y;‘(t)1 < Keeactms), 

where Y,(t) is a fundamental matrix for the system 

By Lemma 2 this implies that the matrix system 

i = B,(t)Z - ZB,(t) 

is uniformly asymptotically stable so that all its solutions are bounded. 
Hence B, $ B, and so A cannot be prime. 

6. A BLOCK UPPER TRIANGULAR FORM 
WITH ORDERED PRIME DIAGONAL BLOCKS 

Our aim in this section is to establish the following theorem, which states 
that any system (1) has a block upper triangular form in which the diagonal 
blocks are prime and are linearly ordered with respect to >. The notations 
are the same as those used in Sections 4 and 5. 

THEOREM 1. Let A(t) be an n x n matrix function, bounded and 
continuous on [0, a~). Then system (1) is kinematically similar to a block 
upper triangular system (5) where each system Ai is prime and 

A,>A,-,>...>A,>A,. 

Proof. We first assert that either A is prime or A - (A,, A,) with A, 
prime and A, > A,. The proof is by induction on the order n of A. If A is 
scalar it is prime and we are finished. Suppose the assertion holds for 
1, 2,..., n - 1. We prove it for n. So let A(f) be n x n. If A is prime, we are 
finished. Otherwise A - (A,, AI) with A, > A,. Applying the induction 
hypothesis to A,, A, - (A ; , A;) with A; prime and A; > A ; . Then reasoning 
as at the beginning of the proof of Proposition 3, A - (A;, A;) where A: is a 
block upper triangular system with block diagonal (A 1, A i). 

Since Ai > Ai and Ai > Ai by Proposition 3(i), it follows by 
Proposition 3(iii) that Ai > A,. But A, > A I and so by Proposition 2(ii), 
Ai > A,. Then Proposition 3(iii) again implies that A; > A;‘, since Ai > A, 
and Ai > A;. This completes the induction proof so that the assertion is 
established. 
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We now prove the theorem by induction again on the order n of A. If A is 
scalar it is prime and we are finished. Suppose the theorem holds for 
1,2,..., n - 1. We prove it for )2. So let A(t) be n x n. Then by the first part 
either A is prime and we are finished or A - (A,, AJ with A, prime and 
A, > A,. We can apply the induction hypothesis to A, to get 

A, - (A;,A;,...,A;) 

with the Ai prime and 

A;>A;-,>...>A;>A;. 

Then as at the beginning of the proof of Proposition 3, 

A - (A;, A; ,..., A;, AJ 

and all that remains to complete the induction proof is to show that A, > A,‘. 
But this follows from A, > A,, Proposition 3(i) and 2(ii). 

7. DETERMINATION OF THOSE SYSTEMS 
ALL SUFFICIENTLY SMALL PERTURBATIONS 

OF WHICH ARE REDUCIBLE: A SPECIAL CASE 

It is known [ 2; 8, Corollary 21 that if system (1) is exponentially separated 
sufficiently small perturbations of it are also exponentially separated and 
hence reducible by Lemma 1 in [8]. Our aim in the next two sections is to 
show that the converse of this statement is true. In this section we treat a 
special case. 

PROPOSITION 5. Let the coeflcient matrix of the block upper triangular 
system 

A,(t) An(t) . . . A,,(t) 

x=A(t)x= 

I 

X (32) 

be bounded and continuous on [0, co), where for i = l,..., k the system (27) is 
irreducible and for i > j the matrix system 

i = Ai(t)Z - ZAj(t) (33) 

has no nontrivial bounded solution. Then if there exists 6 > 0 such that the 
perturbed system 

f = (A(t) + B(t))x (34) 
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is reducible for all continuous matrix functions B(t) of the form 

B 

satisfying SLI~~>~ IB(t)l < 6, there exists 1 (1 < 1 < k) such that the matrix 
system (33) is uniformly asymptotically stable for 1 < i < I, 1+ 1 < j < k. 

Proof: The proof is by induction on the number k of diagonal blocks. 
First, we consider the case k = 2. Let X(t) be a fundamental matrix for 
system (34) of the form 

Since (34) is reducible there is a projection 

such that X(t) PX-‘(t) is bounded. Now the block in the left-hand bottom 
corner of X(t) PX-‘(t) is X,(t) P2,X;‘(t), which is a bounded solution of 
(33) for i = 2, j = 1. Hence P,, = 0 so that P,, , P,, are both projections 
and the diagonal blocks in X(t) PX-‘(t) are X,(t) P,,X;‘(t) and 
X,(t) P,,X;‘(t). Since both systems (27) are irreducible, each Pii is either 0 
or the identity. Since P is not zero or the identity, either P,, is the identity 
and P,, is 0 or vice versa. But because X(t)(Z - P) X-‘(t) is also bounded, 
we may assume without loss of generality that P,, is the identity and P,, 
is 0. 

Then it turns out that the top right-hand block in X(t) PX-‘(t) is 

2(t) = -X,,(t) x, ‘(t) + X,(t) p,,x; l(t) 

and one verifies by differentiation that this is a solution of the matrix system 

i=A,(t)Z-Z&(t)-(&(t)+B(t)). (35) 

Thus (35) has a bounded solution for all B(t) with sup,>, iB(t)l < 6. By 
subtracting the bounded solution of (35) for B(t) = 0 and using homogeneity, 
it follows that the system 

i=A,(t)Z-ZA,(t)+B(t) 
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has a bounded solution for all bounded continuous k x (n - k) matrix 
functions B(t). Hence by Proposition 3 in [3, p. 221 system (25) has an 
exponential dichotomy. By Lemma 4 we know that the system 

2 = A,(t)Z - ZA l(t) 

also has an exponential dichotomy and since it has no nontrivial bounded 
solution the stable subspace must be (0). Then by Lemma 4 again, (25) must 
be uniformly asymptotically stable. 

This establishes the proposition for k = 2. Assuming it holds for k - 1 we 
prove it for k. So let us assume small perturbations of system (32) of the 
given type are reducible. 

Suppose, first, that for some m the matrix system 

i=A&)Z-ZA,+,(l) (36) 

is not uniformly asymptotically stable. Then by the k = 2 case there exists a 
continuous matrix function B m,m+ I(t) with arbitrarily small (supremum) 
norm such that the perturbed system 

(37) 

is irreducible. Now consider the block upper triangular system got from (32) 
by combining the blocks A,(t), A,+,(t) into the coefficient matrix of (37). 
Using Proposition 1 we see that this system is in the required form and small 
perturbations of it of the given type are reducible provided supfzo 1 B,,,+ ,(?)I 
is small enough. But it has only k - 1 diagonal blocks so that by the 
induction hypothesis and using Lemma 3, there exists 1 (1 < I < k, I # m) 
such that (33) is uniformly asymptotically stable for 1 < i < 1, I + 1 < j < k. 

So we are left with the case where (36) is uniformly asymptotically stable 
for m = 1 ,..., k - 1. But then it follows by Lemma 2 that the conclusion of 
the proposition holds for all 1, 1 < I < k. So the induction proof is complete. 

Remark. If the conclusion of the proposition holds it follows by 
Lemma 3 that the matrix system 

i = d(t)Z - zqq 

is uniformly asymptotically stable, where 

But then it follows by Lemma 2 that (32) is exponentially separated. 
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8. THE GENERAL CASE 

Our aim in this section is to show that all sufficiently small perturbations 
of a system (1) are reducible if and only if it is exponentially separated. The 
method is to begin with the block upper triangular form of Theorem 1 and 
modify it so that Proposition 5 can be applied. 

LEMMA 7. Suppose A(t), B(t) are n x n matrix functions bounded and 
continuous on [0, a~) such that the matrix system 

i = B(t)Z - ZA(t) (38) 

has a nonsingular bounded solution but no nontrivial bounded solution of 
lower rank. Then if a(t) is a bounded continuous real function such that 
II, a(s) ds is bounded below but not above, the matrix system 

.2f = (A(t) + a(t)Z)Z - ZB(t) (39) 

has no nontrivial bounded solution. 

Proof. First, we show that a nontrivial bounded solution of the matrix 
system (3) must be nonsingular. Let X(t), Y(t) be fundamental matrices for 
systems (1) and (2), respectively, and let Y(t)MX-‘(t) be the given 
nonsingular bounded solution of (38). Then if X(t) NY-‘(t) is a bounded 
solution of (3), Y(t) MNMX-‘(t) = Y(t) MX-‘(t) . x(t) NY-‘(t) * 
Y(t)MX-‘(t) is a bounded solution of (38). So either MNM= 0 or is 
nonsingular. This means that N = 0 or N is nonsingular, as required. 

Now write 4(t) = dba(s)ds. Let 

Z(t) = Q(t) X(t) NY-‘(t) 

be a bounded solution of the system (39). Then 

X(t) NY-‘(t) =4-‘(t) Z(t) 

is a bounded solution of (3) so that N = 0 or is nonsingular. If N is 
nonsingular then 

#“(t)[det Y(t)] -I det X(t) = [det N] -I det Z(t) 

is bounded. But 

[det X(t)]-’ det Y(t) = [det Ml-’ det Y(t)MX-‘(t) 

is also bounded. Multiplying we see that #“(t) is bounded too. This is a 
contradiction and so N must be 0. 
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PROPOSITION 6. Let A(t), B(t) b e m X m, n X n matrix functions 
bounded and continuous on [0, a~) such that system (1) is prime and A > B. 
Then if a(t) is a bounded continuous real function such that 1; a(s) ds is 
bounded below but not above, the matrix system (39) has no nontrivial 
bounded solution. 

Proof: First suppose the matrix system (38) has a nontrivial bounded 
solution of rank equal to the order of B(t) but none of lower rank. Then by 
Lemma 1 system (1) is kinematically similar to a block upper triangular 
system (4) such that the system 

i=B(t)Z--A,(t) 

has a nonsingular bounded solution but no nontrivial bounded solution of 
lower rank. By the example before Proposition 2, A, > B. But since A is 
prime A, > A, and so A, > B using Proposition 2. It is still true that the 
system 

Z = (A,(t) + a(t)Z)Z - ZB(t) 

has no nontrivial bounded solution. Also by Lemma 7 the system, 

Z = (A,(t) + a(t)Z)Z - ZB(t) 

has the same property. Then by Proposition 1 so has the system (39) too. 
Now we prove the proposition by induction on the order n of B(t). If B(t) 

is scalar it follows by the previous argument, since A > B implies that (38) 
has a nontrivial bounded solution. Now we assume the proposition true for 

n - 1 and prove it for n. So let B(t) be n X n. Since A > B the system 
&j h as a nontrivial bounded solution. If it has one of rank n but none of 
lower rank the previous argument applies and we are done. Otherwise take a 
nontrivial bounded solution of lowest rank. Then by Lemma 1 system (2) is 
kinematically similar to a block upper triangular system (11) such that the 
system 

i = B,(t)Z - ZA(t) 

has a nontrivial bounded solution of rank equal to the order of B,(t) but 
none of lower rank. It follows by the example before Proposition 2 that 
A > B,. But A > B, also by Proposition 2(ii), since A > B and B > B, by 
Proposition 3(i). Then by the induction hypothesis both the systems, 

and 

Z = (A(t) + a(t)Z)Z - ZB,(t) 

Z = (A(t) + a(t)Z)Z - ZB,(t), 
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have no nontrivial bounded solution. By Proposition l(ii) this means that the 
system (39) has none too and so the induction proof is complete. 

Remark. This proposition is not true without the assumption of 
primeness. For example, take B(t) as the scalar function 0 and A(t) as the 
2 x 2 diagonal matrix with elements -a(t) and a(t), where a(t) is a function 
as in the proposition. 

THEOREM 2. Let A(t) be an n x n matrix function bounded and 
continuous on [0, 00). Then there exists 6 > 0 such that the perturbed system 

i = (A(r) + B(t))x 

is reducible for all continuous matrix functions B(t) with sup*>,, /B(t)1 < 6 if 
and only if the system (1) is exponentially separated. 

Proof. The sufficiency follows from the roughness and reducibility of 
exponentially separated systems. 

We begin the proof of the necessity with a remark about bounded 
continuous real functions a(t) with zero spectrum; this means that the 
corresponding scalar equation (29) has {O} as its Sacker-Sell spectrum (cf. 
Sacker and Sell [9], Palmer [8]) so that for all E > 0 there exists T(E) such 
that 

i(f-s))‘l:a(u)du / <E when t--s> T(E). 

It is clear that the sum of two functions with zero spectrum also has this 
property. 

Now consider a system (14) as in Section 3. If a(r) is a function with zero 
spectrum the perturbed system 

i = (d(t) + a(t)I)x (40) 

has fundamental operator solution erb a(s)dsL?(t). It is clear that (40) has an 
exponential dichotomy if and only if (14) has; moreover both systems have 
the same stable subspace. In particular this remark can be applied to a 
matrix system (3) to show that it has an exponential dichotomy if and only if 
the system 

i = (A(f) + a(t)I)Z - Z(B(t) + b(t)l) 

= A(t)Z - ZR(t) + (a(t) - b(t))Z 

has, whenever a(t) and b(t) are functions with zero spectrum. Moreover, the 
systems have the same stable subspace. 
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Now to prove the necessity, since both properties are preserved by 
kinematic similarity, we may assume by Theorem 1 that the system has the 
block upper triangular form (5) where for all i system (27) is prime and 

Furthermore we may assume each Ai is a block diagonal matrix each 
block B,(t) being such that the system 

1 = B,(t)x 

is irreducible. As in Remark (b) in Section 5, Bj > B, ifj # I and Bj(t), B,(t) 
are blocks in the same Ai( 

Now let a(t) be a bounded continuous real function with zero spectrum 
such that Jbu(s)ds is bounded below but not above. Then we replace Ai 
by 

A;(t) = Ai + (i - 1) a(t)Z. 

Since the ordering > is not affected by adding the same scalar function to 
the diagonals of both matrix functions, the system with coefficient matrix 
A,(t) + (i- 1) a(t)Z is > the system with coefficient matrix Ai + 
(i - 1) a(t)Z when j > i. But then since both these systems are still prime 
(clearly, primeness also is not affected by the addition of a scalar function to 
the diagonal), it follows by Proposition 6 that the matrix system 

i = A;(t)Z - ZA((t) 

has no nontrivial bounded solution when j > i. Consequently if B;(t) is one 
of the diagonal blocks in A;(t) and B;(t) one in A\(t) the matrix system 

i = B;(t)Z - ZB;(t) 

also has no nontrivial bounded solution. From the remarks in the previous 
paragraph this is also true if B;(t) and B;(t) belong to the same Ai( 

The modified system with diagonal blocks B;(t) now has the properties of 
the system considered in Proposition 5 in Section 7, the only difference from 
the unmodified system being that scalar functions with zero spectrum have 
been added to the B,(t). Multiplying these scalar functions by a suitably 
small positive number we can ensure that the modified system still has the 
property that small perturbations of it are reducible. Then it follows by 
Proposition 5 that there is a positive integer 1 such that the matrix system 

i = Bf(t)Z - ZBj(t) (41) 

is uniformly asymptotically stable if i < 1, j > I + 1. But now using the 
remarks at the beginning of the proof about scalar functions with zero 
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spectrum (41) with the unmodified B,(t) is still uniformly asymptotically 
stable. As in the remark after Proposition 5, it follows that the original 
system is exponentially separated. So the theorem is proved. 

In the following two corollaries we consider a system (1 ), where A(t) is an 
n x n matrix function bounded and continuous on [0, co). Let 

be a minimal decomposition (cf. the Introduction) of E” with respect to (1) 
with dim Vi = ni. By Lemma 1 in [S] and its proof, (1) is kinematically 
similar to a block diagonal system 

ii = A i(t) xi (i = l,..., k) (42) 

such that Ai is n, x n, and (42) is exponentially separated with the ith 
subspace in the corresponding splitting of E” being those x of the form 
col(0 )..., 0, xi, 0 )...) 0). It follows by Theorem 1 in [8] and Lemma 2(i) that 
the matrix system 

i=Ai(t)z-ZAi+,(t) (43) 

is uniformly asymptotically stable for i = l,..., k - 1. Also since 
v, @ ... @ V, is a minimal decomposition no subsystem in (42) is exponen- 
tially separated. 

We say that the subspace Vi is irreducible with respect to the system (1) if 
the ith subsystem in (42) is irreducible. This is equivalent to the geometrical 
condition that Vi cannot be expressed as the direct sum of two proper 
subspaces such that there is a number y > 0 with the property that if x(t) is a 
solution beginning in one subspace and y(t) a solution beginning in the other 
the angle between x(t) and y(t) is bounded below by y (cf. [4, 51). 

COROLLARY 1. Let A(f) be a bounded continuous n X n matrix function 
defined on [0, US) such that V, @ a.. @ V, is a minimal decompositon of E” 
with respect to system (1). Then given 6 > 0 there is a continuous matrix 

function B(t) with supl>,, ]B(t)] < 6 such that V, @ .a. 0 V, is also a 
minimal decomposition of E” with respect to the perturbed system 

i = (A(t) + B(t))x (44) 

and such that each Vi is irreducible with respect to (44). 

Proof: Without loss of generality we can restrict attention to a block 
diagonal system (42) such that no subsystem is exponentially separated and 
for i= 1 ,..., k - 1 the matrix system (43) is uniformly asymptotically stable. 
This system has a minimal decomposition V, @ ..a @ Vk, where Vi consists 
of all vectors of the form col(0 ,..., 0, xi, 0 ,..., 0). 
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By Theorem 2 there is, for each i, a continuous matrix function Bi(t) such 
that sup,>, IB,(t)l < 6 and the system 

~1 = (A i(t) + B,(t)) Xi (45) 

is irreducible. If SUP~>~ IBi(t)l is sufficiently small it follows from the 
roughness property of exponential dichotomy that the matrix system 

‘= CAiCt> +Bi(t>>z-Z(Ai+l(t) +Bi+l(t)) 

is uniformly asymptotically stable for i = l,..., k - 1. By Lemma 2 this 
means that V, @ see @ I’, is exponentially separated with respect to the 
system 

ii = (A i(t) + Bi(t)) xi (i = l,..., k). (46) 

Also no Vi can be exponentially separated with respect to (46) since (45) is 
irreducible. Hence I’, 0 =.. 0 Vk is a minimal decomposition with respect to 
(46) such that each Vi is irreducible. 

Systems, such as in Corollary 1, which have a minimal decomposition in 
which each subspace is irreducible, have an interesting property. We state 
this as a lemma. 

LEMMA 8. Let A(t) be a bounded continuous n x n matrix function on 
[0, co) such that the system (1) has a minimal decomposition V, @ ... 0 V, 
in which each subspace Vi is irreducible. Then if Vi @ .. . @ VL is any other 
minimal decomposition each V,! is irreducible also. Moreover if (1) is 
reducible with respect to a decomposition W, @ W, of E”, there is a minimal 
decomposition Vi @ . . . @ VA and a subset J of {l,..., kjsuch that 

w, = @ vi’, w, = @ v; . 
iEJ it9 

Proof: We demonstrate the second assertion first. Without loss of 
generality, we may assume that the system has the form (42) such that each 
subsystem is irreducible and the matrix system (43) is uniformly 
asymptotically stable for i = l,..., k - 1. Let X(t) = diag(X,(t) ,..., X,Jt)) be 
the fundamental matrix such that X(0) = I. Then if P is the projection with 
range W, and kernel W, , X(t) PX- ‘(t) must be bounded. If we partition P 
as PI, ... Plk 

Li :I . . * . 9 pld *** p,, 
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the (i, j)th block in X(t) PX-‘(t) turns out to be Xi(t) PijXJ:‘(t), which is a 
bounded solution of the matrix system (33). Since if i > j this matrix system 
has by Lemmas 2(ii) and 4 an exponential dichotomy with stable subspace 
{0} we must have P, = 0 if i > j. (This means that V, @ .a. @ Vi is an 
invariant subspace of P for all i-this is true even when some Vi is 
reducible.) Then each Pii is a projection such that X,(t) P,,X,‘(t) is 
bounded. Since each subsystem in (42) is irreducible it follows that for each 
i, Pii is zero or the identity. 

It is easy then to prove by induction on k that there is an invertible matrix 
L of the form 

where Z,i is the n, x IZ~ identity matrix, such that 

L -‘PL = diag(P,, , P,, ,..., PkfJ 

Define J = (i = l,..., k: Pii # 0). Then we see that the range of P is aiEJ V,! 
and the kernel @i6J Vi, where Vi’ is the image under L of the subspace Vi of 
vectors of the form (O,..., 0, xi, 0 ,,.., 0). But because of L’s special form 

y 0 * * * @ v; = v, @ . . . @ vi 

for all i so that by Theorem 3 in [8], Vi @ ... 0 VL is also a minimal 
decomposition for (42). This completes the proof of the second assertion. 

Now let Vi @ -.. @ Vi be a minimal decomposition such that Vj’ is 
reducible. If we block diagonalize (1) with respect to this decomposition we 
get a system 

ii=A;(t)xi (i = l,..., k), (47) 

in which thefih equation is reducible. Let Q be the corresponding projection. 
Then the whole system (47) is reducible with corresponding projection 
diag(O ,..., 0, Q, 0 ,..., 0). That is, the original system (1) is reducible and the 
range W of the corresponding projection is a proper subspace of Vj. It 
follows from the first part that there is another minimal decomposition 
Vl’@ -** 0 Vf and a subset .Z of {l,..., k} such that W= oiCJ Vr. But 

Wf-l(V;‘@ ... @ v;J= wn(v;@ . ..@ v;-,)= {O) 

and 
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The only possibility is that W = Vy. This is a contradiction since dim W < 
dim Vj = dim Vi”. 

Remark. Suppose the conditions of the lemma hold and that (1) is 
reducible with respect to a decomposition W, @ ..a @ W, of E”. Then we 
can show in a similar way that there is a minimal decomposition 
VI 0 . ..@ V; and a partition {l,...,k}=J,uJ,U...UJ, such that 

wi= @ vi’. 
jeJi 

COROLLARY 2. Let A(t) and V, @ . . . @ V, be as in Corollary 1 and let 
m, ,..., m, be positive integers such that Cf=, mi = n. Then there exists 6 > 0 
such that system (44) is (m, ,..., m,)-reducible for any continuous matrix 
function B(t) with supl>,, IB(t)l < 6 if and only if there is a partition 
J,uJ2U ... u J, of {l,..., k} such that for i = I,..., 1, 

x dim Vj = mi. (48) 

Proof: If 6 is sufficiently small it follows from Corollary 2 in [8] that 
(44) is (n,, It?,..., n&-exponentially separated, where ni = dim Vi. It follows 
by Lemma 1 in [8] that it is also (n,, n2,..., n&-reducible and hence 

Cm , ,..., m,)-reducible if the conditions (48) hold. This proves the sufficiency. 
To prove the necessity perturb the system as in Corollary 1. If 6 is small 

enough, the perturbed system (44) is (m, ,..., m,)-reducible. Let 
w, 0 ..a 0 W, be the corresponding decomposition of E” so that 
dim Wi = mi. It follows from Lemma 8 and the remark after it that there is a 
minimal decomposition Vi @ ... @ VA and a partition J, U . . . U J, of 
( l,..., k} such that for i = l,..., 1, 

wi= @ vi’. 
jcJi 

Hence m, = dim Wi = xjEJi dim Vj’ = CjE Ji dim Vj. 

Remark. The case I= It, mi = 1 for all i was already treated in 
MillionEikov [6] and Palmer [S]. 

9. SYSTEMS ON THE WHOLE LINE 

Let A(t) be an n x n matrix function, bounded and continuous on 
(-co, 00). If the system (1) is exponentially separated (this is defined for 
systems on (-co, co) as for systems on [0, co), cf. [8]), then it follows from 
the roughness of exponential separation and the reducibility of exponentially 
separated systems that small perturbations of (1) are reducible. 

On the other hand if small perturbations of (1) are reducible it follows, by 

505/53/1b7 
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restricting to the half-lines, that (1) is exponentially separated on both 
[0, co) and (-co, 01. H owever in general, this is not a sufftcient condition. 
For let A(t) be a 3 x 3 matrix function such that system (1) has minimal 
decompositions V: 0 V: and V; 0 V; on [0, co) and (-co, 01, respec- 
tively, where dim I’: = dim V; = 2 but V: # I’;. By perturbing the system 
as in Corollary 1 (we do this separately on [0, co) and (-co, 01; clearly we 
can choose both perturbations to be zero at t = 0 so that the resulting pertur- 
bation is continuous on (-co, co)), we can ensure that V: and V; are 
irreducible. Suppose now that the perturbed system is reducible on (-co, co) 
with corresponding splitting IV, @ IV, of E’. Assuming without loss of 
generality that dim W, = 2, it follows from Lemma 8 that W, = V: and 
from its analogue for systems on (-co, O] that W, = V;. This is impossible 
since V: # VT. 

Nevertheless even if a system is not exponentially separated on (-co, co) 
it can still happen that small perturbations of it are reducible. For let (1) be 
a system which is integrally separated (cf. [2, 81) on (0, co) but just 
exponentially separated on (-co, 01. Any perturbed system will have the 
same property. By Lemma 3 in 171 we can choose a basis I,, 1, ,..., 1, for E” 
such that the one-dimensional subspaces Vi generated by these are exponen- 
tially separated on IO, co) and so that there is a proper subset J of {l,..., n) 
such that the vectors Ii, i E J, generate the last subspace W in the minimal 
decomposition of the perturbed system on (---co, 01. Take V as the subspace 
generated by the vectors Ii, i&J. It follows by Corollary 1 in [8] that the 
decomposition I’@ W is exponentially separated on (-co, 0] and hence 
certainly reducible. On the other hand it is also reducible on [O, co) because 
the system is diagonalizable on 10, co) with respect to the decomposition 
v, 0 ‘.. @ v,. 

Summing up, it seems that a system on (-co, oo) has the property that 
small perturbations of it are reducible if and only if it is exponentially 
separated on both half-lines and there is some relationship between the two 
minimal decompositions. However, the author has not been able to discover 
what this relationship is, in general. 

This seems to be a good place to fill in a gap in the proof of Corollary 5 
in [ 81. First, we lose no generality in assuming that V, @ . -. @ V, is a 
minimal decomposition which is then unique by Theorem 3(iii) in [8]. So the 
projections Pi are uniquely determined. Next, if A(t + tr) -+ z(t) uniformly 
with respect to t as I + co and if X(t,) P,X- ‘(t,) + Pi for i = l,..., k, it follows 
using Theorem 1 in [8] and an argument similar to that used in the proof of 
Lemma 1 in [3, p. 701 that the system 

i=‘qt)x 

will be (n, ,..., n,)-exponentially separated w_ith respect to the decomposition 
w, @ *** @ W,, where Wi is the range of Pi. If this decomposition were not 
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minimal we could use the fact that A”(t - tr) -+ A(t) uniformly to deduce that 
(1) were exponentially separated with respect to a decomposition with more 
than k subspaces, contradicting the minimality of V, @ **. @ V,. Now the 
assertion made in the proof of Corollary 5 that the functions 
X(t + H) P,X-‘(t) are almost periodic will follow using arguments similar to 
those used in the proofs of Proposition 4 in [3, p. 721 and Theorem 2 in 
reference [5] in [8]. 
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